/* sane - Scanner Access Now Easy. Copyright (C) 2010-2013 Stéphane Voltz This file is part of the SANE package. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #define DEBUG_DECLARE_ONLY #include "gl843_registers.h" #include "gl843.h" #include "test_settings.h" #include #include namespace genesys { namespace gl843 { /** * compute the step multiplier used */ static int gl843_get_step_multiplier(Genesys_Register_Set* regs) { switch (regs->get8(REG_0x9D) & 0x0c) { case 0x04: return 2; case 0x08: return 4; default: return 1; } } /** @brief set all registers to default values . * This function is called only once at the beginning and * fills register startup values for registers reused across scans. * Those that are rarely modified or not modified are written * individually. * @param dev device structure holding register set to initialize */ static void gl843_init_registers (Genesys_Device * dev) { // Within this function SENSOR_DEF marker documents that a register is part // of the sensors definition and the actual value is set in // scanner_setup_sensor(). // 0x6c, 0x6d, 0x6e, 0x6f, 0xa6, 0xa7, 0xa8, 0xa9 are defined in the Gpo sensor struct DBG_HELPER(dbg); dev->reg.clear(); dev->reg.init_reg(0x01, 0x00); dev->reg.init_reg(0x02, 0x78); dev->reg.init_reg(0x03, 0x1f); if (dev->model->model_id == ModelId::HP_SCANJET_G4010 || dev->model->model_id == ModelId::HP_SCANJET_G4050 || dev->model->model_id == ModelId::HP_SCANJET_4850C) { dev->reg.init_reg(0x03, 0x1d); } if (dev->model->model_id == ModelId::CANON_8400F) { dev->reg.init_reg(0x03, 0x1c); } dev->reg.init_reg(0x04, 0x10); if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7200I || dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7300 || dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7500I) { dev->reg.init_reg(0x04, 0x22); } // fine tune upon device description dev->reg.init_reg(0x05, 0x80); if (dev->model->model_id == ModelId::HP_SCANJET_G4010 || dev->model->model_id == ModelId::HP_SCANJET_G4050 || dev->model->model_id == ModelId::HP_SCANJET_4850C) { dev->reg.init_reg(0x05, 0x08); } auto initial_scan_method = dev->model->default_method; if (dev->model->model_id == ModelId::CANON_4400F || dev->model->model_id == ModelId::CANON_8600F) { initial_scan_method = ScanMethod::TRANSPARENCY; } const auto& sensor = sanei_genesys_find_sensor_any(dev); const auto& dpihw_sensor = sanei_genesys_find_sensor(dev, sensor.full_resolution, 3, initial_scan_method); sanei_genesys_set_dpihw(dev->reg, dpihw_sensor.register_dpihw); // TODO: on 8600F the windows driver turns off GAIN4 which is recommended dev->reg.init_reg(0x06, 0xd8); /* SCANMOD=110, PWRBIT and GAIN4 */ if (dev->model->model_id == ModelId::HP_SCANJET_G4010 || dev->model->model_id == ModelId::HP_SCANJET_G4050 || dev->model->model_id == ModelId::HP_SCANJET_4850C) { dev->reg.init_reg(0x06, 0xd8); /* SCANMOD=110, PWRBIT and GAIN4 */ } if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7200I) { dev->reg.init_reg(0x06, 0xd0); } if (dev->model->model_id == ModelId::CANON_4400F || dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7300 || dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7500I) { dev->reg.init_reg(0x06, 0xf0); /* SCANMOD=111, PWRBIT and no GAIN4 */ } dev->reg.init_reg(0x08, 0x00); dev->reg.init_reg(0x09, 0x00); dev->reg.init_reg(0x0a, 0x00); if (dev->model->model_id == ModelId::HP_SCANJET_G4010 || dev->model->model_id == ModelId::HP_SCANJET_G4050 || dev->model->model_id == ModelId::HP_SCANJET_4850C) { dev->reg.init_reg(0x0a, 0x18); } if (dev->model->model_id == ModelId::CANON_8400F) { dev->reg.init_reg(0x0a, 0x10); } // This register controls clock and RAM settings and is further modified in // gl843_boot dev->reg.init_reg(0x0b, 0x6a); if (dev->model->model_id == ModelId::CANON_4400F) { dev->reg.init_reg(0x0b, 0x69); // 16M only } if (dev->model->model_id == ModelId::CANON_8600F) { dev->reg.init_reg(0x0b, 0x89); } if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7200I) { dev->reg.init_reg(0x0b, 0x2a); } if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7300 || dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7500I) { dev->reg.init_reg(0x0b, 0x4a); } if (dev->model->model_id == ModelId::HP_SCANJET_G4010 || dev->model->model_id == ModelId::HP_SCANJET_G4050 || dev->model->model_id == ModelId::HP_SCANJET_4850C) { dev->reg.init_reg(0x0b, 0x69); } if (dev->model->model_id != ModelId::CANON_8400F && dev->model->model_id != ModelId::PLUSTEK_OPTICFILM_7200I && dev->model->model_id != ModelId::PLUSTEK_OPTICFILM_7300) { dev->reg.init_reg(0x0c, 0x00); } // EXPR[0:15], EXPG[0:15], EXPB[0:15]: Exposure time settings. dev->reg.init_reg(0x10, 0x00); // SENSOR_DEF dev->reg.init_reg(0x11, 0x00); // SENSOR_DEF dev->reg.init_reg(0x12, 0x00); // SENSOR_DEF dev->reg.init_reg(0x13, 0x00); // SENSOR_DEF dev->reg.init_reg(0x14, 0x00); // SENSOR_DEF dev->reg.init_reg(0x15, 0x00); // SENSOR_DEF if (dev->model->model_id == ModelId::CANON_4400F || dev->model->model_id == ModelId::CANON_8600F) { dev->reg.set16(REG_EXPR, 0x9c40); dev->reg.set16(REG_EXPG, 0x9c40); dev->reg.set16(REG_EXPB, 0x9c40); } if (dev->model->model_id == ModelId::HP_SCANJET_G4010 || dev->model->model_id == ModelId::HP_SCANJET_G4050 || dev->model->model_id == ModelId::HP_SCANJET_4850C) { dev->reg.set16(REG_EXPR, 0x2c09); dev->reg.set16(REG_EXPG, 0x22b8); dev->reg.set16(REG_EXPB, 0x10f0); } // CCD signal settings. dev->reg.init_reg(0x16, 0x33); // SENSOR_DEF dev->reg.init_reg(0x17, 0x1c); // SENSOR_DEF dev->reg.init_reg(0x18, 0x10); // SENSOR_DEF // EXPDMY[0:7]: Exposure time of dummy lines. dev->reg.init_reg(0x19, 0x2a); // SENSOR_DEF // Various CCD clock settings. dev->reg.init_reg(0x1a, 0x04); // SENSOR_DEF dev->reg.init_reg(0x1b, 0x00); // SENSOR_DEF dev->reg.init_reg(0x1c, 0x20); // SENSOR_DEF dev->reg.init_reg(0x1d, 0x04); // SENSOR_DEF dev->reg.init_reg(0x1e, 0x10); if (dev->model->model_id == ModelId::CANON_4400F || dev->model->model_id == ModelId::CANON_8600F) { dev->reg.init_reg(0x1e, 0x20); } if (dev->model->model_id == ModelId::CANON_8400F) { dev->reg.init_reg(0x1e, 0xa0); } dev->reg.init_reg(0x1f, 0x01); if (dev->model->model_id == ModelId::CANON_8600F) { dev->reg.init_reg(0x1f, 0xff); } dev->reg.init_reg(0x20, 0x10); dev->reg.init_reg(0x21, 0x04); dev->reg.init_reg(0x22, 0x10); dev->reg.init_reg(0x23, 0x10); if (dev->model->model_id == ModelId::CANON_8600F) { dev->reg.init_reg(0x22, 0xc8); dev->reg.init_reg(0x23, 0xc8); } if (dev->model->model_id == ModelId::CANON_8400F) { dev->reg.init_reg(0x22, 0x50); dev->reg.init_reg(0x23, 