/* sane - Scanner Access Now Easy. Copyright (C) 2010-2013 Stéphane Voltz This file is part of the SANE package. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. As a special exception, the authors of SANE give permission for additional uses of the libraries contained in this release of SANE. The exception is that, if you link a SANE library with other files to produce an executable, this does not by itself cause the resulting executable to be covered by the GNU General Public License. Your use of that executable is in no way restricted on account of linking the SANE library code into it. This exception does not, however, invalidate any other reasons why the executable file might be covered by the GNU General Public License. If you submit changes to SANE to the maintainers to be included in a subsequent release, you agree by submitting the changes that those changes may be distributed with this exception intact. If you write modifications of your own for SANE, it is your choice whether to permit this exception to apply to your modifications. If you do not wish that, delete this exception notice. */ #define DEBUG_DECLARE_ONLY #include "genesys_gl843.h" #include #include /**************************************************************************** Low level function ****************************************************************************/ /* ------------------------------------------------------------------------ */ /* Read and write RAM, registers and AFE */ /* ------------------------------------------------------------------------ */ /* Set address for writing data */ static SANE_Status gl843_set_buffer_address (Genesys_Device * dev, uint32_t addr) { SANE_Status status = SANE_STATUS_GOOD; DBG(DBG_io, "%s: setting address to 0x%05x\n", __func__, addr & 0xffff); status = sanei_genesys_write_register (dev, 0x5b, ((addr >> 8) & 0xff)); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed while writing high byte: %s\n", __func__, sane_strstatus(status)); return status; } status = sanei_genesys_write_register (dev, 0x5c, (addr & 0xff)); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed while writing low byte: %s\n", __func__, sane_strstatus(status)); return status; } DBG(DBG_io, "%s: completed\n", __func__); return status; } /** * writes a block of data to RAM * @param dev USB device * @param addr RAM address to write to * @param size size of the chunk of data * @param data pointer to the data to write */ static SANE_Status write_data (Genesys_Device * dev, uint32_t addr, uint32_t size, uint8_t * data) { SANE_Status status = SANE_STATUS_GOOD; DBGSTART; status = gl843_set_buffer_address (dev, addr); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed while setting address for bulk write data: %s\n", __func__, sane_strstatus(status)); return status; } /* write actual data */ status = sanei_genesys_bulk_write_data(dev, 0x28, data, size); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed while writing bulk write data: %s\n", __func__, sane_strstatus(status)); return status; } /* set back address to 0 */ status = gl843_set_buffer_address (dev, 0); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed setting to default RAM address: %s\n", __func__, sane_strstatus(status)); return status; } DBGCOMPLETED; return status; } /**************************************************************************** Mid level functions ****************************************************************************/ static SANE_Bool gl843_get_fast_feed_bit (Genesys_Register_Set * regs) { GenesysRegister *r = NULL; r = sanei_genesys_get_address (regs, REG02); if (r && (r->value & REG02_FASTFED)) return SANE_TRUE; return SANE_FALSE; } static SANE_Bool gl843_get_filter_bit (Genesys_Register_Set * regs) { GenesysRegister *r = NULL; r = sanei_genesys_get_address (regs, REG04); if (r && (r->value & REG04_FILTER)) return SANE_TRUE; return SANE_FALSE; } static SANE_Bool gl843_get_lineart_bit (Genesys_Register_Set * regs) { GenesysRegister *r = NULL; r = sanei_genesys_get_address (regs, REG04); if (r && (r->value & REG04_LINEART)) return SANE_TRUE; return SANE_FALSE; } static SANE_Bool gl843_get_bitset_bit (Genesys_Register_Set * regs) { GenesysRegister *r = NULL; r = sanei_genesys_get_address (regs, REG04); if (r && (r->value & REG04_BITSET)) return SANE_TRUE; return SANE_FALSE; } static SANE_Bool gl843_get_gain4_bit (Genesys_Register_Set * regs) { GenesysRegister *r = NULL; r = sanei_genesys_get_address (regs, REG06); if (r && (r->value & REG06_GAIN4)) return SANE_TRUE; return SANE_FALSE; } /** * compute the step multiplier used */ static int gl843_get_step_multiplier (Genesys_Register_Set * regs) { GenesysRegister *r = NULL; int value = 1; r = sanei_genesys_get_address (regs, REG9D); if (r != NULL) { switch (r->value & 0x0c) { case 0x04: value = 2; break; case 0x08: value = 4; break; default: value = 1; } } DBG(DBG_io, "%s: step multiplier is %d\n", __func__, value); return value; } static SANE_Bool gl843_test_buffer_empty_bit (SANE_Byte val) { if (val & REG41_BUFEMPTY) return SANE_TRUE; return SANE_FALSE; } static SANE_Bool gl843_test_motor_flag_bit (SANE_Byte val) { if (val & REG41_MOTORENB) return SANE_TRUE; return SANE_FALSE; } /** copy sensor specific settings */ static void gl843_setup_sensor (Genesys_Device * dev, const Genesys_Sensor& sensor, Genesys_Register_Set * regs, int dpi,int flags) { (void) dpi; (void) flags; DBGSTART; for (const auto& custom_reg : sensor.custom_regs) { regs->set8(custom_reg.address, custom_reg.value); } if (!(dev->model->flags & GENESYS_FLAG_FULL_HWDPI_MODE)) { regs->set8(0x7d, 0x90); } DBGCOMPLETED; } /** @brief set all registers to default values . * This function is called only once at the beginning and * fills register startup values for registers reused across scans. * Those that are rarely modified or not modified are written * individually. * @param dev device structure holding register set to initialize */ static void gl843_init_registers (Genesys_Device * dev) { // Within this function SENSOR_DEF marker documents that a register is part // of the sensors definition and the actual value is set in // gl843_setup_sensor(). DBGSTART; dev->reg.clear(); /* default to KV-SS080 */ SETREG (0xa2, 0x0f); if (dev->model->model_id == MODEL_CANON_CANOSCAN_8600F) { SETREG(0xa2, 0x1f); } SETREG (0x01, 0x00); SETREG (0x02, 0x78); SETREG (0x03, 0x1f); SETREG (0x04, 0x10); // fine tune upon device description SETREG (0x05, 0x80); if (dev->model->model_id == MODEL_HP_SCANJET_G4010 || dev->model->model_id == MODEL_HP_SCANJET_G4050 || dev->model->model_id == MODEL_HP_SCANJET_4850C) { SETREG (0x05, 0x08); } dev->reg.find_reg(0x05).value &= ~REG05_DPIHW; switch (sanei_genesys_find_sensor_any(dev).optical_res) { case 600: dev->reg.find_reg(0x05).value |= REG05_DPIHW_600; break; case 1200: dev->reg.find_reg(0x05).value |= REG05_DPIHW_1200; break; case 2400: dev->reg.find_reg(0x05).value |= REG05_DPIHW_2400; break; case 4800: dev->reg.find_reg(0x05).value |= REG05_DPIHW_4800; break; } // TODO: on 8600F the windows driver turns off GAIN4 which is recommended SETREG (0x06, 0xd8); /* SCANMOD=110, PWRBIT and GAIN4 */ SETREG (0x08, 0x00); SETREG (0x09, 0x00); SETREG (0x0a, 0x00); // This register controls clock and RAM settings and is further modified in // gl843_boot SETREG (0x0b, 0x6a); if (dev->model->model_id == MODEL_CANON_CANOSCAN_8600F) { SETREG(0x0b, 0x89); } // EXPR[0:15], EXPG[0:15], EXPB[0:15]: Exposure time settings. SETREG(0x10, 0x00); // SENSOR_DEF SETREG(0x11, 0x00); // SENSOR_DEF SETREG(0x12, 0x00); // SENSOR_DEF SETREG(0x13, 0x00); // SENSOR_DEF SETREG(0x14, 0x00); // SENSOR_DEF SETREG(0x15, 0x00); // SENSOR_DEF if (dev->model->model_id == MODEL_CANON_CANOSCAN_8600F) { dev->reg.set16(REG_EXPR, 0x9c40); dev->reg.set16(REG_EXPG, 0x9c40); dev->reg.set16(REG_EXPB, 0x9c40); } // CCD signal settings. SETREG(0x16, 0x33); // SENSOR_DEF SETREG(0x17, 0x1c); // SENSOR_DEF SETREG(0x18, 0x10); // SENSOR_DEF // EXPDMY[0:7]: Exposure time of dummy lines. SETREG(0x19, 0x2a); // SENSOR_DEF // Various CCD clock settings. SETREG(0x1a, 0x04); // SENSOR_DEF SETREG(0x1b, 0x00); // SENSOR_DEF SETREG(0x1c, 0x20); // SENSOR_DEF SETREG(0x1d, 0x04); // SENSOR_DEF SETREG (0x1e, 0x10); if (dev->model->model_id == MODEL_CANON_CANOSCAN_8600F) { SETREG(0x1e, 0x20); } SETREG (0x1f, 0x01); if (dev->model->model_id == MODEL_CANON_CANOSCAN_8600F) { SETREG(0x1f, 0xff); } SETREG (0x20, 0x10); SETREG (0x21, 0x04); SETREG (0x22, 0x01); if (dev->model->model_id == MODEL_CANON_CANOSCAN_8600F) { SETREG(0x22, 0xc8); } SETREG (0x23, 0x01); if (dev->model->model_id == MODEL_CANON_CANOSCAN_8600F) { SETREG(0x23, 0xc8); } SETREG (0x24, 0x04); SETREG (0x25, 0x00); SETREG (0x26, 0x00); SETREG (0x27, 0x00); SETREG (0x2c, 0x02); SETREG (0x2d, 0x58); // BWHI[0:7]: high level of black and white threshold SETREG (0x2e, 0x80); // BWLOW[0:7]: low level of black and white threshold SETREG (0x2f, 0x80); SETREG (0x30, 0x00); SETREG (0x31, 0x14); SETREG (0x32, 0x27); SETREG (0x33, 0xec); // DUMMY: CCD dummy and optically black pixel count SETREG (0x34, 0x24); if (dev->model->model_id == MODEL_CANON_CANOSCAN_8600F) { SETREG(0x34, 0x14); } // MAXWD: If available buffer size is less than 2*MAXWD words, then // "buffer full" state will be set. SETREG (0x35, 0x00); SETREG (0x36, 0xff); SETREG (0x37, 0xff); // LPERIOD: Line period or exposure time for CCD or CIS. SETREG(0x38, 0x55); // SENSOR_DEF SETREG(0x39, 0xf0); // SENSOR_DEF // FEEDL[0:24]: The number of steps of motor movement. SETREG(0x3d, 0x00); SETREG (0x3e, 0x00); SETREG (0x3f, 0x01); // Latch points for high and low bytes of R, G and B channels of AFE. If // multiple clocks per pixel are consumed, then the setting defines during // which clock the corresponding value will be read. // RHI[0:4]: The latch point for high byte of R channel. // RLOW[0:4]: The latch point for low byte of R channel. // GHI[0:4]: The latch point for high byte of G channel. // GLOW[0:4]: The latch point for low byte of G channel. // BHI[0:4]: The latch point for high byte of B channel. // BLOW[0:4]: The latch point for low byte of B channel. SETREG(0x52, 0x01); // SENSOR_DEF SETREG(0x53, 0x04); // SENSOR_DEF SETREG(0x54, 0x07); // SENSOR_DEF SETREG(0x55, 0x0a); // SENSOR_DEF SETREG(0x56, 0x0d); // SENSOR_DEF SETREG(0x57, 0x10); // SENSOR_DEF // VSMP[0:4]: The position of the image sampling pulse for AFE in cycles. // VSMPW[0:2]: The length of the image sampling pulse for AFE in cycles. SETREG(0x58, 0x1b); // SENSOR_DEF SETREG(0x59, 0x00); // SENSOR_DEF SETREG(0x5a, 0x40); // SENSOR_DEF // 0x5b-0x5c: GMMADDR[0:15] address for gamma or motor tables download // SENSOR_DEF // DECSEL[0:2]: The number of deceleratino steps after touching home sensor // STOPTIM[0:4]: The stop duration between change of directions in // backtracking SETREG (0x5e, 0x23); if (dev->model->model_id == MODEL_CANON_CANOSCAN_8600F) { SETREG(0x5e, 0x1f); } // FMOVDEC: The number of deceleration steps in table 5 for auto-go-home SETREG (0x5f, 0x01); if (dev->model->model_id == MODEL_CANON_CANOSCAN_8600F) { SETREG(0x5f, 0xf0); } // Z1MOD[0:20] SETREG (0x60, 0x00); SETREG (0x61, 0x00); SETREG (0x62, 0x00); // Z2MOD[0:20] SETREG (0x63, 0x00); SETREG (0x64, 0x00); SETREG (0x65, 0x00); // STEPSEL[0:1]. Motor movement step mode selection for tables 1-3 in // scanning mode. // MTRPWM[0:5]. Motor phase PWM duty cycle setting for tables 1-3 SETREG (0x67, 0x7f); // FSTPSEL[0:1]: Motor movement step mode selection for tables 4-5 in // command mode. // FASTPWM[5:0]: Motor phase PWM duty cycle setting for tables 4-5 SETREG (0x68, 0x7f); // FSHDEC[0:7]: The number of deceleration steps after scanning is finished // (table 3) SETREG (0x69, 0x01); if (dev->model->model_id == MODEL_CANON_CANOSCAN_8600F) { SETREG(0x69, 64); } // FMOVNO[0:7] The number of acceleration or deceleration steps for fast // moving (table 4) SETREG (0x6a, 0x04); if (dev->model->model_id == MODEL_CANON_CANOSCAN_8600F) { SETREG(0x69, 64); } // GPIO-related register bits SETREG (0x6b, 0x30); if (dev->model->model_id == MODEL_CANON_CANOSCAN_8600F) { SETREG(0x6b, 0x72); } // 0x6c, 0x6d, 0x6e, 0x6f are set according to gpio tables. See // gl843_init_gpio. // RSH[0:4]: The position of rising edge of CCD RS signal in cycles // RSL[0:4]: The position of falling edge of CCD RS signal in cycles // CPH[0:4]: The position of rising edge of CCD CP signal in cycles. // CPL[0:4]: The position of falling edge of CCD CP signal in cycles SETREG(0x70, 0x01); // SENSOR_DEF SETREG(0x71, 0x03); // SENSOR_DEF SETREG (0x72, 0x04); SETREG (0x73, 0x05); if (dev->model->model_id == MODEL_CANON_CANOSCAN_8600F) { SETREG(0x70, 0x00); SETREG(0x71, 0x02); SETREG(0x72, 0x02); SETREG(0x73, 0x04); } // CK1MAP[0:17], CK3MAP[0:17], CK4MAP[0:17]: CCD clock bit mapping setting. SETREG(0x74, 0x00); // SENSOR_DEF SETREG(0x75, 0x00); // SENSOR_DEF SETREG(0x76, 0x3c); // SENSOR_DEF SETREG(0x77, 0x00); // SENSOR_DEF SETREG(0x78, 0x00); // SENSOR_DEF SETREG(0x79, 0x9f); // SENSOR_DEF SETREG(0x7a, 0x00); // SENSOR_DEF SETREG(0x7b, 0x00); // SENSOR_DEF SETREG(0x7c, 0x55); // SENSOR_DEF // various AFE settings SETREG(0x7d, 0x00); // GPOLED[x]: LED vs GPIO settings SETREG(0x7e, 0x00); // BSMPDLY, VSMPDLY // LEDCNT[0:1]: Controls led blinking and its period SETREG (0x7f, 0x00); // VRHOME, VRMOVE, VRBACK, VRSCAN: Vref settings of the motor driver IC for // moving in various situations. SETREG (0x80, 0x00); if (dev->model->model_id != MODEL_CANON_CANOSCAN_4400F) { // NOTE: Historical code. None of the following 6 registers are // documented in the datasheet. Their default value is 0, so probably it's // not a bad idea to leave this here. SETREG (0x81, 0x00); SETREG (0x82, 0x00); SETREG (0x83, 0x00); SETREG (0x84, 0x00); SETREG (0x85, 0x00); SETREG (0x86, 0x00); } SETREG (0x87, 0x00); if (dev->model->model_id == MODEL_CANON_CANOSCAN_8600F) { SETREG(0x87, 0x02); } // MTRPLS[0:7]: The width of the ADF motor trigger signal pulse. if (dev->model->model_id == MODEL_CANON_CANOSCAN_8600F) { SETREG(0x94, 0xff); } // 0x95-0x97: SCANLEN[0:19]: Controls when paper jam bit is set in sheetfed // scanners. // ONDUR[0:15]: The duration of PWM ON phase for LAMP control // OFFDUR[0:15]: The duration of PWM OFF phase for LAMP control // both of the above are in system clocks if (dev->model->model_id == MODEL_CANON_CANOSCAN_8600F) { SETREG(0x98, 0x00); SETREG(0x99, 0x00); SETREG(0x9a, 0x00); SETREG(0x9b, 0x00); } // RMADLY[0:1], MOTLAG, CMODE, STEPTIM, MULDMYLN, IFRS SETREG(0x9d, 0x04); if (dev->model->model_id == MODEL_CANON_CANOSCAN_8600F) { SETREG(0x9d, 0x08); // additionally sets the multiplier for slope tables } // SEL3INV, TGSTIME[0:2], TGWTIME[0:2] SETREG (0x9e, 0x00); // SENSOR_DEF // RFHSET[0:4]: Refresh time of SDRAM in units of 2us if (dev->model->model_id == MODEL_CANON_CANOSCAN_8600F) { SETREG(0xa2, 0x1f); } // 0xa6-0xa9: controls gpio, see gl843_gpio_init // GPOM9, MULSTOP[0-2], NODECEL, TB3TB1, TB5TB2, FIX16CLK. if (dev->model->model_id == MODEL_CANON_CANOSCAN_8600F) { SETREG(0xab, 0x00); } // VRHOME[3:2], VRMOVE[3:2], VRBACK[3:2]: Vref setting of the motor driver IC // for various situations. if (dev->model->model_id == MODEL_CANON_CANOSCAN_8600F) { SETREG(0xac, 0x00); } if (dev->model->model_id != MODEL_CANON_CANOSCAN_8400F) { SETREG (0x0c, 0x00); SETREG (0x94, 0xff); SETREG (0xab, 0x50); } if (dev->model->model_id != MODEL_CANON_CANOSCAN_4400F && dev->model->model_id != MODEL_CANON_CANOSCAN_8400F) { SETREG (0xaa, 0x00); } /* G4050 values */ if (dev->model->model_id == MODEL_HP_SCANJET_G4010 || dev->model->model_id == MODEL_HP_SCANJET_G4050 || dev->model->model_id == MODEL_HP_SCANJET_4850C) { SETREG (0x03, 0x1d); SETREG (0x06, 0xd0); /* SCANMOD=110, PWRBIT and no GAIN4 */ SETREG (0x06, 0xd8); /* SCANMOD=110, PWRBIT and GAIN4 */ SETREG (0x0a, 0x18); SETREG (0x0b, 0x69); /* CIS exposure is used for XPA lamp movement */ SETREG (0x10, 0x2c); SETREG (0x11, 0x09); SETREG (0x12, 0x22); SETREG (0x13, 0xb8); SETREG (0x14, 0x10); SETREG (0x15, 0xf0); SETREG (0x6b, 0xf4); SETREG (0x70, 0x00); SETREG (0x71, 0x02); SETREG (0x72, 0x00); SETREG (0x73, 0x00); SETREG (0x80, 0x50); SETREG (0x9d, 0x08); SETREG (0xab, 0x40); /* XXX STEF XXX TODO move to set for scan */ SETREG (0x98, 0x03); SETREG (0x99, 0x30); SETREG (0x9a, 0x01); SETREG (0x9b, 0x80); SETREG (0xac, 0x00); } if (dev->model->model_id == MODEL_CANON_CANOSCAN_4400F) { SETREG (0x06, 0xf0); /* SCANMOD=111, PWRBIT and no GAIN4 */ SETREG (0x0b, 0x69); /* 16M only */ SETREG (0x1e, 0x20); SETREG (0x22, 0xc8); SETREG (0x23, 0xc8); SETREG (0x5e, 0x3f); SETREG (0x5f, 0xf0); SETREG (0x6b, 0x72); SETREG (0x72, 0x01); SETREG (0x73, 0x03); SETREG (0x80, 0x0c); SETREG (0x87, 0x02); /* MCLOCK -> CK4MAP */ SETREG (0x9d, 0x08); /* STEPTIM=2 */ SETREG (0xa2, 0x1f); SETREG (0xab, 0x00); sanei_genesys_set_double(&dev->reg,REG_EXPR,0x9c40); sanei_genesys_set_double(&dev->reg,REG_EXPG,0x9c40); sanei_genesys_set_double(&dev->reg,REG_EXPB,0x9c40); } if (dev->model->model_id == MODEL_CANON_CANOSCAN_8400F) { SETREG (0x03, 0x1c); SETREG (0x06, 0xd0); /* SCANMOD=110, PWRBIT and no GAIN4 */ SETREG (0x0a, 0x10); SETREG (0x22, 0x50); SETREG (0x23, 0x50); SETREG (0x5e, 0x85); SETREG (0x6b, 0xb1); SETREG (0x1e, 0xa0); SETREG (0x72, 0x03); SETREG (0x73, 0x04); SETREG (0x7d, 0x20); SETREG (0x80, 0x28); SETREG (0x87, 0x02); /* MCLOCK -> CK4MAP */ SETREG (0x9d, 0x08); /* STEPTIM=2 */ } dev->calib_reg = dev->reg; DBGCOMPLETED; } /* Send slope table for motor movement slope_table in machine byte order */ static SANE_Status gl843_send_slope_table (Genesys_Device * dev, int table_nr, uint16_t * slope_table, int steps) { SANE_Status status = SANE_STATUS_GOOD; int i; char msg[10000]; DBG(DBG_proc, "%s (table_nr = %d, steps = %d)\n", __func__, table_nr, steps); std::vector table(steps * 2); for (i = 0; i < steps; i++) { table[i * 2] = slope_table[i] & 0xff; table[i * 2 + 1] = slope_table[i] >> 8; } if (DBG_LEVEL >= DBG_io) { sprintf (msg, "write slope %d (%d)=", table_nr, steps); for (i = 0; i < steps; i++) { sprintf (msg+strlen(msg), "%d", slope_table[i]); } DBG(DBG_io, "%s: %s\n", __func__, msg); } /* slope table addresses are fixed : 0x4000, 0x4800, 0x5000, 0x5800, 0x6000 */ /* XXX STEF XXX USB 1.1 ? sanei_genesys_write_0x8c (dev, 0x0f, 0x14); */ status = write_data (dev, 0x4000 + 0x800 * table_nr, steps * 2, table.data()); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: write data failed writing slope table %d (%s)\n", __func__, table_nr, sane_strstatus(status)); } DBGCOMPLETED; return status; } /* Set values of analog frontend */ static SANE_Status gl843_set_fe (Genesys_Device * dev, const Genesys_Sensor& sensor, uint8_t set) { (void) sensor; SANE_Status status = SANE_STATUS_GOOD; uint8_t val; int i; DBG(DBG_proc, "%s (%s)\n", __func__, set == AFE_INIT ? "init" : set == AFE_SET ? "set" : set == AFE_POWER_SAVE ? "powersave" : "huh?"); if (set == AFE_INIT) { DBG(DBG_proc, "%s(): setting DAC %u\n", __func__, dev->model->dac_type); dev->frontend = dev->frontend_initial; } /* check analog frontend type */ // FIXME: looks like we write to that register with initial data RIE (sanei_genesys_read_register (dev, REG04, &val)); if ((val & REG04_FESET) != 0x00) { /* for now there is no support for AD fe */ DBG(DBG_proc, "%s(): unsupported frontend type %d\n", __func__, dev->reg.find_reg(0x04).value & REG04_FESET); return SANE_STATUS_UNSUPPORTED; } DBG(DBG_proc, "%s(): frontend reset complete\n", __func__); for (i = 1; i <= 3; i++) { // FIXME: BUG: we should initialize dev->frontend before first use. Right now it's // initialized during genesys_coarse_calibration() if (dev->frontend.regs.empty()) { status = sanei_genesys_fe_write_data(dev, i, 0x00); } else { status = sanei_genesys_fe_write_data(dev, i, dev->frontend.regs.get_value(0x00 + i)); } if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: writing reg[%d] failed: %s\n", __func__, i, sane_strstatus(status)); return status; } } for (const auto& reg : sensor.custom_fe_regs) { status = sanei_genesys_fe_write_data(dev, reg.address, reg.value); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: writing reg[%d] failed: %s\n", __func__, i, sane_strstatus(status)); return status; } } for (i = 0; i < 3; i++) { // FIXME: BUG: see above if (dev->frontend.regs.empty()) { status = sanei_genesys_fe_write_data(dev, 0x20 + i, 0x00); } else { status = sanei_genesys_fe_write_data(dev, 0x20 + i, dev->frontend.get_offset(i)); } if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: writing offset[%d] failed: %s\n", __func__, i, sane_strstatus(status)); return