/* sane - Scanner Access Now Easy. Copyright (C) 2010-2013 Stéphane Voltz This file is part of the SANE package. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #define DEBUG_DECLARE_ONLY #include "gl847.h" #include "gl847_registers.h" #include "test_settings.h" #include namespace genesys { namespace gl847 { /** * compute the step multiplier used */ static unsigned gl847_get_step_multiplier (Genesys_Register_Set * regs) { unsigned value = (regs->get8(0x9d) & 0x0f) >> 1; return 1 << value; } /** @brief set all registers to default values . * This function is called only once at the beginning and * fills register startup values for registers reused across scans. * Those that are rarely modified or not modified are written * individually. * @param dev device structure holding register set to initialize */ static void gl847_init_registers (Genesys_Device * dev) { DBG_HELPER(dbg); int lide700=0; std::uint8_t val; /* 700F class needs some different initial settings */ if (dev->model->model_id == ModelId::CANON_LIDE_700F) { lide700 = 1; } dev->reg.clear(); dev->reg.init_reg(0x01, 0x82); if (dev->model->model_id == ModelId::CANON_5600F) { dev->reg.init_reg(0x01, 0x40); } dev->reg.init_reg(0x02, 0x18); dev->reg.init_reg(0x03, 0x50); dev->reg.init_reg(0x04, 0x12); if (dev->model->model_id == ModelId::CANON_5600F) { dev->reg.init_reg(0x04, 0x20); } dev->reg.init_reg(0x05, 0x80); dev->reg.init_reg(0x06, 0x50); // FASTMODE + POWERBIT if (dev->model->model_id == ModelId::CANON_5600F) { dev->reg.init_reg(0x06, 0xf8); } dev->reg.init_reg(0x08, 0x10); if (dev->model->model_id == ModelId::CANON_5600F) { dev->reg.init_reg(0x08, 0x20); } dev->reg.init_reg(0x09, 0x01); if (dev->model->model_id == ModelId::CANON_5600F) { dev->reg.init_reg(0x09, 0x00); } dev->reg.init_reg(0x0a, 0x00); dev->reg.init_reg(0x0b, 0x01); if (dev->model->model_id == ModelId::CANON_5600F) { dev->reg.init_reg(0x0b, 0x6b); } dev->reg.init_reg(0x0c, 0x02); if (dev->model->model_id == ModelId::CANON_5600F) { dev->reg.init_reg(0x0c, 0x00); } // LED exposures dev->reg.init_reg(0x10, 0x00); // exposure, overwritten in scanner_setup_sensor() below dev->reg.init_reg(0x11, 0x00); // exposure, overwritten in scanner_setup_sensor() below dev->reg.init_reg(0x12, 0x00); // exposure, overwritten in scanner_setup_sensor() below dev->reg.init_reg(0x13, 0x00); // exposure, overwritten in scanner_setup_sensor() below dev->reg.init_reg(0x14, 0x00); // exposure, overwritten in scanner_setup_sensor() below dev->reg.init_reg(0x15, 0x00); // exposure, overwritten in scanner_setup_sensor() below dev->reg.init_reg(0x16, 0x10); // SENSOR_DEF dev->reg.init_reg(0x17, 0x08); // SENSOR_DEF dev->reg.init_reg(0x18, 0x00); // SENSOR_DEF dev->reg.init_reg(0x19, 0x50); // SENSOR_DEF dev->reg.init_reg(0x1a, 0x34); // SENSOR_DEF dev->reg.init_reg(0x1b, 0x00); // SENSOR_DEF dev->reg.init_reg(0x1c, 0x02); // SENSOR_DEF dev->reg.init_reg(0x1d, 0x04); // SENSOR_DEF dev->reg.init_reg(0x1e, 0x10); if (dev->model->model_id == ModelId::CANON_5600F) { dev->reg.init_reg(0x1e, 0xf0); } dev->reg.init_reg(0x1f, 0x04); dev->reg.init_reg(0x20, 0x02); // BUFSEL: buffer full condition dev->reg.init_reg(0x21, 0x10); // STEPNO: set during motor setup dev->reg.init_reg(0x22, 0x7f); // FWDSTEP: set during motor setup dev->reg.init_reg(0x23, 0x7f); // BWDSTEP: set during motor setup dev->reg.init_reg(0x24, 0x10); // FASTNO: set during motor setup dev->reg.init_reg(0x25, 0x00); // LINCNT: set during motor setup dev->reg.init_reg(0x26, 0x00); // LINCNT: set during motor setup dev->reg.init_reg(0x27, 0x00); // LINCNT: set during motor setup dev->reg.init_reg(0x2c, 0x09); // DPISET: set during sensor setup dev->reg.init_reg(0x2d, 0x60); // DPISET: set during sensor setup dev->reg.init_reg(0x2e, 0x80); // BWHI: black/white low threshdold dev->reg.init_reg(0x2f, 0x80); // BWLOW: black/white low threshold dev->reg.init_reg(0x30, 0x00); // STRPIXEL: set during sensor setup dev->reg.init_reg(0x31, 0x10); // STRPIXEL: set during sensor setup dev->reg.init_reg(0x32, 0x15); // ENDPIXEL: set during sensor setup dev->reg.init_reg(0x33, 0x0e); // ENDPIXEL: set during sensor setup dev->reg.init_reg(0x34, 0x40); // DUMMY: SENSOR_DEF dev->reg.init_reg(0x35, 0x00); // MAXWD: set during scan setup dev->reg.init_reg(0x36, 0x2a); // MAXWD: set during scan setup dev->reg.init_reg(0x37, 0x30); // MAXWD: set during scan setup dev->reg.init_reg(0x38, 0x2a); // LPERIOD: SENSOR_DEF dev->reg.init_reg(0x39, 0xf8); // LPERIOD: SENSOR_DEF dev->reg.init_reg(0x3d, 