0x50); } dev->reg.init_reg(0x24, 0x04); dev->reg.init_reg(0x25, 0x00); dev->reg.init_reg(0x26, 0x00); dev->reg.init_reg(0x27, 0x00); dev->reg.init_reg(0x2c, 0x02); dev->reg.init_reg(0x2d, 0x58); // BWHI[0:7]: high level of black and white threshold dev->reg.init_reg(0x2e, 0x80); // BWLOW[0:7]: low level of black and white threshold dev->reg.init_reg(0x2f, 0x80); dev->reg.init_reg(0x30, 0x00); dev->reg.init_reg(0x31, 0x14); dev->reg.init_reg(0x32, 0x27); dev->reg.init_reg(0x33, 0xec); // DUMMY: CCD dummy and optically black pixel count dev->reg.init_reg(0x34, 0x24); if (dev->model->model_id == ModelId::CANON_8600F) { dev->reg.init_reg(0x34, 0x14); } if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7300 || dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7500I) { dev->reg.init_reg(0x34, 0x3c); } // MAXWD: If available buffer size is less than 2*MAXWD words, then // "buffer full" state will be set. dev->reg.init_reg(0x35, 0x00); dev->reg.init_reg(0x36, 0xff); dev->reg.init_reg(0x37, 0xff); // LPERIOD: Line period or exposure time for CCD or CIS. dev->reg.init_reg(0x38, 0x55); // SENSOR_DEF dev->reg.init_reg(0x39, 0xf0); // SENSOR_DEF // FEEDL[0:24]: The number of steps of motor movement. dev->reg.init_reg(0x3d, 0x00); dev->reg.init_reg(0x3e, 0x00); dev->reg.init_reg(0x3f, 0x01); // Latch points for high and low bytes of R, G and B channels of AFE. If // multiple clocks per pixel are consumed, then the setting defines during // which clock the corresponding value will be read. // RHI[0:4]: The latch point for high byte of R channel. // RLOW[0:4]: The latch point for low byte of R channel. // GHI[0:4]: The latch point for high byte of G channel. // GLOW[0:4]: The latch point for low byte of G channel. // BHI[0:4]: The latch point for high byte of B channel. // BLOW[0:4]: The latch point for low byte of B channel. dev->reg.init_reg(0x52, 0x01); // SENSOR_DEF dev->reg.init_reg(0x53, 0x04); // SENSOR_DEF dev->reg.init_reg(0x54, 0x07); // SENSOR_DEF dev->reg.init_reg(0x55, 0x0a); // SENSOR_DEF dev->reg.init_reg(0x56, 0x0d); // SENSOR_DEF dev->reg.init_reg(0x57, 0x10); // SENSOR_DEF // VSMP[0:4]: The position of the image sampling pulse for AFE in cycles. // VSMPW[0:2]: The length of the image sampling pulse for AFE in cycles. dev->reg.init_reg(0x58, 0x1b); // SENSOR_DEF dev->reg.init_reg(0x59, 0x00); // SENSOR_DEF dev->reg.init_reg(0x5a, 0x40); // SENSOR_DEF // 0x5b-0x5c: GMMADDR[0:15] address for gamma or motor tables download // SENSOR_DEF // DECSEL[0:2]: The number of deceleration steps after touching home sensor // STOPTIM[0:4]: The stop duration between change of directions in // backtracking dev->reg.init_reg(0x5e, 0x23); if (dev->model->model_id == ModelId::CANON_4400F) { dev->reg.init_reg(0x5e, 0x3f); } if (dev->model->model_id == ModelId::CANON_8400F) { dev->reg.init_reg(0x5e, 0x85); } if (dev->model->model_id == ModelId::CANON_8600F) { dev->reg.init_reg(0x5e, 0x1f); } if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7300 || dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7500I) { dev->reg.init_reg(0x5e, 0x01); } //FMOVDEC: The number of deceleration steps in table 5 for auto-go-home dev->reg.init_reg(0x5f, 0x01); if (dev->model->model_id == ModelId::CANON_4400F) { dev->reg.init_reg(0x5f, 0xf0); } if (dev->model->model_id == ModelId::CANON_8600F) { dev->reg.init_reg(0x5f, 0xf0); } if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7300 || dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7500I) { dev->reg.init_reg(0x5f, 0x01); } // Z1MOD[0:20] dev->reg.init_reg(0x60, 0x00); dev->reg.init_reg(0x61, 0x00); dev->reg.init_reg(0x62, 0x00); // Z2MOD[0:20] dev->reg.init_reg(0x63, 0x00); dev->reg.init_reg(0x64, 0x00); dev->reg.init_reg(0x65, 0x00); // STEPSEL[0:1]. Motor movement step mode selection for tables 1-3 in // scanning mode. // MTRPWM[0:5]. Motor phase PWM duty cycle setting for tables 1-3 dev->reg.init_reg(0x67, 0x7f); // MOTOR_PROFILE // FSTPSEL[0:1]: Motor movement step mode selection for tables 4-5 in // command mode. // FASTPWM[5:0]: Motor phase PWM duty cycle setting for tables 4-5 dev->reg.init_reg(0x68, 0x7f); // MOTOR_PROFILE if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7300) { dev->reg.init_reg(0x67, 0x80); dev->reg.init_reg(0x68, 0x80); } // FSHDEC[0:7]: The number of deceleration steps after scanning is finished // (table 3) dev->reg.init_reg(0x69, 0x01); // MOTOR_PROFILE // FMOVNO[0:7] The number of acceleration or deceleration steps for fast // moving (table 4) dev->reg.init_reg(0x6a, 0x04); // MOTOR_PROFILE // GPIO-related register bits dev->reg.init_reg(0x6b, 0x30); if (dev->model->model_id == ModelId::CANON_4400F || dev->model->model_id == ModelId::CANON_8600F) { dev->reg.init_reg(0x6b, 0x72); } if (dev->model->model_id == ModelId::CANON_8400F) { dev->reg.init_reg(0x6b, 0xb1); } if (dev->model->model_id == ModelId::HP_SCANJET_G4010 || dev->model->model_id == ModelId::HP_SCANJET_G4050 || dev->model->model_id == ModelId::HP_SCANJET_4850C) { dev->reg.init_reg(0x6b, 0xf4); } if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7200I || dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7300 || dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7500I) { dev->reg.init_reg(0x6b, 0x31); } // 0x6c, 0x6d, 0x6e, 0x6f are set according to gpio tables. See // gl843_init_gpio. // RSH[0:4]: The position of rising edge of CCD RS signal in cycles // RSL[0:4]: The position of falling edge of CCD RS signal in cycles // CPH[0:4]: The position of rising edge of CCD CP signal in cycles. // CPL[0:4]: The position of falling edge of CCD CP signal in cycles dev->reg.init_reg(0x70, 0x01); // SENSOR_DEF dev->reg.init_reg(0x71, 0x03); // SENSOR_DEF dev->reg.init_reg(0x72, 0x04); // SENSOR_DEF dev->reg.init_reg(0x73, 0x05); // SENSOR_DEF if (dev->model->model_id == ModelId::CANON_4400F) { dev->reg.init_reg(0x70, 0x01); dev->reg.init_reg(0x71, 0x03); dev->reg.init_reg(0x72, 0x01); dev->reg.init_reg(0x73, 0x03); } if (dev->model->model_id == ModelId::CANON_8400F) { dev->reg.init_reg(0x70, 0x01); dev->reg.init_reg(0x71, 0x03); dev->reg.init_reg(0x72, 0x03); dev->reg.init_reg(0x73, 0x04); } if (dev->model->model_id == ModelId::CANON_8600F) { dev->reg.init_reg(0x70, 0x00); dev->reg.init_reg(0x71, 0x02); dev->reg.init_reg(0x72, 0x02); dev->reg.init_reg(0x73, 0x04); } if (dev->model->model_id == ModelId::HP_SCANJET_G4010 || dev->model->model_id == ModelId::HP_SCANJET_G4050 || dev->model->model_id == ModelId::HP_SCANJET_4850C) { dev->reg.init_reg(0x70, 0x00); dev->reg.init_reg(0x71, 