status; } } if (dev->model->ccd_type == CCD_KVSS080) { for (i = 0; i < 3; i++) { // FIXME: BUG: see above if (dev->frontend.regs.empty()) { status = sanei_genesys_fe_write_data(dev, 0x24 + i, 0x00); } else { status = sanei_genesys_fe_write_data(dev, 0x24 + i, dev->frontend.regs.get_value(0x24 + i)); } if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: writing sign[%d] failed: %s\n", __func__, i, sane_strstatus(status)); return status; } } } for (i = 0; i < 3; i++) { // FIXME: BUG: see above if (dev->frontend.regs.empty()) { status = sanei_genesys_fe_write_data(dev, 0x28 + i, 0x00); } else { status = sanei_genesys_fe_write_data(dev, 0x28 + i, dev->frontend.get_gain(i)); } if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: writing gain[%d] failed: %s\n", __func__, i, sane_strstatus(status)); return status; } } DBGCOMPLETED; return SANE_STATUS_GOOD; } static SANE_Status gl843_init_motor_regs_scan (Genesys_Device * dev, const Genesys_Sensor& sensor, Genesys_Register_Set * reg, unsigned int exposure, float scan_yres, int scan_step_type, unsigned int scan_lines, unsigned int scan_dummy, unsigned int feed_steps, int scan_power_mode, unsigned int flags) { SANE_Status status = SANE_STATUS_GOOD; int use_fast_fed, coeff; unsigned int lincnt; uint16_t scan_table[1024]; uint16_t fast_table[1024]; int scan_steps,fast_steps, fast_step_type; unsigned int feedl,factor,dist; GenesysRegister *r; uint32_t z1, z2; DBGSTART; DBG(DBG_info, "%s : exposure=%d, scan_yres=%g, scan_step_type=%d, scan_lines=%d, scan_dummy=%d, " "feed_steps=%d, scan_power_mode=%d, flags=%x\n", __func__, exposure, scan_yres, scan_step_type, scan_lines, scan_dummy, feed_steps, scan_power_mode, flags); /* get step multiplier */ factor = gl843_get_step_multiplier (reg); use_fast_fed = 0; if((scan_yres>=300 && feed_steps>900) || (flags & MOTOR_FLAG_FEED)) use_fast_fed=1; lincnt=scan_lines; sanei_genesys_set_triple(reg,REG_LINCNT,lincnt); DBG(DBG_io, "%s: lincnt=%d\n", __func__, lincnt); /* compute register 02 value */ r = sanei_genesys_get_address (reg, REG02); r->value = 0x00; sanei_genesys_set_motor_power(*reg, true); if (use_fast_fed) r->value |= REG02_FASTFED; else r->value &= ~REG02_FASTFED; /* in case of automatic go home, move until home sensor */ if (flags & MOTOR_FLAG_AUTO_GO_HOME) r->value |= REG02_AGOHOME | REG02_NOTHOME; /* disable backtracking */ if ((flags & MOTOR_FLAG_DISABLE_BUFFER_FULL_MOVE) ||(scan_yres>=2400) ||(scan_yres>=sensor.optical_res)) r->value |= REG02_ACDCDIS; /* scan and backtracking slope table */ sanei_genesys_slope_table(scan_table, &scan_steps, scan_yres, exposure, dev->motor.base_ydpi, scan_step_type, factor, dev->model->motor_type, gl843_motors); RIE(gl843_send_slope_table (dev, SCAN_TABLE, scan_table, scan_steps*factor)); RIE(gl843_send_slope_table (dev, BACKTRACK_TABLE, scan_table, scan_steps*factor)); /* STEPNO */ r = sanei_genesys_get_address (reg, REG_STEPNO); r->value = scan_steps; /* FSHDEC */ r = sanei_genesys_get_address (reg, REG_FSHDEC); r->value = scan_steps; /* fast table */ fast_step_type=0; if(scan_step_type<=fast_step_type) { fast_step_type=scan_step_type; } sanei_genesys_slope_table(fast_table, &fast_steps, sanei_genesys_get_lowest_ydpi(dev), exposure, dev->motor.base_ydpi, fast_step_type, factor, dev->model->motor_type, gl843_motors); RIE(gl843_send_slope_table (dev, STOP_TABLE, fast_table, fast_steps*factor)); RIE(gl843_send_slope_table (dev, FAST_TABLE, fast_table, fast_steps*factor)); RIE(gl843_send_slope_table (dev, HOME_TABLE, fast_table, fast_steps*factor)); /* FASTNO */ r = sanei_genesys_get_address (reg, REG_FASTNO); r->value = fast_steps; /* FMOVNO */ r = sanei_genesys_get_address (reg, REG_FMOVNO); r->value = fast_steps; /* substract acceleration distance from feedl */ feedl=feed_steps; feedl<<=scan_step_type; dist = scan_steps; if (use_fast_fed) { dist += fast_steps*2; } DBG(DBG_io2, "%s: acceleration distance=%d\n", __func__, dist); /* get sure when don't insane value : XXX STEF XXX in this case we should * fall back to single table move */ if(dist600) { z1=0; z2=0; } sanei_genesys_set_triple(reg,REG_Z1MOD,z1); DBG(DBG_info, "%s: z1 = %d\n", __func__, z1); sanei_genesys_set_triple(reg,REG_Z2MOD,z2); DBG(DBG_info, "%s: z2 = %d\n", __func__, z2); r = sanei_genesys_get_address (reg, REG1E); r->value &= 0xf0; /* 0 dummy lines */ r->value |= scan_dummy; /* dummy lines */ r = sanei_genesys_get_address (reg, REG67); r->value = 0x3f | (scan_step_type << REG67S_STEPSEL); r = sanei_genesys_get_address (reg, REG68); r->value = 0x3f | (scan_step_type << REG68S_FSTPSEL); /* steps for STOP table */ r = sanei_genesys_get_address (reg, REG_FMOVDEC); r->value = fast_steps; /* Vref XXX STEF XXX : optical divider or step type ? */ r = sanei_genesys_get_address (reg, 0x80); if (!(dev->model->flags & GENESYS_FLAG_FULL_HWDPI_MODE)) { r->value = 0x50; coeff=sensor.optical_res/sanei_genesys_compute_dpihw(dev, sensor, scan_yres); if (dev->model->motor_type == MOTOR_KVSS080) { if(coeff>=1) { r->value |= 0x05; } } else { switch(coeff) { case 4: r->value |= 0x0a; break; case 2: r->value |= 0x0f; break; case 1: r->value |= 0x0f; break; } } } DBGCOMPLETED; return SANE_STATUS_GOOD; } /** @brief setup optical related registers * start and pixels are expressed in optical sensor resolution coordinate * space. * @param dev device to use * @param reg registers to set up * @param exposure exposure time to use * @param used_res scanning resolution used, may differ from * scan's one * @param start logical start pixel coordinate * @param pixels logical number of pixels to use * @param channels number of color channles used (1 or 3) * @param depth bit depth of the scan (1, 8 or 16 bits) * @param ccd_size_divisor SANE_TRUE specifies how much x coordinates must be shrunk * @param color_filter to choose the color channel used in gray scans * @param flags to drive specific settings such no calibration, XPA use ... * @return SANE_STATUS_GOOD if OK */ static SANE_Status gl843_init_optical_regs_scan (Genesys_Device * dev, const Genesys_Sensor& sensor, Genesys_Register_Set * reg, unsigned int exposure, int used_res, unsigned int start, unsigned int pixels, int channels, int depth, unsigned ccd_size_divisor, ColorFilter color_filter, int flags) { unsigned int words_per_line; unsigned int startx, endx, used_pixels; unsigned int dpiset, dpihw, factor; unsigned int bytes; unsigned int tgtime; /**> exposure time multiplier */ unsigned int cksel; /**> clock per system pixel time in capturing image */ GenesysRegister *r; SANE_Status status = SANE_STATUS_GOOD; DBG(DBG_proc, "%s : exposure=%d, used_res=%d, start=%d, pixels=%d, channels=%d, depth=%d, " "ccd_size_divisor=%d, flags=%x\n", __func__, exposure, used_res, start, pixels, channels, depth, ccd_size_divisor, flags); /* tgtime */ tgtime = exposure / 65536 + 1; DBG(DBG_io2, "%s: tgtime=%d\n", __func__, tgtime); /* to