0x00); // FEEDL: set during motor setup dev->reg.init_reg(0x3e, 0x00); // FEEDL: set during motor setup dev->reg.init_reg(0x3f, 0x00); // FEEDL: set during motor setup dev->reg.init_reg(0x52, 0x03); // SENSOR_DEF dev->reg.init_reg(0x53, 0x07); // SENSOR_DEF dev->reg.init_reg(0x54, 0x00); // SENSOR_DEF dev->reg.init_reg(0x55, 0x00); // SENSOR_DEF dev->reg.init_reg(0x56, 0x00); // SENSOR_DEF dev->reg.init_reg(0x57, 0x00); // SENSOR_DEF dev->reg.init_reg(0x58, 0x2a); // SENSOR_DEF dev->reg.init_reg(0x59, 0xe1); // SENSOR_DEF dev->reg.init_reg(0x5a, 0x55); // SENSOR_DEF dev->reg.init_reg(0x5e, 0x41); // DECSEL, STOPTIM dev->reg.init_reg(0x5f, 0x40); // FMOVDEC: set during motor setup dev->reg.init_reg(0x60, 0x00); // Z1MOD: overwritten during motor setup dev->reg.init_reg(0x61, 0x21); // Z1MOD: overwritten during motor setup dev->reg.init_reg(0x62, 0x40); // Z1MOD: overwritten during motor setup dev->reg.init_reg(0x63, 0x00); // Z2MOD: overwritten during motor setup dev->reg.init_reg(0x64, 0x21); // Z2MOD: overwritten during motor setup dev->reg.init_reg(0x65, 0x40); // Z2MOD: overwritten during motor setup dev->reg.init_reg(0x67, 0x80); // STEPSEL, MTRPWM: overwritten during motor setup dev->reg.init_reg(0x68, 0x80); // FSTPSEL, FASTPWM: overwritten during motor setup dev->reg.init_reg(0x69, 0x20); // FSHDEC: overwritten during motor setup dev->reg.init_reg(0x6a, 0x20); // FMOVNO: overwritten during motor setup dev->reg.init_reg(0x74, 0x00); // SENSOR_DEF dev->reg.init_reg(0x75, 0x00); // SENSOR_DEF dev->reg.init_reg(0x76, 0x3c); // SENSOR_DEF dev->reg.init_reg(0x77, 0x00); // SENSOR_DEF dev->reg.init_reg(0x78, 0x00); // SENSOR_DEF dev->reg.init_reg(0x79, 0x9f); // SENSOR_DEF dev->reg.init_reg(0x7a, 0x00); // SENSOR_DEF dev->reg.init_reg(0x7b, 0x00); // SENSOR_DEF dev->reg.init_reg(0x7c, 0x55); // SENSOR_DEF dev->reg.init_reg(0x7d, 0x00); // NOTE: autoconf is a non working option dev->reg.init_reg(0x87, 0x02); // TODO: move to SENSOR_DEF dev->reg.init_reg(0x9d, 0x06); // RAMDLY, MOTLAG, CMODE, STEPTIM, IFRS dev->reg.init_reg(0xa2, 0x0f); // misc if (dev->model->model_id == ModelId::CANON_5600F) { dev->reg.init_reg(0xab, 0x31); dev->reg.init_reg(0xbb, 0x00); dev->reg.init_reg(0xbc, 0x0f); } dev->reg.init_reg(0xbd, 0x18); // misc dev->reg.init_reg(0xfe, 0x08); // misc if (dev->model->model_id == ModelId::CANON_5600F) { dev->reg.init_reg(0x9e, 0x00); // sensor reg, but not in SENSOR_DEF dev->reg.init_reg(0x9f, 0x00); // sensor reg, but not in SENSOR_DEF dev->reg.init_reg(0xaa, 0x00); // custom data dev->reg.init_reg(0xff, 0x00); } // gamma[0] and gamma[256] values dev->reg.init_reg(0xbe, 0x00); dev->reg.init_reg(0xc5, 0x00); dev->reg.init_reg(0xc6, 0x00); dev->reg.init_reg(0xc7, 0x00); dev->reg.init_reg(0xc8, 0x00); dev->reg.init_reg(0xc9, 0x00); dev->reg.init_reg(0xca, 0x00); /* LiDE 700 fixups */ if (lide700) { dev->reg.init_reg(0x5f, 0x04); dev->reg.init_reg(0x7d, 0x80); /* we write to these registers only once */ val=0; dev->interface->write_register(REG_0x7E, val); dev->interface->write_register(REG_0x9E, val); dev->interface->write_register(REG_0x9F, val); dev->interface->write_register(REG_0xAB, val); } const auto& sensor = sanei_genesys_find_sensor_any(dev); const auto& dpihw_sensor = sanei_genesys_find_sensor(dev, sensor.full_resolution, 3, ScanMethod::FLATBED); sanei_genesys_set_dpihw(dev->reg, dpihw_sensor.register_dpihw); if (dev->model->model_id == ModelId::CANON_5600F) { scanner_setup_sensor(*dev, sensor, dev->reg); } } // Set values of analog frontend void CommandSetGl847::set_fe(Genesys_Device* dev, const Genesys_Sensor& sensor, std::uint8_t set) const { DBG_HELPER_ARGS(dbg, "%s", set == AFE_INIT ? "init" : set == AFE_SET ? "set" : set == AFE_POWER_SAVE ? "powersave" : "huh?"); (void) sensor; if (dev->model->model_id != ModelId::CANON_5600F) { // FIXME: remove the following read dev->interface->read_register(REG_0x04); } // wait for FE to be ready auto status = scanner_read_status(*dev); while (status.is_front_end_busy) { dev->interface->sleep_ms(10); status = scanner_read_status(*dev); } if (set == AFE_INIT) { dev->frontend = dev->frontend_initial; } if (dev->model->model_id != ModelId::CANON_5600F) { // reset DAC (BUG: this does completely different thing on Analog Devices ADCs) dev->interface->write_fe_register(0x00, 0x80); } else { if (dev->frontend.layout.type == FrontendType::WOLFSON) { // reset DAC dev->interface->write_fe_register(0x04, 0xff); } } for (const auto& reg : dev->frontend.regs) { dev->interface->write_fe_register(reg.address, reg.value); } } static void gl847_write_motor_phase_table(Genesys_Device& dev, unsigned ydpi) { (void) ydpi; if (dev.model->model_id == ModelId::CANON_5600F) { std::vector phase_table = { 0x33, 0x00, 0x33, 0x00, 0x33, 0x00, 0x33, 0x00, 0x32, 0x00, 0x32, 0x00, 0x32, 0x00, 0x32, 0x00, 0x35, 0x00, 0x35, 0x00, 0x35, 0x00, 0x35, 0x00, 0x38, 0x00, 0x38, 0x00, 0x38, 0x00, 0x38, 0x00, 0x3c, 0x00, 0x3c, 0x00, 0x3c, 0x00, 0x3c, 0x00, 0x18, 0x00, 0x18, 0x00, 0x18, 0x00, 0x18, 0x00, 0x15, 0x00, 0x15, 0x00, 0x15, 0x00, 0x15, 0x00, 0x12, 0x00, 0x12, 0x00, 0x12, 0x00, 0x12, 0x00, 0x03, 0x00, 0x03, 0x00, 0x03, 0x00, 0x03, 0x00, 0x02, 0x00, 0x02, 0x00, 0x02, 0x00, 0x02, 0x00, 0x05, 0x00, 0x05, 0x00, 0x05, 0x00, 0x05, 0x00, 0x08, 0x00, 0x08, 0x00, 0x08, 0x00, 0x08, 0x00, 0x0c, 0x00, 0x0c, 0x00, 0x0c, 0x00, 0x0c, 0x00, 0x28, 0x00, 0x28, 0x00, 0x28, 0x00, 0x28, 0x00, 0x25, 0x00, 0x25, 0x00, 0x25, 0x00, 0x25, 0x00, 0x22, 0x00, 0x22, 0x00, 0x22, 0x00, 0x22, 0x00, }; dev.interface->write_ahb(0x01000a00, phase_table.size(), phase_table.data()); } } // @brief set up motor related register for scan static void gl847_init_motor_regs_scan(Genesys_Device* dev, const Genesys_Sensor& sensor, Genesys_Register_Set* reg, const MotorProfile& motor_profile, unsigned int scan_exposure_time, unsigned scan_yres, unsigned int scan_lines, unsigned int scan_dummy, unsigned int feed_steps, ScanFlag flags) { DBG_HELPER_ARGS(dbg, "scan_exposure_time=%d, can_yres=%d, step_type=%d, scan_lines=%d, " "scan_dummy=%d, feed_steps=%d, flags=%x", scan_exposure_time, scan_yres, static_cast(motor_profile.step_type), scan_lines, scan_dummy, feed_steps, static_cast(flags)); unsigned step_multiplier = gl847_get_step_multiplier (reg); reg->set24(REG_LINCNT, scan_lines); reg->set8(REG_0x02, 0); sanei_genesys_set_motor_power(*reg, true); std::uint8_t reg02 = reg->get8(REG_0x02); reg02 &= ~REG_0x02_FASTFED; if (has_flag(flags, ScanFlag::AUTO_GO_HOME)) { reg02 |= REG_0x02_AGOHOME | REG_0x02_NOTHOME; } if (has_flag(flags, ScanFlag::DISABLE_BUFFER_FULL_MOVE) || (scan_yres >= sensor.full_resolution)) { reg02 |= REG_0x02_ACDCDIS; } if (has_flag(flags, ScanFlag::REVERSE)) { reg02 |= REG_0x02_MTRREV; } else { reg02 &= ~REG_0x02_MTRREV; } reg->set8(REG_0x02, reg02); // scan and backtracking slope table auto scan_table = create_slope_table(dev->model->asic_type, dev->motor, scan_yres, scan_exposure_time, step_multiplier, motor_profile); scanner_send_slope_table(dev, sensor, SCAN_TABLE, scan_table.table); scanner_send_slope_table(dev, sensor, BACKTRACK_TABLE, scan_table.table); // fast table unsigned fast_dpi = sanei_genesys_get_lowest_ydpi(dev); // BUG: looks like for fast moves we use inconsistent step type StepType fast_step_type = motor_profile.step_type; if (static_cast(motor_profile.step_type) >= static_cast(StepType::QUARTER)) { fast_step_type = StepType::QUARTER; } MotorProfile fast_motor_profile = motor_profile; fast_motor_profile.step_type = fast_step_type; auto fast_table = create_slope_table(dev->model->asic_type, dev->motor, fast_dpi, scan_exposure_time, step_multiplier, fast_motor_profile); scanner_send_slope_table(dev, sensor, STOP_TABLE, fast_table.table); scanner_send_slope_table(dev, sensor, FAST_TABLE, fast_table.table); scanner_send_slope_table(dev, sensor, HOME_TABLE, fast_table.table); gl847_write_motor_phase_table(*dev, scan_yres); // correct move distance by acceleration and deceleration amounts unsigned feedl = feed_steps; unsigned dist = 0; feedl <<= static_cast(motor_profile.step_type); dist = scan_table.table.size(); if (has_flag(flags, ScanFlag::FEEDING)) { dist *= 2; } // check for overflow if (dist < feedl) { feedl -= dist; } else { feedl = 0; } reg->set24(REG_FEEDL, feedl); unsigned ccdlmt = (reg->get8(REG_0x0C) & REG_0x0C_CCDLMT) + 1; unsigned tgtime = 1 << (reg->get8(REG_0x1C) & REG_0x1C_TGTIME); // hi res motor speed GPIO std::uint8_t effective = dev->interface->read_register(REG_0x6C); // if quarter step, bipolar Vref2 std::uint8_t val = effective; if (motor_profile.step_type == StepType::QUARTER) { val = effective & ~REG_0x6C_GPIO13; } else if (static_cast(motor_profile.step_type) > static_cast(StepType::QUARTER)) { val = effective | REG_0x6C_GPIO13; } dev->interface->write_register(REG_0x6C, val); // effective scan effective = dev->interface->read_register(REG_0x6C); val = effective | REG_0x6C_GPIO10; dev->interface->write_register(REG_0x6C, val); unsigned min_restep = scan_table.table.size() / (2 * step_multiplier) - 