0x02); dev->reg.init_reg(0x72, 0x00); dev->reg.init_reg(0x73, 0x00); } // CK1MAP[0:17], CK3MAP[0:17], CK4MAP[0:17]: CCD clock bit mapping setting. dev->reg.init_reg(0x74, 0x00); // SENSOR_DEF dev->reg.init_reg(0x75, 0x00); // SENSOR_DEF dev->reg.init_reg(0x76, 0x3c); // SENSOR_DEF dev->reg.init_reg(0x77, 0x00); // SENSOR_DEF dev->reg.init_reg(0x78, 0x00); // SENSOR_DEF dev->reg.init_reg(0x79, 0x9f); // SENSOR_DEF dev->reg.init_reg(0x7a, 0x00); // SENSOR_DEF dev->reg.init_reg(0x7b, 0x00); // SENSOR_DEF dev->reg.init_reg(0x7c, 0x55); // SENSOR_DEF // various AFE settings dev->reg.init_reg(0x7d, 0x00); if (dev->model->model_id == ModelId::CANON_8400F) { dev->reg.init_reg(0x7d, 0x20); } // GPOLED[x]: LED vs GPIO settings dev->reg.init_reg(0x7e, 0x00); // BSMPDLY, VSMPDLY // LEDCNT[0:1]: Controls led blinking and its period dev->reg.init_reg(0x7f, 0x00); // VRHOME, VRMOVE, VRBACK, VRSCAN: Vref settings of the motor driver IC for // moving in various situations. dev->reg.init_reg(0x80, 0x00); // MOTOR_PROFILE if (dev->model->model_id == ModelId::CANON_4400F) { dev->reg.init_reg(0x80, 0x0c); } if (dev->model->model_id == ModelId::CANON_8400F) { dev->reg.init_reg(0x80, 0x28); } if (dev->model->model_id == ModelId::HP_SCANJET_G4010 || dev->model->model_id == ModelId::HP_SCANJET_G4050 || dev->model->model_id == ModelId::HP_SCANJET_4850C) { dev->reg.init_reg(0x80, 0x50); } if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7300 || dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7500I) { dev->reg.init_reg(0x80, 0x0f); } if (dev->model->model_id != ModelId::CANON_4400F) { dev->reg.init_reg(0x81, 0x00); dev->reg.init_reg(0x82, 0x00); dev->reg.init_reg(0x83, 0x00); dev->reg.init_reg(0x84, 0x00); dev->reg.init_reg(0x85, 0x00); dev->reg.init_reg(0x86, 0x00); } dev->reg.init_reg(0x87, 0x00); if (dev->model->model_id == ModelId::CANON_4400F || dev->model->model_id == ModelId::CANON_8400F || dev->model->model_id == ModelId::CANON_8600F) { dev->reg.init_reg(0x87, 0x02); } // MTRPLS[0:7]: The width of the ADF motor trigger signal pulse. if (dev->model->model_id != ModelId::CANON_8400F && dev->model->model_id != ModelId::PLUSTEK_OPTICFILM_7200I && dev->model->model_id != ModelId::PLUSTEK_OPTICFILM_7300) { dev->reg.init_reg(0x94, 0xff); } // 0x95-0x97: SCANLEN[0:19]: Controls when paper jam bit is set in sheetfed // scanners. // ONDUR[0:15]: The duration of PWM ON phase for LAMP control // OFFDUR[0:15]: The duration of PWM OFF phase for LAMP control // both of the above are in system clocks if (dev->model->model_id == ModelId::CANON_8600F) { dev->reg.init_reg(0x98, 0x00); dev->reg.init_reg(0x99, 0x00); dev->reg.init_reg(0x9a, 0x00); dev->reg.init_reg(0x9b, 0x00); } if (dev->model->model_id == ModelId::HP_SCANJET_G4010 || dev->model->model_id == ModelId::HP_SCANJET_G4050 || dev->model->model_id == ModelId::HP_SCANJET_4850C) { // TODO: move to set for scan dev->reg.init_reg(0x98, 0x03); dev->reg.init_reg(0x99, 0x30); dev->reg.init_reg(0x9a, 0x01); dev->reg.init_reg(0x9b, 0x80); } // RMADLY[0:1], MOTLAG, CMODE, STEPTIM, MULDMYLN, IFRS dev->reg.init_reg(0x9d, 0x04); if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7300 || dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7500I) { dev->reg.init_reg(0x9d, 0x00); } if (dev->model->model_id == ModelId::CANON_4400F || dev->model->model_id == ModelId::CANON_8400F || dev->model->model_id == ModelId::CANON_8600F || dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7200I || dev->model->model_id == ModelId::HP_SCANJET_G4010 || dev->model->model_id == ModelId::HP_SCANJET_G4050 || dev->model->model_id == ModelId::HP_SCANJET_4850C) { dev->reg.init_reg(0x9d, 0x08); // sets the multiplier for slope tables } // SEL3INV, TGSTIME[0:2], TGWTIME[0:2] if (dev->model->model_id != ModelId::CANON_8400F && dev->model->model_id != ModelId::PLUSTEK_OPTICFILM_7200I && dev->model->model_id != ModelId::PLUSTEK_OPTICFILM_7300) { dev->reg.init_reg(0x9e, 0x00); // SENSOR_DEF } if (dev->model->model_id != ModelId::PLUSTEK_OPTICFILM_7300) { dev->reg.init_reg(0xa2, 0x0f); } // RFHSET[0:4]: Refresh time of SDRAM in units of 2us if (dev->model->model_id == ModelId::CANON_4400F || dev->model->model_id == ModelId::CANON_8600F) { dev->reg.init_reg(0xa2, 0x1f); } // 0xa6-0xa9: controls gpio, see gl843_gpio_init // not documented if (dev->model->model_id != ModelId::CANON_4400F && dev->model->model_id != ModelId::CANON_8400F && dev->model->model_id != ModelId::PLUSTEK_OPTICFILM_7200I && dev->model->model_id != ModelId::PLUSTEK_OPTICFILM_7300) { dev->reg.init_reg(0xaa, 0x00); } // GPOM9, MULSTOP[0-2], NODECEL, TB3TB1, TB5TB2, FIX16CLK. if (dev->model->model_id != ModelId::CANON_8400F && dev->model->model_id != ModelId::PLUSTEK_OPTICFILM_7200I && dev->model->model_id != ModelId::PLUSTEK_OPTICFILM_7300) { dev->reg.init_reg(0xab, 0x50); } if (dev->model->model_id == ModelId::CANON_4400F) { dev->reg.init_reg(0xab, 0x00); } if (dev->model->model_id == ModelId::HP_SCANJET_G4010 || dev->model->model_id == ModelId::HP_SCANJET_G4050 || dev->model->model_id == ModelId::CANON_8600F || dev->model->model_id == ModelId::HP_SCANJET_4850C) { dev->reg.init_reg(0xab, 0x40); } // VRHOME[3:2], VRMOVE[3:2], VRBACK[3:2]: Vref setting of the motor driver IC // for various situations. if (dev->model->model_id == ModelId::CANON_8600F || dev->model->model_id == ModelId::HP_SCANJET_G4010 || dev->model->model_id == ModelId::HP_SCANJET_G4050 || dev->model->model_id == ModelId::HP_SCANJET_4850C) { dev->reg.init_reg(0xac, 0x00); } if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7200I) { std::uint8_t data[32] = { 0x8c, 0x8f, 0xc9, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x6a, 0x73, 0x63, 0x68, 0x69, 0x65, 0x6e, 0x00, }; dev->interface->write_buffer(0x3c, 0x3ff000, data, 32); } } static void gl843_set_ad_fe(Genesys_Device* dev) { for (const auto& reg : dev->frontend.regs) { dev->interface->write_fe_register(reg.address, reg.value); } } // Set values of analog frontend void CommandSetGl843::set_fe(Genesys_Device* dev, const Genesys_Sensor& sensor, std::uint8_t set) const { DBG_HELPER_ARGS(dbg, "%s", set == AFE_INIT ? "init" : set == AFE_SET ? "set" : set == AFE_POWER_SAVE ? "powersave" : "huh?"); (void) sensor; if (set == AFE_INIT) { dev->frontend = dev->frontend_initial; } // check analog frontend type // FIXME: looks like we write to that register with initial data std::uint8_t fe_type = dev->interface->read_register(REG_0x04) & REG_0x04_FESET; if (fe_type == 2) { gl843_set_ad_fe(dev); return; } if (fe_type != 0) { throw