manage high resolution device while keeping good * low resolution scanning speed, we make hardware dpi vary */ dpihw=sanei_genesys_compute_dpihw(dev, sensor, used_res); factor=sensor.optical_res/dpihw; DBG(DBG_io2, "%s: dpihw=%d (factor=%d)\n", __func__, dpihw, factor); /* sensor parameters */ gl843_setup_sensor (dev, sensor, reg, dpihw, flags); /* resolution is divided according to CKSEL which is known once sensor is set up */ r = sanei_genesys_get_address (reg, REG18); cksel= (r->value & REG18_CKSEL)+1; DBG(DBG_io2, "%s: cksel=%d\n", __func__, cksel); dpiset = used_res * cksel; /* start and end coordinate in optical dpi coordinates */ startx = (start + sensor.dummy_pixel)/cksel; used_pixels=pixels/cksel; endx = startx + used_pixels; /* pixel coordinate factor correction when used dpihw is not maximal one */ startx/=factor; endx/=factor; used_pixels=endx-startx; /* in case of stagger we have to start at an odd coordinate */ if ((flags & OPTICAL_FLAG_STAGGER) &&((startx & 1)==0)) { startx++; endx++; } status = gl843_set_fe(dev, sensor, AFE_SET); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to set frontend: %s\n", __func__, sane_strstatus(status)); return status; } /* enable shading */ r = sanei_genesys_get_address (reg, REG01); r->value &= ~REG01_SCAN; if ((flags & OPTICAL_FLAG_DISABLE_SHADING) || (dev->model->flags & GENESYS_FLAG_NO_CALIBRATION)) { r->value &= ~REG01_DVDSET; } else { r->value |= REG01_DVDSET; } if(dpihw>600) { r->value |= REG01_SHDAREA; } else { r->value &= ~REG01_SHDAREA; } r = sanei_genesys_get_address (reg, REG03); if (dev->model->model_id == MODEL_CANON_CANOSCAN_8600F) r->value |= REG03_AVEENB; else { r->value &= ~REG03_AVEENB; } // FIXME: we probably don't need to set exposure to registers at this point. It was this way // before a refactor. sanei_genesys_set_lamp_power(dev, sensor, *reg, !(flags & OPTICAL_FLAG_DISABLE_LAMP)); /* select XPA */ r->value &= ~REG03_XPASEL; if (flags & OPTICAL_FLAG_USE_XPA) { r->value |= REG03_XPASEL; } reg->state.is_xpa_on = flags & OPTICAL_FLAG_USE_XPA; /* BW threshold */ r = sanei_genesys_get_address (reg, REG2E); r->value = dev->settings.threshold; r = sanei_genesys_get_address (reg, REG2F); r->value = dev->settings.threshold; /* monochrome / color scan */ r = sanei_genesys_get_address (reg, REG04); switch (depth) { case 1: r->value &= ~REG04_BITSET; r->value |= REG04_LINEART; break; case 8: r->value &= ~(REG04_LINEART | REG04_BITSET); break; case 16: r->value &= ~REG04_LINEART; r->value |= REG04_BITSET; break; } r->value &= ~(REG04_FILTER | REG04_AFEMOD); if (channels == 1) { switch (color_filter) { case ColorFilter::RED: r->value |= 0x14; break; case ColorFilter::BLUE: r->value |= 0x1c; break; case ColorFilter::GREEN: r->value |= 0x18; break; default: break; // should not happen } } else r->value |= 0x10; /* mono */ /* register 05 */ r = sanei_genesys_get_address (reg, REG05); /* set up dpihw */ r->value &= ~REG05_DPIHW; switch(dpihw) { case 600: r->value |= REG05_DPIHW_600; break; case 1200: r->value |= REG05_DPIHW_1200; break; case 2400: r->value |= REG05_DPIHW_2400; break; case 4800: r->value |= REG05_DPIHW_4800; break; } /* enable gamma tables */ if (flags & OPTICAL_FLAG_DISABLE_GAMMA) r->value &= ~REG05_GMMENB; else r->value |= REG05_GMMENB; sanei_genesys_set_double(reg, REG_DPISET, dpiset * ccd_size_divisor); DBG(DBG_io2, "%s: dpiset used=%d\n", __func__, dpiset * ccd_size_divisor); sanei_genesys_set_double(reg, REG_STRPIXEL, startx); sanei_genesys_set_double(reg, REG_ENDPIXEL, endx); /* words(16bit) before gamma, conversion to 8 bit or lineart */ words_per_line = (used_pixels * dpiset) / dpihw; bytes = depth / 8; if (depth == 1) { words_per_line = (words_per_line >> 3) + ((words_per_line & 7) ? 1 : 0); } else { words_per_line *= bytes; } dev->wpl = words_per_line; dev->bpl = words_per_line; DBG(DBG_io2, "%s: used_pixels=%d\n", __func__, used_pixels); DBG(DBG_io2, "%s: pixels =%d\n", __func__, pixels); DBG(DBG_io2, "%s: depth =%d\n", __func__, depth); DBG(DBG_io2, "%s: dev->bpl =%lu\n", __func__, (unsigned long) dev->bpl); DBG(DBG_io2, "%s: dev->len =%lu\n", __func__, (unsigned long)dev->len); DBG(DBG_io2, "%s: dev->dist =%lu\n", __func__, (unsigned long)dev->dist); words_per_line *= channels; /* MAXWD is expressed in 2 words unit */ /* nousedspace = (mem_bank_range * 1024 / 256 -1 ) * 4; */ sanei_genesys_set_triple(reg,REG_MAXWD,(words_per_line)>>1); DBG(DBG_io2, "%s: words_per_line used=%d\n", __func__, words_per_line); sanei_genesys_set_double(reg,REG_LPERIOD,exposure/tgtime); DBG(DBG_io2, "%s: exposure used=%d\n", __func__, exposure/tgtime); r = sanei_genesys_get_address (reg, REG_DUMMY); r->value = sensor.dummy_pixel; DBGCOMPLETED; return SANE_STATUS_GOOD; } struct ScanSession { SetupParams params; // whether the session setup has been computed via gl843_compute_session() bool computed = false; // whether CCD operates as half-resolution or full resolution at a specific resolution unsigned ccd_size_divisor = 1; // the optical resolution of the scanner. unsigned optical_resolution = 0; // the number of pixels at the optical resolution. unsigned optical_pixels = 0; // the number of bytes in the output of a single line directly from scanner unsigned optical_line_bytes = 0; // the resolution of the output data. unsigned output_resolution = 0; // the number of pixels in output data unsigned output_pixels = 0; // the number of bytes in the output of a single line unsigned output_line_bytes = 0; // the number of lines in the output of the scanner. This must be larger than the user // requested number due to line staggering and color channel shifting. unsigned output_line_count = 0; // the number of staggered lines (i.e. lines that overlap during scanning due to line being // thinner than the CCD element) unsigned num_staggered_lines = 0; // the number of lines that color channels shift due to different physical positions of // different color channels unsigned max_color_shift_lines = 0; void assert_computed() const { if (!computed) { throw std::runtime_error("ScanSession is not computed"); } } }; static unsigned align_int_up(unsigned num, unsigned alignment) { unsigned mask = alignment - 1; if (num & mask) num = (num & ~mask) + alignment; return num; } // computes physical parameters for specific scan setup static void gl843_compute_session(Genesys_Device* dev, ScanSession& s, const Genesys_Sensor& sensor) { s.params.assert_valid(); s.ccd_size_divisor = sensor.get_ccd_size_divisor_for_dpi(s.params.xres); s.optical_resolution = sensor.optical_res / s.ccd_size_divisor; if (s.params.flags & SCAN_FLAG_USE_OPTICAL_RES) { s.output_resolution = s.optical_resolution; } else { // resolution is choosen from a fixed list and can be used directly // unless we have ydpi higher than sensor's maximum one if (s.params.xres > s.optical_resolution) s.output_resolution = s.optical_resolution; else s.output_resolution = s.params.xres; } // compute rounded up number of optical pixels s.optical_pixels = (s.params.pixels * s.optical_resolution) / s.params.xres; if (s.optical_pixels * s.params.xres < s.params.pixels * s.optical_resolution) s.optical_pixels++; // ensure the number of optical pixels is divisible by 2. // In quarter-CCD mode optical_pixels is 4x larger than the actual physical number s.optical_pixels = align_int_up(s.optical_pixels, 2 * s.ccd_size_divisor); s.output_pixels = (s.optical_pixels * s.output_resolution) / s.optical_resolution; // Note: staggering is not applied for calibration. Staggering starts at 2400 dpi s.num_staggered_lines = 0; if ((s.params.yres > 1200) && ((s.params.flags & SCAN_FLAG_IGNORE_LINE_DISTANCE) == 0) && (dev->model->flags & GENESYS_FLAG_STAGGERED_LINE)) { s.num_staggered_lines = (4 * s.params.yres) / dev->motor.base_ydpi; } s.max_color_shift_lines = sanei_genesys_compute_max_shift(dev, s.params.channels, s.params.yres, s.params.flags); s.output_line_count = s.params.lines + s.max_color_shift_lines + s.num_staggered_lines; s.optical_line_bytes = (s.optical_pixels * s.params.channels * s.params.depth) / 8; s.output_line_bytes = (s.output_pixels * s.params.channels * s.params.depth) / 8; s.computed = true; } /* set up registers for an actual scan * * this function sets up the scanner to scan in normal or single line mode */ static SANE_Status gl843_init_scan_regs(Genesys_Device* dev, const Genesys_Sensor& sensor, Genesys_Register_Set* reg, ScanSession& session) { session.assert_computed(); int start; int move; unsigned int oflags, mflags; /**> optical and motor flags */ int exposure; int slope_dpi = 0; int dummy = 0; int scan_step_type = 1; int scan_power_mode = 0; size_t requested_buffer_size, read_buffer_size; SANE_Status status = SANE_STATUS_GOOD; DBG(DBG_info, "%s ", __func__); debug_dump(DBG_info, session.params); DBG(DBG_info, "%s : stagger=%d lines\n", __func__, session.num_staggered_lines); /* we enable true gray for cis scanners only, and just when doing * scan since color calibration is OK for this mode */ oflags = 0; if (session.params.flags & SCAN_FLAG_DISABLE_SHADING) oflags |= OPTICAL_FLAG_DISABLE_SHADING; if (session.params.flags & SCAN_FLAG_DISABLE_GAMMA) oflags |= OPTICAL_FLAG_DISABLE_GAMMA; if (session.params.flags & SCAN_FLAG_DISABLE_LAMP) oflags |= OPTICAL_FLAG_DISABLE_LAMP; if (session.params.flags & SCAN_FLAG_CALIBRATION) oflags |= OPTICAL_FLAG_DISABLE_DOUBLE; if (session.num_staggered_lines) oflags |= OPTICAL_FLAG_STAGGER; if (session.params.flags & SCAN_FLAG_USE_XPA) oflags |= OPTICAL_FLAG_USE_XPA; /* compute scan parameters values */ /* pixels are allways given at full optical resolution */ /* use detected left margin and fixed value */ /* start */ start = session.params.startx; dummy = 0; /* dummy = 1; XXX STEF XXX */ /* slope_dpi */ /* cis color scan is effectively a gray scan with 3 gray lines per color line and a FILTER of 0 */ if (dev->model->is_cis) slope_dpi = session.params.yres * session.params.channels; else slope_dpi = session.params.yres; slope_dpi = slope_dpi * (1 + dummy); /* scan_step_type */ exposure = sensor.exposure_lperiod; if (exposure < 0) { throw std::runtime_error("Exposure not defined in sensor definition"); } scan_step_type = sanei_genesys_compute_step_type(gl843_motors, dev->model->motor_type, exposure); DBG(DBG_info, "%s : exposure=%d pixels\n", __func__, exposure); DBG(DBG_info, "%s : scan_step_type=%d\n", __func__, scan_step_type); /*** optical parameters ***/ /* in case of dynamic lineart, we use an internal 8 bit gray scan * to generate 1 lineart data */ if (session.params.flags & SCAN_FLAG_DYNAMIC_LINEART) { session.params.depth = 8; } /* no 16 bit gamma for this ASIC */ if (session.params.depth == 16) { session.params.flags |= SCAN_FLAG_DISABLE_GAMMA; oflags |= OPTICAL_FLAG_DISABLE_GAMMA; } /* now _LOGICAL_ optical values used are known, setup registers */ status = gl843_init_optical_regs_scan (dev, sensor, reg, exposure, session.output_resolution, start, session.optical_pixels, session.params.channels, session.params.depth, session.ccd_size_divisor, session.params.color_filter, oflags); if (status != SANE_STATUS_GOOD) return status; /*** motor parameters ***/ /* it seems base_dpi of the G4050 motor is changed above 600 dpi*/ if (dev->model->motor_type == MOTOR_G4050 && session.params.yres>600) { dev->ld_shift_r = (dev->model->ld_shift_r*3800)/dev->motor.base_ydpi; dev->ld_shift_g = (dev->model->ld_shift_g*3800)/dev->motor.base_ydpi; dev->ld_shift_b = (dev->model->ld_shift_b*3800)/dev->motor.base_ydpi; } else { dev->ld_shift_r = dev->model->ld_shift_r; dev->ld_shift_g = dev->model->ld_shift_g; dev->ld_shift_b = dev->model->ld_shift_b; } /* add tl_y to base movement */ move = session.params.starty; DBG(DBG_info, "%s: move=%d steps\n", __func__, move); mflags=0; if(session.params.flags & SCAN_FLAG_DISABLE_BUFFER_FULL_MOVE) mflags|=MOTOR_FLAG_DISABLE_BUFFER_FULL_MOVE; if(session.params.flags & SCAN_FLAG_FEEDING) mflags|=MOTOR_FLAG_FEED; if (session.params.flags & SCAN_FLAG_USE_XPA) mflags |= MOTOR_FLAG_USE_XPA; status = gl843_init_motor_regs_scan (dev, sensor, reg, exposure, slope_dpi, scan_step_type, dev->model->is_cis ? session.output_line_count * session.params.channels : session.output_line_count, dummy, move, scan_power_mode, mflags); if (status != SANE_STATUS_GOOD) return status; /* since we don't have sheetfed scanners to handle, * use huge read buffer */ /* TODO find the best size according to settings */ requested_buffer_size = 16 * session.output_line_bytes; read_buffer_size = 2 * requested_buffer_size + (session.max_color_shift_lines + session.num_staggered_lines) * session.optical_line_bytes; dev->read_buffer.clear(); dev->read_buffer.alloc(read_buffer_size); dev->lines_buffer.clear(); dev->lines_buffer.alloc(read_buffer_size); dev->shrink_buffer.clear(); dev->shrink_buffer.alloc(requested_buffer_size); dev->out_buffer.clear(); dev->out_buffer.alloc((8 * session.params.pixels * session.params.channels * session.params.depth) / 8); dev->read_bytes_left = session.output_line_bytes * session.output_line_count; DBG(DBG_info, "%s: physical bytes to read = %lu\n", __func__, (u_long) dev->read_bytes_left); dev->read_active = SANE_TRUE; dev->current_setup.params = session.params; dev->current_setup.pixels = session.output_pixels; DBG(DBG_info, "%s: current_setup.pixels=%d\n", __func__, dev->current_setup.pixels); dev->current_setup.lines = session.output_line_count; dev->current_setup.depth = session.params.depth; dev->current_setup.channels = session.params.channels; dev->current_setup.exposure_time = exposure; dev->current_setup.xres = session.output_resolution; dev->current_setup.yres = session.params.yres; dev->current_setup.ccd_size_divisor = session.ccd_size_divisor; dev->current_setup.stagger = session.num_staggered_lines; dev->current_setup.max_shift = session.max_color_shift_lines + session.num_staggered_lines; dev->total_bytes_read = 0; if (session.params.depth == 1) { dev->total_bytes_to_read = ((session.params.pixels * session.params.lines) / 8 + (((session.params.pixels * session.params.lines) % 8) ? 