1; if (min_restep < 1) { min_restep = 1; } reg->set8(REG_FWDSTEP, min_restep); reg->set8(REG_BWDSTEP, min_restep); std::uint32_t z1, z2; sanei_genesys_calculate_zmod(false, scan_exposure_time * ccdlmt * tgtime, scan_table.table, scan_table.table.size(), feedl, min_restep * step_multiplier, &z1, &z2); reg->set24(REG_0x60, z1 | (static_cast(motor_profile.step_type) << (16+REG_0x60S_STEPSEL))); reg->set24(REG_0x63, z2 | (static_cast(motor_profile.step_type) << (16+REG_0x63S_FSTPSEL))); reg->set8_mask(REG_0x1E, scan_dummy, 0x0f); reg->set8(REG_0x67, REG_0x67_MTRPWM); reg->set8(REG_0x68, REG_0x68_FASTPWM); reg->set8(REG_STEPNO, scan_table.table.size() / step_multiplier); reg->set8(REG_FASTNO, scan_table.table.size() / step_multiplier); reg->set8(REG_FSHDEC, scan_table.table.size() / step_multiplier); reg->set8(REG_FMOVNO, fast_table.table.size() / step_multiplier); reg->set8(REG_FMOVDEC, fast_table.table.size() / step_multiplier); } /** @brief set up registers related to sensor * Set up the following registers 0x01 0x03 0x10-0x015 R/G/B exposures 0x19 EXPDMY 0x2e BWHI 0x2f BWLO 0x04 0x87 0x05 0x2c,0x2d DPISET 0x30,0x31 STRPIXEL 0x32,0x33 ENDPIXEL 0x35,0x36,0x37 MAXWD [25:2] (>>2) 0x38,0x39 LPERIOD 0x34 DUMMY */ static void gl847_init_optical_regs_scan(Genesys_Device* dev, const Genesys_Sensor& sensor, Genesys_Register_Set* reg, unsigned int exposure_time, const ScanSession& session) { DBG_HELPER_ARGS(dbg, "exposure_time=%d", exposure_time); scanner_setup_sensor(*dev, sensor, *reg); dev->cmd_set->set_fe(dev, sensor, AFE_SET); /* enable shading */ regs_set_optical_off(dev->model->asic_type, *reg); reg->find_reg(REG_0x01).value |= REG_0x01_SHDAREA; if (has_flag(session.params.flags, ScanFlag::DISABLE_SHADING) || has_flag(dev->model->flags, ModelFlag::DISABLE_SHADING_CALIBRATION) || session.use_host_side_calib) { reg->find_reg(REG_0x01).value &= ~REG_0x01_DVDSET; } else { reg->find_reg(REG_0x01).value |= REG_0x01_DVDSET; } reg->find_reg(REG_0x03).value &= ~REG_0x03_AVEENB; reg->find_reg(REG_0x03).value &= ~REG_0x03_XPASEL; if (has_flag(session.params.flags, ScanFlag::USE_XPA)) { reg->find_reg(REG_0x03).value |= REG_0x03_XPASEL; } sanei_genesys_set_lamp_power(dev, sensor, *reg, !has_flag(session.params.flags, ScanFlag::DISABLE_LAMP)); reg->state.is_xpa_on = has_flag(session.params.flags, ScanFlag::USE_XPA); if (has_flag(session.params.flags, ScanFlag::USE_XPA)) { if (dev->model->model_id == ModelId::CANON_5600F) { regs_set_exposure(dev->model->asic_type, *reg, sanei_genesys_fixup_exposure({0, 0, 0})); } } // BW threshold reg->set8(0x2e, 0x7f); reg->set8(0x2f, 0x7f); /* monochrome / color scan */ switch (session.params.depth) { case 8: reg->find_reg(REG_0x04).value &= ~(REG_0x04_LINEART | REG_0x04_BITSET); break; case 16: reg->find_reg(REG_0x04).value &= ~REG_0x04_LINEART; reg->find_reg(REG_0x04).value |= REG_0x04_BITSET; break; } reg->find_reg(REG_0x04).value &= ~(REG_0x04_FILTER | REG_0x04_AFEMOD); if (session.params.channels == 1) { switch (session.params.color_filter) { case ColorFilter::RED: reg->find_reg(REG_0x04).value |= 0x14; break; case ColorFilter::BLUE: reg->find_reg(REG_0x04).value |= 0x1c; break; case ColorFilter::GREEN: reg->find_reg(REG_0x04).value |= 0x18; break; default: break; // should not happen } } else { if (dev->model->model_id == ModelId::CANON_5600F) { reg->find_reg(REG_0x04).value |= 0x20; } else { reg->find_reg(REG_0x04).value |= 0x10; // mono } } const auto& dpihw_sensor = sanei_genesys_find_sensor(dev, session.output_resolution, session.params.channels, session.params.scan_method); sanei_genesys_set_dpihw(*reg, dpihw_sensor.register_dpihw); if (should_enable_gamma(session, sensor)) { reg->find_reg(REG_0x05).value |= REG_0x05_GMMENB; } else { reg->find_reg(REG_0x05).value &= ~REG_0x05_GMMENB; } /* CIS scanners can do true gray by setting LEDADD */ /* we set up LEDADD only when asked */ if (dev->model->is_cis) { reg->find_reg(0x87).value &= ~REG_0x87_LEDADD; if (session.enable_ledadd) { reg->find_reg(0x87).value |= REG_0x87_LEDADD; } /* RGB weighting reg->find_reg(0x01).value &= ~REG_0x01_TRUEGRAY; if (session.enable_ledadd) { reg->find_reg(0x01).value |= REG_0x01_TRUEGRAY; } */ } reg->set16(REG_DPISET, sensor.register_dpiset); reg->set16(REG_STRPIXEL, session.pixel_startx); reg->set16(REG_ENDPIXEL, session.pixel_endx); setup_image_pipeline(*dev, session); /* MAXWD is expressed in 4 words unit */ // BUG: we shouldn't multiply by channels here reg->set24(REG_MAXWD, (session.output_line_bytes_raw * session.params.channels >> 2)); reg->set16(REG_LPERIOD, exposure_time); reg->set8(0x34, sensor.dummy_pixel); } void CommandSetGl847::init_regs_for_scan_session(Genesys_Device* dev, const Genesys_Sensor& sensor, Genesys_Register_Set* reg, const ScanSession& session) const { DBG_HELPER(dbg); session.assert_computed(); int exposure_time; int slope_dpi = 0; int dummy = 0; if (dev->model->model_id == ModelId::CANON_LIDE_100 || dev->model->model_id == ModelId::CANON_LIDE_200 || dev->model->model_id == ModelId::CANON_LIDE_700F || dev->model->model_id == ModelId::HP_SCANJET_N6310) { dummy = 3 - session.params.channels; } /* slope_dpi */ /* cis color scan is effectively a gray scan with 3 gray lines per color line and a FILTER of 0 */ if (dev->model->is_cis) { slope_dpi = session.params.yres * session.params.channels; } else { slope_dpi = session.params.yres; } slope_dpi = slope_dpi * (1 + dummy); exposure_time = sensor.exposure_lperiod; const auto& motor_profile = get_motor_profile(dev->motor.profiles, exposure_time, session); /* we enable true gray for cis scanners only, and just when doing * scan since color calibration is OK for this mode */ gl847_init_optical_regs_scan(dev, sensor, reg, exposure_time, session); gl847_init_motor_regs_scan(dev, sensor, reg, motor_profile, exposure_time, slope_dpi, session.optical_line_count, dummy, session.params.starty, session.params.flags); dev->read_active = true; dev->session = session; dev->total_bytes_read = 0; dev->total_bytes_to_read = (size_t)session.output_line_bytes_requested * (size_t)session.params.lines; DBG(DBG_info, "%s: total bytes to send = %zu\n", __func__, dev->total_bytes_to_read); } ScanSession CommandSetGl847::calculate_scan_session(const Genesys_Device* dev, const Genesys_Sensor& sensor, const Genesys_Settings& settings) const { DBG(DBG_info, "%s ", __func__); debug_dump(DBG_info, settings); // backtracking isn't handled well, so don't enable it ScanFlag flags = ScanFlag::DISABLE_BUFFER_FULL_MOVE; /* Steps to move to reach scanning area: - first we move to physical start of scanning either by a fixed steps amount from the black strip or by a fixed amount from parking position, minus the steps done during shading calibration. - then we move by the needed offset whitin physical scanning area */ unsigned move_dpi = dev->motor.base_ydpi; float move = dev->model->y_offset; if (settings.scan_method == ScanMethod::TRANSPARENCY || settings.scan_method == ScanMethod::TRANSPARENCY_INFRARED) { // note: scanner_move_to_ta() function has already been called and the sensor is at the // transparency adapter if (!dev->ignore_offsets) { move = dev->model->y_offset_ta - dev->model->y_offset_sensor_to_ta; } flags |= ScanFlag::USE_XPA; } else { if (!dev->ignore_offsets) { move = dev->model->y_offset; } } move = move + settings.tl_y; move = static_cast((move * move_dpi) / MM_PER_INCH); move -= dev->head_pos(ScanHeadId::PRIMARY); float start = dev->model->x_offset; if (settings.scan_method == ScanMethod::TRANSPARENCY || settings.scan_method == ScanMethod::TRANSPARENCY_INFRARED) { start = dev->model->x_offset_ta; } else { start = dev->model->x_offset; } start = start + dev->settings.tl_x; start = static_cast((start * settings.xres) / MM_PER_INCH); ScanSession session; session.params.xres = settings.xres; session.params.yres = settings.yres; session.params.startx = static_cast(start); session.params.starty = static_cast(move); session.params.pixels = settings.pixels; session.params.requested_pixels = settings.requested_pixels; session.params.lines = settings.lines; session.params.depth = settings.depth; session.params.channels = settings.get_channels(); session.params.scan_method = settings.scan_method; session.params.scan_mode = settings.scan_mode; session.params.color_filter = settings.color_filter; session.params.contrast_adjustment = settings.contrast; session.params.brightness_adjustment = settings.brightness; session.params.flags = flags; compute_session(dev, session, sensor); return session; } // for fast power saving methods only, like disabling certain amplifiers void CommandSetGl847::save_power(Genesys_Device* dev, bool enable) const { DBG_HELPER_ARGS(dbg, "enable = %d", enable); (void) dev; } void CommandSetGl847::set_powersaving(Genesys_Device* dev, int delay /* in minutes */) const { (void) dev; DBG_HELPER_ARGS(dbg, "delay = %d", delay); } // Send the low-level scan command void CommandSetGl847::begin_scan(Genesys_Device* dev, const Genesys_Sensor& sensor, Genesys_Register_Set* reg, bool