SaneException(SANE_STATUS_UNSUPPORTED, "unsupported frontend type %d", fe_type); } for (unsigned i = 1; i <= 3; i++) { dev->interface->write_fe_register(i, dev->frontend.regs.get_value(0x00 + i)); } for (const auto& reg : sensor.custom_fe_regs) { dev->interface->write_fe_register(reg.address, reg.value); } for (unsigned i = 0; i < 3; i++) { dev->interface->write_fe_register(0x20 + i, dev->frontend.get_offset(i)); } if (dev->model->sensor_id == SensorId::CCD_KVSS080) { for (unsigned i = 0; i < 3; i++) { dev->interface->write_fe_register(0x24 + i, dev->frontend.regs.get_value(0x24 + i)); } } for (unsigned i = 0; i < 3; i++) { dev->interface->write_fe_register(0x28 + i, dev->frontend.get_gain(i)); } } static void gl843_init_motor_regs_scan(Genesys_Device* dev, const Genesys_Sensor& sensor, const ScanSession& session, Genesys_Register_Set* reg, const MotorProfile& motor_profile, unsigned int exposure, unsigned scan_yres, unsigned int scan_lines, unsigned int scan_dummy, unsigned int feed_steps, ScanFlag flags) { DBG_HELPER_ARGS(dbg, "exposure=%d, scan_yres=%d, step_type=%d, scan_lines=%d, scan_dummy=%d, " "feed_steps=%d, flags=%x", exposure, scan_yres, static_cast(motor_profile.step_type), scan_lines, scan_dummy, feed_steps, static_cast(flags)); unsigned feedl, dist; /* get step multiplier */ unsigned step_multiplier = gl843_get_step_multiplier (reg); bool use_fast_fed = false; if ((scan_yres >= 300 && feed_steps > 900) || (has_flag(flags, ScanFlag::FEEDING))) { use_fast_fed = true; } if (has_flag(dev->model->flags, ModelFlag::DISABLE_FAST_FEEDING)) { use_fast_fed = false; } reg->set24(REG_LINCNT, scan_lines); reg->set8(REG_0x02, 0); sanei_genesys_set_motor_power(*reg, true); std::uint8_t reg02 = reg->get8(REG_0x02); if (use_fast_fed) { reg02 |= REG_0x02_FASTFED; } else { reg02 &= ~REG_0x02_FASTFED; } // in case of automatic go home, move until home sensor if (has_flag(flags, ScanFlag::AUTO_GO_HOME)) { reg02 |= REG_0x02_AGOHOME | REG_0x02_NOTHOME; } /* disable backtracking */ if (has_flag(flags, ScanFlag::DISABLE_BUFFER_FULL_MOVE) || (scan_yres>=2400 && dev->model->model_id != ModelId::CANON_4400F) || (scan_yres>=sensor.full_resolution)) { reg02 |= REG_0x02_ACDCDIS; } if (has_flag(flags, ScanFlag::REVERSE)) { reg02 |= REG_0x02_MTRREV; } else { reg02 &= ~REG_0x02_MTRREV; } reg->set8(REG_0x02, reg02); // scan and backtracking slope table auto scan_table = create_slope_table(dev->model->asic_type, dev->motor, scan_yres, exposure, step_multiplier, motor_profile); scanner_send_slope_table(dev, sensor, SCAN_TABLE, scan_table.table); scanner_send_slope_table(dev, sensor, BACKTRACK_TABLE, scan_table.table); scanner_send_slope_table(dev, sensor, STOP_TABLE, scan_table.table); reg->set8(REG_STEPNO, scan_table.table.size() / step_multiplier); reg->set8(REG_FASTNO, scan_table.table.size() / step_multiplier); reg->set8(REG_FSHDEC, scan_table.table.size() / step_multiplier); // fast table const auto* fast_profile = get_motor_profile_ptr(dev->motor.fast_profiles, 0, session); if (fast_profile == nullptr) { fast_profile = &motor_profile; } auto fast_table = create_slope_table_fastest(dev->model->asic_type, step_multiplier, *fast_profile); scanner_send_slope_table(dev, sensor, FAST_TABLE, fast_table.table); scanner_send_slope_table(dev, sensor, HOME_TABLE, fast_table.table); reg->set8(REG_FMOVNO, fast_table.table.size() / step_multiplier); if (motor_profile.motor_vref != -1 && fast_profile->motor_vref != 1) { std::uint8_t vref = 0; vref |= (motor_profile.motor_vref << REG_0x80S_TABLE1_NORMAL) & REG_0x80_TABLE1_NORMAL; vref |= (motor_profile.motor_vref << REG_0x80S_TABLE2_BACK) & REG_0x80_TABLE2_BACK; vref |= (fast_profile->motor_vref << REG_0x80S_TABLE4_FAST) & REG_0x80_TABLE4_FAST; vref |= (fast_profile->motor_vref << REG_0x80S_TABLE5_GO_HOME) & REG_0x80_TABLE5_GO_HOME; reg->set8(REG_0x80, vref); } /* subtract acceleration distance from feedl */ feedl=feed_steps; feedl <<= static_cast(motor_profile.step_type); dist = scan_table.table.size() / step_multiplier; if (use_fast_fed) { dist += (fast_table.table.size() / step_multiplier) * 2; } /* get sure when don't insane value : XXX STEF XXX in this case we should * fall back to single table move */ if (dist < feedl) { feedl -= dist; } else { feedl = 1; } reg->set24(REG_FEEDL, feedl); // doesn't seem to matter that much std::uint32_t z1, z2; sanei_genesys_calculate_zmod(use_fast_fed, exposure, scan_table.table, scan_table.table.size() / step_multiplier, feedl, scan_table.table.size() / step_multiplier, &z1, &z2); if(scan_yres>600) { z1=0; z2=0; } reg->set24(REG_Z1MOD, z1); reg->set24(REG_Z2MOD, z2); reg->set8_mask(REG_0x1E, scan_dummy, 0x0f); reg->set8_mask(REG_0x67, static_cast(motor_profile.step_type) << REG_0x67S_STEPSEL, 0xc0); reg->set8_mask(REG_0x68, static_cast(fast_profile->step_type) << REG_0x68S_FSTPSEL, 0xc0); // steps for STOP table reg->set8(REG_FMOVDEC, fast_table.table.size() / step_multiplier); if (dev->model->model_id == ModelId::PANASONIC_KV_SS080 || dev->model->model_id == ModelId::HP_SCANJET_4850C || dev->model->model_id == ModelId::HP_SCANJET_G4010 || dev->model->model_id == ModelId::HP_SCANJET_G4050 || dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7200I || dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7300 || dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7500I) { // FIXME: take this information from motor struct std::uint8_t reg_vref = reg->get8(0x80); reg_vref = 0x50; unsigned coeff = sensor.full_resolution / scan_yres; if (dev->model->motor_id == MotorId::KVSS080) { if (coeff >= 1) { reg_vref |= 0x05; } } else { switch (coeff) { case 4: reg_vref |= 0x0a; break; case 2: reg_vref |= 0x0f; break; case 1: reg_vref |= 0x0f; break; } } reg->set8(REG_0x80, reg_vref); } } /** @brief setup optical related registers * start and pixels are expressed in optical sensor resolution coordinate * space. * @param dev device to use * @param reg registers to set up * @param exposure exposure time to use * @param used_res scanning resolution used, may differ from * scan's one * @param start logical start pixel coordinate * @param pixels logical number of pixels to use * @param channels number of color channels used (1 or 3) * @param depth bit depth of the scan (1, 8 or 16 bits) * @param color_filter to choose the color channel used in gray scans * @param flags to drive specific settings such no calibration, XPA use ... */ static void gl843_init_optical_regs_scan(Genesys_Device* dev, const Genesys_Sensor& sensor, Genesys_Register_Set* reg, unsigned int exposure, const