1 : 0)) * session.params.channels; } else { dev->total_bytes_to_read = session.params.pixels * session.params.lines * session.params.channels * (session.params.depth / 8); } DBG(DBG_info, "%s: total bytes to send = %lu\n", __func__, (u_long) dev->total_bytes_to_read); DBG(DBG_proc, "%s: completed\n", __func__); return SANE_STATUS_GOOD; } static void gl843_calculate_current_setup(Genesys_Device * dev, const Genesys_Sensor& sensor) { int channels; int depth; int start; int used_res; int used_pixels; unsigned int lincnt; int exposure; int stagger; int max_shift; int optical_res; DBG(DBG_info, "%s ", __func__); debug_dump(DBG_info, dev->settings); /* we have 2 domains for ccd: xres below or above half ccd max dpi */ unsigned ccd_size_divisor = sensor.get_ccd_size_divisor_for_dpi(dev->settings.xres); /* channels */ if (dev->settings.scan_mode == ScanColorMode::COLOR_SINGLE_PASS) channels = 3; else channels = 1; /* depth */ depth = dev->settings.depth; if (dev->settings.scan_mode == ScanColorMode::LINEART) depth = 1; /* start */ if(dev->settings.scan_method==ScanMethod::TRANSPARENCY) start = SANE_UNFIX (dev->model->x_offset_ta); else start = SANE_UNFIX (dev->model->x_offset); start /= ccd_size_divisor; start += dev->settings.tl_x; start = (start * sensor.optical_res) / MM_PER_INCH; SetupParams params; params.xres = dev->settings.xres; params.yres = dev->settings.yres; params.startx = start; // not used params.starty = 0; // not used params.pixels = dev->settings.pixels; params.lines = dev->settings.lines; params.depth = depth; params.channels = channels; params.scan_method = dev->settings.scan_method; params.scan_mode = dev->settings.scan_mode; params.color_filter = dev->settings.color_filter; params.flags = 0; DBG(DBG_info, "%s ", __func__); debug_dump(DBG_info, params); /* optical_res */ optical_res = sensor.optical_res / ccd_size_divisor; /* stagger */ if (ccd_size_divisor == 1 && (dev->model->flags & GENESYS_FLAG_STAGGERED_LINE)) stagger = (4 * params.yres) / dev->motor.base_ydpi; else stagger = 0; DBG(DBG_info, "%s: stagger=%d lines\n", __func__, stagger); if (params.xres <= (unsigned) optical_res) { used_res = params.xres; } else { used_res = optical_res; } /* compute scan parameters values */ /* pixels are allways given at half or full CCD optical resolution */ /* use detected left margin and fixed value */ /* compute correct pixels number */ used_pixels = (params.pixels * optical_res) / params.xres; DBG(DBG_info, "%s: used_pixels=%d\n", __func__, used_pixels); /* exposure */ exposure = sensor.exposure_lperiod; if (exposure < 0) { throw std::runtime_error("Exposure not defined in sensor definition"); } DBG(DBG_info, "%s : exposure=%d pixels\n", __func__, exposure); /* it seems base_dpi of the G4050 motor is changed above 600 dpi*/ if (dev->model->motor_type == MOTOR_G4050 && params.yres>600) { dev->ld_shift_r = (dev->model->ld_shift_r*3800)/dev->motor.base_ydpi; dev->ld_shift_g = (dev->model->ld_shift_g*3800)/dev->motor.base_ydpi; dev->ld_shift_b = (dev->model->ld_shift_b*3800)/dev->motor.base_ydpi; } else { dev->ld_shift_r = dev->model->ld_shift_r; dev->ld_shift_g = dev->model->ld_shift_g; dev->ld_shift_b = dev->model->ld_shift_b; } /* scanned area must be enlarged by max color shift needed */ max_shift = sanei_genesys_compute_max_shift(dev, params.channels, params.yres, 0); /* lincnt */ lincnt = params.lines + max_shift + stagger; dev->current_setup.params = params; dev->current_setup.pixels = (used_pixels * used_res) / optical_res; DBG(DBG_info, "%s: current_setup.pixels=%d\n", __func__, dev->current_setup.pixels); dev->current_setup.lines = lincnt; dev->current_setup.depth = params.depth; dev->current_setup.channels = params.channels; dev->current_setup.exposure_time = exposure; dev->current_setup.xres = used_res; dev->current_setup.yres = params.yres; dev->current_setup.ccd_size_divisor = ccd_size_divisor; dev->current_setup.stagger = stagger; dev->current_setup.max_shift = max_shift + stagger; DBG(DBG_proc, "%s: completed\n", __func__); } /** * for fast power saving methods only, like disabling certain amplifiers * @param dev device to use * @param enable true to set inot powersaving * */ static SANE_Status gl843_save_power (Genesys_Device * dev, SANE_Bool enable) { uint8_t val; SANE_Status status = SANE_STATUS_GOOD; DBG(DBG_proc, "%s: enable = %d\n", __func__, enable); if (dev == NULL) return SANE_STATUS_INVAL; /* switch KV-SS080 lamp off */ if (dev->model->gpo_type == GPO_KVSS080) { RIE(sanei_genesys_read_register (dev, REG6C, &val)); if(enable) val &= 0xef; else val |= 0x10; RIE(sanei_genesys_write_register(dev,REG6C,val)); } DBGCOMPLETED; return SANE_STATUS_GOOD; } static SANE_Status gl843_set_powersaving (Genesys_Device * dev, int delay /* in minutes */ ) { SANE_Status status = SANE_STATUS_GOOD; DBG(DBG_proc, "%s (delay = %d)\n", __func__, delay); if (dev == NULL) return SANE_STATUS_INVAL; DBGCOMPLETED; return status; } static SANE_Status gl843_start_action (Genesys_Device * dev) { return sanei_genesys_write_register (dev, 0x0f, 0x01); } static SANE_Status gl843_stop_action_no_move(Genesys_Device* dev, Genesys_Register_Set* reg) { uint8_t val = sanei_genesys_read_reg_from_set(reg, REG01); val &= ~REG01_SCAN; sanei_genesys_set_reg_from_set(reg, REG01, val); SANE_Status ret = sanei_genesys_write_register(dev, REG01, val); sanei_genesys_sleep_ms(100); return ret; } static SANE_Status gl843_stop_action (Genesys_Device * dev) { SANE_Status status = SANE_STATUS_GOOD; uint8_t val40, val; unsigned int loop; DBG(DBG_proc, "%s\n", __func__); status = sanei_genesys_get_status (dev, &val); if (DBG_LEVEL >= DBG_io) { sanei_genesys_print_status (val); } val40 = 0; status = sanei_genesys_read_register (dev, REG40, &val40); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to read home sensor: %s\n", __func__, sane_strstatus(status)); DBG(DBG_proc, "%s: completed\n", __func__); return status; } /* only stop action if needed */ if (!(val40 & REG40_DATAENB) && !(val40 & REG40_MOTMFLG)) { DBG(DBG_info, "%s: already stopped\n", __func__); DBG(DBG_proc, "%s: completed\n", __func__); return SANE_STATUS_GOOD; } /* ends scan 646 */ val = dev->reg.get8(REG01); val &= ~REG01_SCAN; dev->reg.set8(REG01, val); status = sanei_genesys_write_register (dev, REG01, val); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to write register 01: %s\n", __func__, sane_strstatus(status)); return status; } sanei_genesys_sleep_ms(100); loop = 10; while (loop > 0) { status = sanei_genesys_get_status (dev, &val); if (DBG_LEVEL >= DBG_io) { sanei_genesys_print_status (val); } val40 = 0; status = sanei_genesys_read_register (dev, 0x40, &val40); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to read home sensor: %s\n", __func__, sane_strstatus(status)); DBGCOMPLETED; return status; } /* if scanner is in command mode, we are done */ if (!