start_motor) const { DBG_HELPER(dbg); (void) sensor; std::uint8_t val; if (reg->state.is_xpa_on && reg->state.is_lamp_on) { dev->cmd_set->set_xpa_lamp_power(*dev, true); } if (dev->model->model_id == ModelId::HP_SCANJET_N6310 || dev->model->model_id == ModelId::CANON_LIDE_100 || dev->model->model_id == ModelId::CANON_LIDE_200) { val = dev->interface->read_register(REG_0x6C); val &= ~REG_0x6C_GPIO10; dev->interface->write_register(REG_0x6C, val); } if (dev->model->model_id == ModelId::CANON_5600F) { switch (dev->session.params.xres) { case 75: case 150: case 300: scanner_register_rw_bits(*dev, REG_0xA6, 0x04, 0x1c); break; case 600: scanner_register_rw_bits(*dev, REG_0xA6, 0x18, 0x1c); break; case 1200: scanner_register_rw_bits(*dev, REG_0xA6, 0x08, 0x1c); break; case 2400: scanner_register_rw_bits(*dev, REG_0xA6, 0x10, 0x1c); break; case 4800: scanner_register_rw_bits(*dev, REG_0xA6, 0x00, 0x1c); break; default: throw SaneException("Unexpected xres"); } dev->interface->write_register(0x6c, 0xf0); dev->interface->write_register(0x6b, 0x87); dev->interface->write_register(0x6d, 0x5f); } if (dev->model->model_id == ModelId::CANON_5600F) { scanner_clear_scan_and_feed_counts(*dev); } else { // FIXME: use scanner_clear_scan_and_feed_counts() val = REG_0x0D_CLRLNCNT; dev->interface->write_register(REG_0x0D, val); val = REG_0x0D_CLRMCNT; dev->interface->write_register(REG_0x0D, val); } val = dev->interface->read_register(REG_0x01); val |= REG_0x01_SCAN; dev->interface->write_register(REG_0x01, val); reg->set8(REG_0x01, val); scanner_start_action(*dev, start_motor); dev->advance_head_pos_by_session(ScanHeadId::PRIMARY); } // Send the stop scan command void CommandSetGl847::end_scan(Genesys_Device* dev, Genesys_Register_Set* reg, bool check_stop) const { (void) reg; DBG_HELPER_ARGS(dbg, "check_stop = %d", check_stop); if (reg->state.is_xpa_on) { dev->cmd_set->set_xpa_lamp_power(*dev, false); } if (!dev->model->is_sheetfed) { scanner_stop_action(*dev); } } void CommandSetGl847::move_back_home(Genesys_Device* dev, bool wait_until_home) const { scanner_move_back_home(*dev, wait_until_home); } // init registers for shading calibration void CommandSetGl847::init_regs_for_shading(Genesys_Device* dev, const Genesys_Sensor& sensor, Genesys_Register_Set& regs) const { DBG_HELPER(dbg); unsigned move_dpi = dev->motor.base_ydpi; float calib_size_mm = 0; if (dev->settings.scan_method == ScanMethod::TRANSPARENCY || dev->settings.scan_method == ScanMethod::TRANSPARENCY_INFRARED) { calib_size_mm = dev->model->y_size_calib_ta_mm; } else { calib_size_mm = dev->model->y_size_calib_mm; } unsigned channels = 3; unsigned resolution = sensor.shading_resolution; const auto& calib_sensor = sanei_genesys_find_sensor(dev, resolution, channels, dev->settings.scan_method); float move = 0; ScanFlag flags = ScanFlag::DISABLE_SHADING | ScanFlag::DISABLE_GAMMA | ScanFlag::DISABLE_BUFFER_FULL_MOVE; if (dev->settings.scan_method == ScanMethod::TRANSPARENCY || dev->settings.scan_method == ScanMethod::TRANSPARENCY_INFRARED) { // note: scanner_move_to_ta() function has already been called and the sensor is at the // transparency adapter move = dev->model->y_offset_calib_white_ta - dev->model->y_offset_sensor_to_ta; flags |= ScanFlag::USE_XPA; } else { move = dev->model->y_offset_calib_white; } move = static_cast((move * move_dpi) / MM_PER_INCH); unsigned calib_lines = static_cast(calib_size_mm * resolution / MM_PER_INCH); ScanSession session; session.params.xres = resolution; session.params.yres = resolution; session.params.startx = 0; session.params.starty = static_cast(move); session.params.pixels = dev->model->x_size_calib_mm * resolution / MM_PER_INCH; session.params.lines = calib_lines; session.params.depth = 16; session.params.channels = channels; session.params.scan_method = dev->settings.scan_method; session.params.scan_mode = ScanColorMode::COLOR_SINGLE_PASS; session.params.color_filter = dev->settings.color_filter; session.params.contrast_adjustment = dev->settings.contrast; session.params.brightness_adjustment = dev->settings.brightness; session.params.flags = flags; compute_session(dev, session, calib_sensor); init_regs_for_scan_session(dev, calib_sensor, ®s, session); /* we use ModelFlag::SHADING_REPARK */ dev->set_head_pos_zero(ScanHeadId::PRIMARY); dev->calib_session = session; } /** * Send shading calibration data. The buffer is considered to always hold values * for all the channels. */ void CommandSetGl847::send_shading_data(Genesys_Device* dev, const