ScanSession& session) { DBG_HELPER_ARGS(dbg, "exposure=%d", exposure); unsigned int tgtime; /**> exposure time multiplier */ /* tgtime */ tgtime = exposure / 65536 + 1; DBG(DBG_io2, "%s: tgtime=%d\n", __func__, tgtime); // sensor parameters scanner_setup_sensor(*dev, sensor, *reg); dev->cmd_set->set_fe(dev, sensor, AFE_SET); /* enable shading */ regs_set_optical_off(dev->model->asic_type, *reg); if (has_flag(session.params.flags, ScanFlag::DISABLE_SHADING) || has_flag(dev->model->flags, ModelFlag::DISABLE_SHADING_CALIBRATION) || session.use_host_side_calib) { reg->find_reg(REG_0x01).value &= ~REG_0x01_DVDSET; } else { reg->find_reg(REG_0x01).value |= REG_0x01_DVDSET; } bool use_shdarea = false; if (dev->model->model_id == ModelId::CANON_4400F) { use_shdarea = session.params.xres <= 600; } else if (dev->model->model_id == ModelId::CANON_8400F) { use_shdarea = session.params.xres <= 400; } else if (dev->model->model_id == ModelId::CANON_8600F || dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7200I || dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7300 || dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7500I) { use_shdarea = true; } else { use_shdarea = session.params.xres > 600; } if (use_shdarea) { reg->find_reg(REG_0x01).value |= REG_0x01_SHDAREA; } else { reg->find_reg(REG_0x01).value &= ~REG_0x01_SHDAREA; } if (dev->model->model_id == ModelId::CANON_8600F) { reg->find_reg(REG_0x03).value |= REG_0x03_AVEENB; } else { reg->find_reg(REG_0x03).value &= ~REG_0x03_AVEENB; } // FIXME: we probably don't need to set exposure to registers at this point. It was this way // before a refactor. sanei_genesys_set_lamp_power(dev, sensor, *reg, !has_flag(session.params.flags, ScanFlag::DISABLE_LAMP)); /* select XPA */ reg->find_reg(REG_0x03).value &= ~REG_0x03_XPASEL; if (has_flag(session.params.flags, ScanFlag::USE_XPA)) { reg->find_reg(REG_0x03).value |= REG_0x03_XPASEL; } reg->state.is_xpa_on = has_flag(session.params.flags, ScanFlag::USE_XPA); // BW threshold reg->set8(REG_0x2E, 0x7f); reg->set8(REG_0x2F, 0x7f); /* monochrome / color scan */ switch (session.params.depth) { case 8: reg->find_reg(REG_0x04).value &= ~(REG_0x04_LINEART | REG_0x04_BITSET); break; case 16: reg->find_reg(REG_0x04).value &= ~REG_0x04_LINEART; reg->find_reg(REG_0x04).value |= REG_0x04_BITSET; break; } reg->find_reg(REG_0x04).value &= ~(REG_0x04_FILTER | REG_0x04_AFEMOD); if (session.params.channels == 1) { switch (session.params.color_filter) { case ColorFilter::RED: reg->find_reg(REG_0x04).value |= 0x14; break; case ColorFilter::BLUE: reg->find_reg(REG_0x04).value |= 0x1c; break; case ColorFilter::GREEN: reg->find_reg(REG_0x04).value |= 0x18; break; default: break; // should not happen } } else { switch (dev->frontend.layout.type) { case FrontendType::WOLFSON: reg->find_reg(REG_0x04).value |= 0x10; // pixel by pixel break; case FrontendType::ANALOG_DEVICES: reg->find_reg(REG_0x04).value |= 0x20; // slow color pixel by pixel break; default: throw SaneException("Invalid frontend type %d", static_cast(dev->frontend.layout.type)); } } const auto& dpihw_sensor = sanei_genesys_find_sensor(dev, session.output_resolution, session.params.channels, session.params.scan_method); sanei_genesys_set_dpihw(*reg, dpihw_sensor.register_dpihw); if (should_enable_gamma(session, sensor)) { reg->find_reg(REG_0x05).value |= REG_0x05_GMMENB; } else { reg->find_reg(REG_0x05).value &= ~REG_0x05_GMMENB; } reg->set16(REG_DPISET, sensor.register_dpiset); reg->set16(REG_STRPIXEL, session.pixel_startx); reg->set16(REG_ENDPIXEL, session.pixel_endx); /* MAXWD is expressed in 2 words unit */ /* nousedspace = (mem_bank_range * 1024 / 256 -1 ) * 4; */ // BUG: the division by optical and full resolution factor likely does not make sense reg->set24(REG_MAXWD, (session.output_line_bytes * session.optical_resolution / session.full_resolution) >> 1); reg->set16(REG_LPERIOD, exposure / tgtime); reg->set8(REG_DUMMY, sensor.dummy_pixel); } void CommandSetGl843::init_regs_for_scan_session(Genesys_Device* dev, const Genesys_Sensor& sensor, Genesys_Register_Set* reg, const ScanSession& session) const { DBG_HELPER(dbg); session.assert_computed(); int exposure; int slope_dpi = 0; int dummy = 0; /* we enable true gray for cis scanners only, and just when doing * scan since color calibration is OK for this mode */ dummy = 0; if (dev->model->model_id == ModelId::CANON_4400F && session.params.yres == 1200) { dummy = 1; } /* slope_dpi */ /* cis color scan is effectively a gray scan with 3 gray lines per color line and a FILTER of 0 */ if (dev->model->is_cis) slope_dpi = session.params.yres * session.params.channels; else slope_dpi = session.params.yres; slope_dpi = slope_dpi * (1 + dummy); /* scan_step_type */ exposure = sensor.exposure_lperiod; if (exposure < 0) { throw std::runtime_error("Exposure not defined in sensor definition"); } const auto& motor_profile = get_motor_profile(dev->motor.profiles, exposure, session); // now _LOGICAL_ optical values used are known, setup registers gl843_init_optical_regs_scan(dev, sensor, reg, exposure, session); gl843_init_motor_regs_scan(dev, sensor, session, reg, motor_profile, exposure, slope_dpi, session.optical_line_count, dummy, session.params.starty, session.params.flags); setup_image_pipeline(*dev, session); dev->read_active = true; dev->session = session; dev->total_bytes_read = 0; dev->total_bytes_to_read = (size_t)session.output_line_bytes_requested * (size_t)session.params.lines; DBG(DBG_info, "%s: total bytes to send = %zu\n", __func__, dev->total_bytes_to_read); } ScanSession CommandSetGl843::calculate_scan_session(const Genesys_Device* dev, const Genesys_Sensor& sensor, const Genesys_Settings& settings) const { DBG_HELPER(dbg); debug_dump(DBG_info, settings); ScanFlag flags = ScanFlag::NONE; float move = 0.0f; if (settings.scan_method == ScanMethod::TRANSPARENCY || settings.scan_method == ScanMethod::TRANSPARENCY_INFRARED) { // note: scanner_move_to_ta() function has already been called and the sensor is at the // transparency adapter if (!dev->ignore_offsets) { move = dev->model->y_offset_ta - dev->model->y_offset_sensor_to_ta; } flags |= ScanFlag::USE_XPA; } else { if (!dev->ignore_offsets) { move = dev->model->y_offset; } } move += settings.tl_y; int move_dpi = dev->motor.base_ydpi; move = static_cast((move * move_dpi) / MM_PER_INCH); float start = 0.0f; if (settings.scan_method==ScanMethod::TRANSPARENCY || settings.scan_method == ScanMethod::TRANSPARENCY_INFRARED) { start = dev->model->x_offset_ta; } else { start = dev->model->x_offset; } start = start + settings.tl_x; start = static_cast((start * settings.xres) / MM_PER_INCH); ScanSession session; session.params.xres = settings.xres; session.params.yres = settings.yres; session.params.startx = static_cast(start); session.params.starty = static_cast(move); session.params.pixels = settings.pixels; session.params.requested_pixels = settings.requested_pixels; session.params.lines = settings.lines; session.params.depth = settings.depth; session.params.channels = settings.get_channels(); session.params.scan_method = settings.scan_method; session.params.scan_mode = settings.scan_mode; session.params.color_filter = settings.color_filter; session.params.contrast_adjustment = settings.contrast; session.params.brightness_adjustment = settings.brightness; session.params.flags = flags; compute_session(dev, session, sensor); return session; } /** * for fast power saving methods only, like disabling certain amplifiers * @param dev device to use * @param enable true to set inot powersaving * */ void CommandSetGl843::save_power(Genesys_Device* dev, bool enable) const { DBG_HELPER_ARGS(dbg, "enable = %d", enable); // switch KV-SS080 lamp off if (dev->model->gpio_id == GpioId::KVSS080) { std::uint8_t val = dev->interface->read_register(REG_0x6C); if (enable) { val &= 0xef; } else { val |= 0x10; } dev->interface->write_register(REG_0x6C, val); } } void CommandSetGl843::set_powersaving(Genesys_Device* dev, int delay /* in minutes */) const { (void) dev; DBG_HELPER_ARGS(dbg, "delay = %d", delay); } static bool gl843_get_paper_sensor(Genesys_Device* dev) { DBG_HELPER(dbg); std::uint8_t val = dev->interface->read_register(REG_0x6D); return (val & 0x1) == 0; } void CommandSetGl843::eject_document(Genesys_Device* dev) const { (void) dev; DBG_HELPER(dbg); } void CommandSetGl843::load_document(Genesys_Device* dev) const { DBG_HELPER(dbg); (void) dev; } /** * detects end of document and adjust current scan * to take it into account * used by sheetfed scanners */ void CommandSetGl843::detect_document_end(Genesys_Device* dev) const { DBG_HELPER(dbg); bool paper_loaded = gl843_get_paper_sensor(dev); /* sheetfed scanner uses home sensor as paper present */ if (dev->document && !paper_loaded) { DBG(DBG_info, "%s: no more document\n", __func__); dev->document = false; unsigned scanned_lines = 0; catch_all_exceptions(__func__, [&](){ sanei_genesys_read_scancnt(dev, &scanned_lines); }); std::size_t output_lines = dev->session.output_line_count; std::size_t offset_lines = static_cast( (dev->model->post_scan * dev->session.params.yres) / MM_PER_INCH); std::size_t scan_end_lines = scanned_lines + offset_lines; std::size_t remaining_lines = dev->get_pipeline_source().remaining_bytes() / dev->session.output_line_bytes_raw; DBG(DBG_io, "%s: scanned_lines=%u\n", __func__, scanned_lines); DBG(DBG_io, "%s: scan_end_lines=%zu\n", __func__, scan_end_lines); DBG(DBG_io, "%s: output_lines=%zu\n", __func__, output_lines); DBG(DBG_io, "%s: remaining_lines=%zu\n", __func__, remaining_lines); if (scan_end_lines > output_lines) { auto skip_lines = scan_end_lines - output_lines; if (remaining_lines > skip_lines) { remaining_lines -= skip_lines; dev->get_pipeline_source().set_remaining_bytes(remaining_lines * dev->session.output_line_bytes_raw); dev->total_bytes_to_read -= skip_lines * dev->session.output_line_bytes_requested; } } } } // Send the low-level scan command void CommandSetGl843::begin_scan(Genesys_Device* dev, const Genesys_Sensor& sensor, Genesys_Register_Set* reg, bool start_motor) const { DBG_HELPER(dbg); (void) sensor; /* set up GPIO for scan */ switch(dev->model->gpio_id) { /* KV case */ case GpioId::KVSS080: dev->interface->write_register(REG_0xA9, 0x00); dev->interface->write_register(REG_0xA6, 0xf6); // blinking led dev->interface->write_register(0x7e, 0x04); break; case GpioId::G4050: case GpioId::G4010: dev->interface->write_register(REG_0xA7, 0xfe); dev->interface->write_register(REG_0xA8, 0x3e); dev->interface->write_register(REG_0xA9, 0x06); if ((reg->get8(0x05) & REG_0x05_DPIHW) == REG_0x05_DPIHW_600) { dev->interface->write_register(REG_0x6C, 0x20); dev->interface->write_register(REG_0xA6, 0x44); } else { dev->interface->write_register(REG_0x6C, 0x60); dev->interface->write_register(REG_0xA6, 0x46); } if (reg->state.is_xpa_on && reg->state.is_lamp_on) { dev->cmd_set->set_xpa_lamp_power(*dev, true); } if (reg->state.is_xpa_on) { dev->cmd_set->set_motor_mode(*dev, *reg, MotorMode::PRIMARY_AND_SECONDARY); } // blinking led dev->interface->write_register(REG_0x7E, 0x01); break; case GpioId::CANON_8400F: if (dev->session.params.xres == 3200) { GenesysRegisterSettingSet reg_settings = { { 0x6c, 0x00, 0x02 }, }; apply_reg_settings_to_device(*dev, reg_settings); } if (reg->state.is_xpa_on && reg->state.is_lamp_on) { dev->cmd_set->set_xpa_lamp_power(*dev, true); } if (reg->state.is_xpa_on) { dev->cmd_set->set_motor_mode(*dev, *reg, MotorMode::PRIMARY_AND_SECONDARY); } break; case GpioId::CANON_8600F: if (reg->state.is_xpa_on && reg->state.is_lamp_on) { dev->cmd_set->set_xpa_lamp_power(*dev, true); } if (reg->state.is_xpa_on) { dev->cmd_set->set_motor_mode(*dev, *reg, MotorMode::PRIMARY_AND_SECONDARY); } break; case GpioId::PLUSTEK_OPTICFILM_7200I: case GpioId::PLUSTEK_OPTICFILM_7300: case GpioId::PLUSTEK_OPTICFILM_7500I: { if (reg->state.is_xpa_on && reg->state.is_lamp_on) { dev->cmd_set->set_xpa_lamp_power(*dev, true); } break; } case GpioId::CANON_4400F: default: break; } scanner_clear_scan_and_feed_counts(*dev); // enable scan and motor std::uint8_t val = dev->interface->read_register(REG_0x01); val |= REG_0x01_SCAN; dev->interface->write_register(REG_0x01, val); scanner_start_action(*dev, start_motor); switch (reg->state.motor_mode) { case MotorMode::PRIMARY: { if (reg->state.is_motor_on) { dev->advance_head_pos_by_session(ScanHeadId::PRIMARY); } break; } case MotorMode::PRIMARY_AND_SECONDARY: { if (reg->state.is_motor_on) { dev->advance_head_pos_by_session(ScanHeadId::PRIMARY); dev->advance_head_pos_by_session(ScanHeadId::SECONDARY); } break; } case MotorMode::SECONDARY: { if (reg->state.is_motor_on) { dev->advance_head_pos_by_session(ScanHeadId::SECONDARY); } break; } } } // Send the stop scan command void CommandSetGl843::end_scan(Genesys_Device* dev, Genesys_Register_Set* reg, bool check_stop) const { DBG_HELPER_ARGS(dbg, "check_stop = %d", check_stop); // post scan gpio dev->interface->write_register(0x7e, 0x00); if (reg->state.is_xpa_on) { dev->cmd_set->set_xpa_lamp_power(*dev, false); } if (!dev->model->is_sheetfed) { scanner_stop_action(*dev); } } /** @brief