Genesys_Sensor& sensor, std::uint8_t* data, int size) const { DBG_HELPER_ARGS(dbg, "writing %d bytes of shading data", size); std::uint32_t addr, i; unsigned length = static_cast(size / 3); // we're using SHDAREA, thus we only need to upload part of the line unsigned offset = dev->session.pixel_count_ratio.apply( dev->session.params.startx * sensor.full_resolution / dev->session.params.xres); unsigned pixels = dev->session.pixel_count_ratio.apply(dev->session.optical_pixels_raw); // turn pixel value into bytes 2x16 bits words offset *= 2 * 2; pixels *= 2 * 2; dev->interface->record_key_value("shading_offset", std::to_string(offset)); dev->interface->record_key_value("shading_pixels", std::to_string(pixels)); dev->interface->record_key_value("shading_length", std::to_string(length)); dev->interface->record_key_value("shading_factor", std::to_string(sensor.shading_factor)); std::vector buffer(pixels, 0); DBG(DBG_io2, "%s: using chunks of %d (0x%04x) bytes\n", __func__, pixels, pixels); /* base addr of data has been written in reg D0-D4 in 4K word, so AHB address * is 8192*reg value */ if (dev->model->model_id == ModelId::CANON_5600F) { return; } /* write actual color channel data */ for(i=0;i<3;i++) { /* build up actual shading data by copying the part from the full width one * to the one corresponding to SHDAREA */ std::uint8_t* ptr = buffer.data(); // iterate on both sensor segment for (unsigned x = 0; x < pixels; x += 4 * sensor.shading_factor) { // coefficient source std::uint8_t* src = (data + offset + i * length) + x; /* coefficient copy */ ptr[0]=src[0]; ptr[1]=src[1]; ptr[2]=src[2]; ptr[3]=src[3]; /* next shading coefficient */ ptr+=4; } std::uint8_t val = dev->interface->read_register(0xd0+i); addr = val * 8192 + 0x10000000; dev->interface->write_ahb(addr, pixels, buffer.data()); } } /** @brief calibrates led exposure * Calibrate exposure by scanning a white area until the used exposure gives * data white enough. * @param dev device to calibrate */ SensorExposure CommandSetGl847::led_calibration(Genesys_Device* dev, const Genesys_Sensor& sensor, Genesys_Register_Set& regs) const { return scanner_led_calibration(*dev, sensor, regs); } /** * set up GPIO/GPOE for idle state */ static void gl847_init_gpio(Genesys_Device* dev) { DBG_HELPER(dbg); if (dev->model->model_id == ModelId::CANON_5600F) { apply_registers_ordered(dev->gpo.regs, {0xa6, 0xa7, 0x6f, 0x6e}, [&](const GenesysRegisterSetting& reg) { dev->interface->write_register(reg.address, reg.value); }); } else { std::vector order1 = { 0xa7, 0xa6, 0x6e }; std::vector order2 = { 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0xa8, 0xa9 }; for (auto addr : order1) { dev->interface->write_register(addr, dev->gpo.regs.find_reg(addr).value); } dev->interface->write_register(REG_0x6C, 0x00); // FIXME: Likely not needed for (auto addr : order2) { dev->interface->write_register(addr, dev->gpo.regs.find_reg(addr).value); } for (const auto& reg : dev->gpo.regs) { if (std::find(order1.begin(), order1.end(), reg.address) != order1.end()) { continue; } if (std::find(order2.begin(), order2.end(), reg.address) != order2.end()) { continue; } dev->interface->write_register(reg.address, reg.value); } } } /** * set memory layout by filling values in dedicated registers */ static void gl847_init_memory_layout(Genesys_Device* dev) { DBG_HELPER(dbg); // FIXME: move to initial register list switch (dev->model->model_id) { case ModelId::CANON_LIDE_100: case ModelId::CANON_LIDE_200: dev->interface->write_register(REG_0x0B, 0x29); break; case ModelId::CANON_LIDE_700F: dev->interface->write_register(REG_0x0B, 0x2a); break; default: break; } // prevent further writings by bulk write register dev->reg.remove_reg(0x0b); apply_reg_settings_to_device_write_only(*dev, dev->memory_layout.regs); } /* * * initialize ASIC from power on condition */ void CommandSetGl847::asic_boot(Genesys_Device* dev, bool cold) const { DBG_HELPER(dbg); // reset ASIC if cold boot if (cold) { dev->interface->write_register(0x0e, 0x01); dev->interface->write_register(0x0e, 0x00); } // test CHKVER std::uint8_t val = dev->interface->read_register(REG_0x40); if (val & REG_0x40_CHKVER) { val = dev->interface->read_register(0x00); DBG(DBG_info, "%s: reported version for genesys chip is 0x%02x\n", __func__, val); } /* Set default values for registers */ gl847_init_registers (dev); // Write initial registers dev->interface->write_registers(dev->reg); if (dev->model->model_id != ModelId::CANON_5600F) { // Enable DRAM by setting a rising edge on bit 3 of reg 0x0b // The initial register write also powers on SDRAM val = dev->reg.find_reg(0x0b).value & REG_0x0B_DRAMSEL; val = (val | REG_0x0B_ENBDRAM); dev->interface->write_register(REG_0x0B, val); dev->reg.find_reg(0x0b).value = val; // TODO: remove this write dev->interface->write_register(0x08, dev->reg.find_reg(0x08).value); } // set up end access dev->interface->write_0x8c(0x10, 0x0b); dev->interface->write_0x8c(0x13, 0x0e); // setup gpio gl847_init_gpio(dev); // setup internal memory layout gl847_init_memory_layout (dev); if (dev->model->model_id != ModelId::CANON_5600F) { // FIXME: move to memory layout dev->reg.init_reg(0xf8, 0x01); dev->interface->write_register(0xf8, dev->reg.find_reg(0xf8).value); } } /** * initialize backend and ASIC : registers, motor tables, and gamma tables * then ensure scanner's head is at home */ void CommandSetGl847::init(Genesys_Device* dev) const { DBG_INIT (); DBG_HELPER(dbg); sanei_genesys_asic_init(dev); } void CommandSetGl847::update_hardware_sensors(Genesys_Scanner* s) const { DBG_HELPER(dbg); /* do what is needed to get a new set of events, but try to not lose any of them. */ std::uint8_t val; switch(s->dev->model->gpio_id) { case GpioId::CANON_LIDE_700F: val = s->dev->interface->read_register(REG_0x6D); DBG(DBG_io, "%s: read buttons_gpio value=0x%x\n", __func__, (int)val); s->buttons[BUTTON_SCAN_SW].write((val & 0x04) == 0); s->buttons[BUTTON_FILE_SW].write((val & 0x02) == 0); s->buttons[BUTTON_EMAIL_SW].write((val & 0x01) == 0); s->buttons[BUTTON_COPY_SW].write((val & 0x08) == 0); break; case GpioId::CANON_5600F: val = s->dev->interface->read_register(REG_0x6D); DBG(DBG_io, "%s: read buttons_gpio 0x6d value=0x%x\n", __func__, (int)val); s->buttons[BUTTON_SCAN_SW].write((val & 0x02) == 0); s->buttons[BUTTON_EMAIL_SW].write((val & 0x01) == 0); s->buttons[BUTTON_COPY_SW].write((val & 0x08) == 0); s->buttons[BUTTON_PDF4_SW].write((val & 0x04) == 0); val = s->dev->interface->read_register(REG_0xA6); DBG(DBG_io, "%s: read buttons_gpio 0xa6 value=0x%x\n", __func__, (int)val); s->buttons[BUTTON_PDF1_SW].write((val & 0x03) == 0x01); s->buttons[BUTTON_PDF2_SW].write((val & 0x03) == 0x02); val = s->dev->interface->read_register(REG_0x6C); DBG(DBG_io, "%s: read buttons_gpio 0x6c value=0x%x\n", __func__, (int)val); s->buttons[BUTTON_PDF3_SW].write((val & 0x80) == 0x00); break; default: val = s->dev->interface->read_register(REG_0x6D); DBG(DBG_io, "%s: read buttons_gpio value=0x%x\n", __func__, (int)val); s->buttons[BUTTON_SCAN_SW].write((val & 0x01) == 0); s->buttons[BUTTON_FILE_SW].write((val & 0x02) == 0); s->buttons[BUTTON_EMAIL_SW].write((val & 0x04) == 0); s->buttons[BUTTON_COPY_SW].write((val & 0x08) == 0); break; } } void CommandSetGl847::update_home_sensor_gpio(Genesys_Device& dev) const { DBG_HELPER(dbg); if (dev.model->gpio_id == GpioId::CANON_LIDE_700F) { std::uint8_t val = dev.interface->read_register(REG_0x6C); val &= ~REG_0x6C_GPIO10; dev.interface->write_register(REG_0x6C, val); } else { std::uint8_t val = dev.interface->read_register(REG_0x6C); val |= REG_0x6C_GPIO10; dev.interface->write_register(REG_0x6C, val); } } void CommandSetGl847::offset_calibration(Genesys_Device* dev, const Genesys_Sensor& sensor, Genesys_Register_Set& regs) const { scanner_offset_calibration(*dev, sensor, regs); } void CommandSetGl847::coarse_gain_calibration(Genesys_Device* dev, const Genesys_Sensor& sensor, Genesys_Register_Set& regs, int dpi) const { scanner_coarse_gain_calibration(*dev, sensor, regs, dpi); } bool CommandSetGl847::needs_home_before_init_regs_for_scan(Genesys_Device* dev) const { (void) dev; return false; } void CommandSetGl847::init_regs_for_warmup(Genesys_Device* dev, const Genesys_Sensor& sensor, Genesys_Register_Set* regs) const { (void) dev; (void) sensor; (void) regs; throw SaneException("not implemented"); } void CommandSetGl847::send_gamma_table(Genesys_Device* dev, const Genesys_Sensor& sensor) const { sanei_genesys_send_gamma_table(dev, sensor); } void CommandSetGl847::wait_for_motor_stop(Genesys_Device* dev) const { (void) dev; } void CommandSetGl847::load_document(Genesys_Device* dev) const { (void) dev; throw SaneException("not implemented"); } void CommandSetGl847::detect_document_end(Genesys_Device* dev) const { (void) dev; throw SaneException("not implemented"); } void CommandSetGl847::eject_document(Genesys_Device* dev) const { (void) dev; throw SaneException("not implemented"); } } // namespace gl847 } // namespace genesys