Moves the slider to the home (top) position slowly * */ void CommandSetGl843::move_back_home(Genesys_Device* dev, bool wait_until_home) const { scanner_move_back_home(*dev, wait_until_home); } // init registers for shading calibration shading calibration is done at dpihw void CommandSetGl843::init_regs_for_shading(Genesys_Device* dev, const Genesys_Sensor& sensor, Genesys_Register_Set& regs) const { DBG_HELPER(dbg); int move; float calib_size_mm = 0; if (dev->settings.scan_method == ScanMethod::TRANSPARENCY || dev->settings.scan_method == ScanMethod::TRANSPARENCY_INFRARED) { calib_size_mm = dev->model->y_size_calib_ta_mm; } else { calib_size_mm = dev->model->y_size_calib_mm; } unsigned resolution = sensor.shading_resolution; unsigned channels = 3; const auto& calib_sensor = sanei_genesys_find_sensor(dev, resolution, channels, dev->settings.scan_method); unsigned calib_pixels = 0; unsigned calib_pixels_offset = 0; if (should_calibrate_only_active_area(*dev, dev->settings)) { float offset = dev->model->x_offset_ta; // FIXME: we should use resolution here offset = static_cast((offset * dev->settings.xres) / MM_PER_INCH); float size = dev->model->x_size_ta; size = static_cast((size * dev->settings.xres) / MM_PER_INCH); calib_pixels_offset = static_cast(offset); calib_pixels = static_cast(size); } else { calib_pixels_offset = 0; calib_pixels = dev->model->x_size_calib_mm * resolution / MM_PER_INCH; } ScanFlag flags = ScanFlag::DISABLE_SHADING | ScanFlag::DISABLE_GAMMA | ScanFlag::DISABLE_BUFFER_FULL_MOVE; if (dev->settings.scan_method == ScanMethod::TRANSPARENCY || dev->settings.scan_method == ScanMethod::TRANSPARENCY_INFRARED) { // note: scanner_move_to_ta() function has already been called and the sensor is at the // transparency adapter move = static_cast(dev->model->y_offset_calib_white_ta - dev->model->y_offset_sensor_to_ta); if (dev->model->model_id == ModelId::CANON_8600F && resolution == 2400) { move /= 2; } if (dev->model->model_id == ModelId::CANON_8600F && resolution == 4800) { move /= 4; } flags |= ScanFlag::USE_XPA; } else { move = static_cast(dev->model->y_offset_calib_white); } move = static_cast((move * resolution) / MM_PER_INCH); unsigned calib_lines = static_cast(calib_size_mm * resolution / MM_PER_INCH); ScanSession session; session.params.xres = resolution; session.params.yres = resolution; session.params.startx = calib_pixels_offset; session.params.starty = move; session.params.pixels = calib_pixels; session.params.lines = calib_lines; session.params.depth = 16; session.params.channels = channels; session.params.scan_method = dev->settings.scan_method; session.params.scan_mode = dev->settings.scan_mode; session.params.color_filter = dev->settings.color_filter; session.params.contrast_adjustment = dev->settings.contrast; session.params.brightness_adjustment = dev->settings.brightness; session.params.flags = flags; compute_session(dev, session, calib_sensor); init_regs_for_scan_session(dev, calib_sensor, ®s, session); dev->calib_session = session; } /** * This function sends gamma tables to ASIC */ void CommandSetGl843::send_gamma_table(Genesys_Device* dev, const Genesys_Sensor& sensor) const { DBG_HELPER(dbg); int size; int i; size = 256; /* allocate temporary gamma tables: 16 bits words, 3 channels */ std::vector gamma(size * 2 * 3); std::vector rgamma = get_gamma_table(dev, sensor, GENESYS_RED); std::vector ggamma = get_gamma_table(dev, sensor, GENESYS_GREEN); std::vector bgamma = get_gamma_table(dev, sensor, GENESYS_BLUE); // copy sensor specific's gamma tables for (i = 0; i < size; i++) { gamma[i * 2 + size * 0 + 0] = rgamma[i] & 0xff; gamma[i * 2 + size * 0 + 1] = (rgamma[i] >> 8) & 0xff; gamma[i * 2 + size * 2 + 0] = ggamma[i] & 0xff; gamma[i * 2 + size * 2 + 1] = (ggamma[i] >> 8) & 0xff; gamma[i * 2 + size * 4 + 0] = bgamma[i] & 0xff; gamma[i * 2 + size * 4 + 1] = (bgamma[i] >> 8) & 0xff; } dev->interface->write_gamma(0x28, 0x0000, gamma.data(), size * 2 * 3); } /* this function does the led calibration by scanning one line of the calibration area below scanner's top on white strip. -needs working coarse/gain */ SensorExposure CommandSetGl843::led_calibration(Genesys_Device* dev, const Genesys_Sensor& sensor, Genesys_Register_Set& regs) const { return scanner_led_calibration(*dev, sensor, regs); } void CommandSetGl843::offset_calibration(Genesys_Device* dev, const Genesys_Sensor& sensor, Genesys_Register_Set& regs) const { scanner_offset_calibration(*dev, sensor, regs); } void CommandSetGl843::coarse_gain_calibration(Genesys_Device* dev, const Genesys_Sensor& sensor, Genesys_Register_Set& regs, int dpi) const { scanner_coarse_gain_calibration(*dev, sensor, regs, dpi); } // wait for lamp warmup by scanning the same line until difference // between 2 scans is below a threshold void CommandSetGl843::init_regs_for_warmup(Genesys_Device* dev, const Genesys_Sensor& sensor, Genesys_Register_Set* reg) const { DBG_HELPER(dbg); (void) sensor; unsigned channels = 3; unsigned resolution = dev->model->get_resolution_settings(dev->settings.scan_method) .get_nearest_resolution_x(600); const auto& calib_sensor = sanei_genesys_find_sensor(dev, resolution, channels, dev->settings.scan_method); unsigned num_pixels = dev->model->x_size_calib_mm * resolution / MM_PER_INCH / 2; *reg = dev->reg; auto flags = ScanFlag::DISABLE_SHADING | ScanFlag::DISABLE_GAMMA | ScanFlag::SINGLE_LINE | ScanFlag::IGNORE_STAGGER_OFFSET | ScanFlag::IGNORE_COLOR_OFFSET; if (dev->settings.scan_method == ScanMethod::TRANSPARENCY || dev->settings.scan_method == ScanMethod::TRANSPARENCY_INFRARED) { flags |= ScanFlag::USE_XPA; } ScanSession session; session.params.xres = resolution; session.params.yres = resolution; session.params.startx = (num_pixels / 2) * resolution / calib_sensor.full_resolution; session.params.starty = 0; session.params.pixels = num_pixels; session.params.lines = 1; session.params.depth = dev->model->bpp_color_values.front(); session.params.channels = channels; session.params.scan_method = dev->settings.scan_method; session.params.scan_mode = ScanColorMode::COLOR_SINGLE_PASS; session.params.color_filter = dev->settings.color_filter; session.params.contrast_adjustment = 0; session.params.brightness_adjustment = 0; session.params.flags = flags; compute_session(dev, session, calib_sensor); init_regs_for_scan_session(dev, calib_sensor, reg, session); sanei_genesys_set_motor_power(*reg, false); } /** * set up GPIO/GPOE for idle state WRITE GPIO[17-21]= GPIO19 WRITE GPOE[17-21]= GPOE21 GPOE20 GPOE19 GPOE18 genesys_write_register(0xa8,0x3e) GPIO(0xa8)=0x3e */ static void gl843_init_gpio(Genesys_Device* dev) { DBG_HELPER(dbg); apply_registers_ordered(dev->gpo.regs, { 0x6e, 0x6f }, [&](const GenesysRegisterSetting& reg) { dev->interface->write_register(reg.address, reg.value); }); } /* * * initialize ASIC from power on condition */ void CommandSetGl843::asic_boot(Genesys_Device* dev, bool cold) const { DBG_HELPER(dbg); std::uint8_t val; if (cold) { dev->interface->write_register(0x0e, 0x01); dev->interface->write_register(0x0e, 0x00); } if(dev->usb_mode == 1) { val = 0x14; } else { val = 0x11; } dev->interface->write_0x8c(0x0f, val); // test CHKVER val = dev->interface->read_register(REG_0x40); if (val & REG_0x40_CHKVER) { val = dev->interface->read_register(0x00); DBG(DBG_info, "%s: reported version for genesys chip is 0x%02x\n", __func__, val); } /* Set default values for registers */ gl843_init_registers (dev); if (dev->model->model_id == ModelId::CANON_8600F) { // turns on vref control for maximum current of the motor driver dev->interface->write_register(REG_0x6B, 0x72); } else { dev->interface->write_register(REG_0x6B, 0x02); } // Write initial registers dev->interface->write_registers(dev->reg); // Enable DRAM by setting a rising edge on bit 3 of reg 0x0b val = dev->reg.find_reg(0x0b).value & REG_0x0B_DRAMSEL; val = (val | REG_0x0B_ENBDRAM); dev->interface->write_register(REG_0x0B, val); dev->reg.find_reg(0x0b).value = val; if (dev->model->model_id == ModelId::CANON_8400F) { dev->interface->write_0x8c(0x1e, 0x01); dev->interface->write_0x8c(0x10, 0xb4); dev->interface->write_0x8c(0x0f, 0x02); } else if (dev->model->model_id == ModelId::CANON_8600F) { dev->interface->write_0x8c(0x10, 0xc8); } else if (dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7300 || dev->model->model_id == ModelId::PLUSTEK_OPTICFILM_7500I) { dev->interface->write_0x8c(0x10, 0xd4); } else { dev->interface->write_0x8c(0x10, 0xb4); } /* CLKSET */ int clock_freq = REG_0x0B_48MHZ; switch (dev->model->model_id) { case ModelId::CANON_8600F: clock_freq = REG_0x0B_60MHZ; break; case ModelId::PLUSTEK_OPTICFILM_7200I: clock_freq = REG_0x0B_30MHZ; break; case ModelId::PLUSTEK_OPTICFILM_7300: case ModelId::PLUSTEK_OPTICFILM_7500I: clock_freq = REG_0x0B_40MHZ; break; default: break; } val = (dev->reg.find_reg(0x0b).value & ~REG_0x0B_CLKSET) | clock_freq; dev->interface->write_register(REG_0x0B, val); dev->reg.find_reg(0x0b).value = val; /* prevent further writings by bulk write register */ dev->reg.remove_reg(0x0b); // set RAM read address dev->interface->write_register(REG_0x29, 0x00); dev->interface->write_register(REG_0x2A, 0x00); dev->interface->write_register(REG_0x2B, 0x00); // setup gpio gl843_init_gpio(dev); dev->interface->sleep_ms(100); } /* * * initialize backend and ASIC : registers, motor tables, and gamma tables * then ensure scanner's head is at home */ void CommandSetGl843::init(Genesys_Device* dev) const { DBG_INIT (); DBG_HELPER(dbg); sanei_genesys_asic_init(dev); } void CommandSetGl843::update_hardware_sensors(Genesys_Scanner* s) const { DBG_HELPER(dbg); /* do what is needed to get a new set of events, but try to not lose any of them. */ std::uint8_t val = s->dev->interface->read_register(REG_0x6D); DBG(DBG_io, "%s: read buttons_gpio value=0x%x\n", __func__, (int)val); switch (s->dev->model->gpio_id) { case GpioId::KVSS080: s->buttons[BUTTON_SCAN_SW].write((val & 0x04) == 0); break; case GpioId::G4050: s->buttons[BUTTON_SCAN_SW].write((val & 0x01) == 0); s->buttons[BUTTON_FILE_SW].write((val & 0x02) == 0); s->buttons[BUTTON_EMAIL_SW].write((val & 0x04) == 0); s->buttons[BUTTON_COPY_SW].write((val & 0x08) == 0); break; case GpioId::G4010: s->buttons[BUTTON_FILE_SW].write((val & 0x01) == 0); s->buttons[BUTTON_COPY_SW].write((val & 0x04) == 0); s->buttons[BUTTON_TRANSP_SW].write((val & 0x40) == 0); s->buttons[BUTTON_SCAN_SW].write((val & 0x08) == 0); break; case GpioId::CANON_8400F: s->buttons[BUTTON_COPY_SW].write((val & 0x01) == 0); s->buttons[BUTTON_SCAN_SW].write((val & 0x02) == 0); s->buttons[BUTTON_FILE_SW].write((val & 0x04) == 0); s->buttons[BUTTON_EMAIL_SW].write((val & 0x08) == 0); break; case GpioId::CANON_4400F: s->buttons[BUTTON_COPY_SW].write((val & 0x68) == 0x28); s->buttons[BUTTON_TRANSP_SW].write((val & 0x68) == 0x20); s->buttons[BUTTON_EMAIL_SW].write((val & 0x68) == 0x08); s->buttons[BUTTON_PDF1_SW].write((val & 0x68) == 0x00); s->buttons[BUTTON_PDF2_SW].write((val & 0x68) == 0x60); s->buttons[BUTTON_PDF3_SW].write((val & 0x68) == 0x48); s->buttons[BUTTON_PDF4_SW].write((val & 0x68) == 0x40); break; default: break; } } void CommandSetGl843::update_home_sensor_gpio(Genesys_Device& dev) const { DBG_HELPER(dbg); (void) dev; } /** * Send shading calibration data. The buffer is considered to always hold values * for all the channels. */ void CommandSetGl843::send_shading_data(Genesys_Device* dev, const Genesys_Sensor& sensor, std::uint8_t* data, int size) const { DBG_HELPER(dbg); std::uint32_t final_size, i; int count; int offset = 0; unsigned length = size; if (dev->reg.get8(REG_0x01) & REG_0x01_SHDAREA) { offset = dev->session.params.startx * sensor.shading_resolution / dev->session.params.xres; length = dev->session.output_pixels * sensor.shading_resolution / dev->session.params.xres; offset += sensor.shading_pixel_offset; // 16 bit words, 2 words per color, 3 color channels length *= 2 * 2 * 3; offset *= 2 * 2 * 3; } else { offset += sensor.shading_pixel_offset * 2 * 2 * 3; } dev->interface->record_key_value("shading_offset", std::to_string(offset)); dev->interface->record_key_value("shading_length", std::to_string(length)); /* compute and allocate size for final data */ final_size = ((length+251) / 252) * 256; DBG(DBG_io, "%s: final shading size=%04x (length=%d)\n", __func__, final_size, length); std::vector final_data(final_size, 0); /* copy regular shading data to the expected layout */ std::uint8_t* buffer = final_data.data(); count = 0; if (offset < 0) { count += (-offset); length -= (-offset); offset = 0; } if (static_cast(length) + offset > static_cast(size)) { length = size - offset; } /* loop over calibration data */ for (i = 0; i < length; i++) { buffer[count] = data[offset+i]; count++; if ((count % (256*2)) == (252*2)) { count += 4*2; } } dev->interface->write_buffer(0x3c, 0, final_data.data(), count); } bool CommandSetGl843::needs_home_before_init_regs_for_scan(Genesys_Device* dev) const { (void) dev; return true; } void CommandSetGl843::wait_for_motor_stop(Genesys_Device* dev) const { (void) dev; } } // namespace gl843 } // namespace genesys