(val40 & REG40_DATAENB) && !(val40 & REG40_MOTMFLG) && !(val & REG41_MOTORENB)) { DBGCOMPLETED; return SANE_STATUS_GOOD; } sanei_genesys_sleep_ms(100); loop--; } DBGCOMPLETED; return SANE_STATUS_IO_ERROR; } static SANE_Status gl843_get_paper_sensor (Genesys_Device * dev, SANE_Bool * paper_loaded) { SANE_Status status = SANE_STATUS_GOOD; uint8_t val; status = sanei_genesys_read_register (dev, REG6D, &val); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to read gpio: %s\n", __func__, sane_strstatus(status)); return status; } *paper_loaded = (val & 0x1) == 0; return SANE_STATUS_GOOD; return SANE_STATUS_INVAL; } static SANE_Status gl843_eject_document (Genesys_Device * dev) { DBG(DBG_proc, "%s: not implemented \n", __func__); if (dev == NULL) return SANE_STATUS_INVAL; return SANE_STATUS_GOOD; } static SANE_Status gl843_load_document (Genesys_Device * dev) { DBG(DBG_proc, "%s: not implemented \n", __func__); if (dev == NULL) return SANE_STATUS_INVAL; return SANE_STATUS_GOOD; } /** * detects end of document and adjust current scan * to take it into account * used by sheetfed scanners */ static SANE_Status gl843_detect_document_end (Genesys_Device * dev) { SANE_Status status = SANE_STATUS_GOOD; SANE_Bool paper_loaded; unsigned int scancnt = 0; int flines, channels, depth, bytes_remain, sublines, bytes_to_flush, lines, sub_bytes, tmp, read_bytes_left; DBG(DBG_proc, "%s: begin\n", __func__); RIE (gl843_get_paper_sensor (dev, &paper_loaded)); /* sheetfed scanner uses home sensor as paper present */ if ((dev->document == SANE_TRUE) && !paper_loaded) { DBG(DBG_info, "%s: no more document\n", __func__); dev->document = SANE_FALSE; channels = dev->current_setup.channels; depth = dev->current_setup.depth; read_bytes_left = (int) dev->read_bytes_left; DBG(DBG_io, "%s: read_bytes_left=%d\n", __func__, read_bytes_left); /* get lines read */ try { status = sanei_genesys_read_scancnt(dev, &scancnt); } catch (...) { flines = 0; } if (status != SANE_STATUS_GOOD) { flines = 0; } else { /* compute number of line read */ tmp = (int) dev->total_bytes_read; if (depth == 1 || dev->settings.scan_mode == ScanColorMode::LINEART) flines = tmp * 8 / dev->settings.pixels / channels; else flines = tmp / (depth / 8) / dev->settings.pixels / channels; /* number of scanned lines, but no read yet */ flines = scancnt - flines; DBG(DBG_io, "%s: %d scanned but not read lines\n", __func__, flines); } /* adjust number of bytes to read * we need to read the final bytes which are word per line * number of last lines * to have doc leaving feeder */ lines = (SANE_UNFIX (dev->model->post_scan) * dev->current_setup.yres) / MM_PER_INCH + flines; DBG(DBG_io, "%s: adding %d line to flush\n", __func__, lines); /* number of bytes to read from scanner to get document out of it after * end of document dectected by hardware sensor */ bytes_to_flush = lines * dev->wpl; /* if we are already close to end of scan, flushing isn't needed */ if (bytes_to_flush < read_bytes_left) { /* we take all these step to work around an overflow on some plateforms */ tmp = (int) dev->total_bytes_read; DBG (DBG_io, "%s: tmp=%d\n", __func__, tmp); bytes_remain = (int) dev->total_bytes_to_read; DBG(DBG_io, "%s: bytes_remain=%d\n", __func__, bytes_remain); bytes_remain = bytes_remain - tmp; DBG(DBG_io, "%s: bytes_remain=%d\n", __func__, bytes_remain); /* remaining lines to read by frontend for the current scan */ if (depth == 1 || dev->settings.scan_mode == ScanColorMode::LINEART) { flines = bytes_remain * 8 / dev->settings.pixels / channels; } else flines = bytes_remain / (depth / 8) / dev->settings.pixels / channels; DBG(DBG_io, "%s: flines=%d\n", __func__, flines); if (flines > lines) { /* change the value controlling communication with the frontend : * total bytes to read is current value plus the number of remaining lines * multiplied by bytes per line */ sublines = flines - lines; if (depth == 1 || dev->settings.scan_mode == ScanColorMode::LINEART) sub_bytes = ((dev->settings.pixels * sublines) / 8 + (((dev->settings.pixels * sublines) % 8) ? 1 : 0)) * channels; else sub_bytes = dev->settings.pixels * sublines * channels * (depth / 8); dev->total_bytes_to_read -= sub_bytes; /* then adjust the physical bytes to read */ if (read_bytes_left > sub_bytes) { dev->read_bytes_left -= sub_bytes; } else { dev->total_bytes_to_read = dev->total_bytes_read; dev->read_bytes_left = 0; } DBG(DBG_io, "%s: sublines=%d\n", __func__, sublines); DBG(DBG_io, "%s: subbytes=%d\n", __func__, sub_bytes); DBG(DBG_io, "%s: total_bytes_to_read=%lu\n", __func__, (unsigned long) dev->total_bytes_to_read); DBG(DBG_io, "%s: read_bytes_left=%d\n", __func__, read_bytes_left); } } else { DBG(DBG_io, "%s: no flushing needed\n", __func__); } } DBG(DBG_proc, "%s: finished\n", __func__); return SANE_STATUS_GOOD; } // enables or disables XPA slider motor static SANE_Status gl843_set_xpa_motor_power(Genesys_Device *dev, bool set) { uint8_t val; SANE_Status status=SANE_STATUS_GOOD; DBGSTART; if (dev->model->model_id == MODEL_CANON_CANOSCAN_8600F) { if (set) { RIE(sanei_genesys_read_register(dev, REG6C, &val)); val &= ~REG6C_GPIO14; if (dev->current_setup.xres >= 2400) { val |= REG6C_GPIO10; } RIE(sanei_genesys_write_register(dev, REG6C, val)); RIE(sanei_genesys_read_register(dev, REGA6, &val)); val |= REGA6_GPIO17; RIE(sanei_genesys_write_register(dev, REGA6,val)); } else { RIE(sanei_genesys_read_register(dev, REG6C, &val)); val |= REG6C_GPIO14; val &= ~REG6C_GPIO10; RIE(sanei_genesys_write_register(dev, REG6C, val)); RIE(sanei_genesys_read_register(dev, REGA6, &val)); val &= ~REGA6_GPIO17; RIE(sanei_genesys_write_register(dev, REGA6,val)); } DBGCOMPLETED; return status; } if (dev->model->model_id == MODEL_HP_SCANJET_G4050) { if (set) { /* set MULTFILM et GPOADF */ RIE (sanei_genesys_read_register (dev, REG6B, &val)); val |=REG6B_MULTFILM|REG6B_GPOADF; RIE (sanei_genesys_write_register (dev, REG6B, val)); RIE (sanei_genesys_read_register (dev, REG6C, &val)); val &= ~REG6C_GPIO15; RIE (sanei_genesys_write_register (dev, REG6C, val)); /* Motor power ? No move at all without this one */ RIE (sanei_genesys_read_register (dev, REGA6, &val)); val |= REGA6_GPIO20; RIE (sanei_genesys_write_register(dev,REGA6,val)); RIE (sanei_genesys_read_register (dev, REGA8, &val)); val &= ~REGA8_GPO27; RIE (sanei_genesys_write_register (dev, REGA8, val)); RIE (sanei_genesys_read_register (dev, REGA9, &val)); val |= REGA9_GPO32|REGA9_GPO31; RIE (sanei_genesys_write_register (dev, REGA9, val)); } else { /* unset GPOADF */ RIE (sanei_genesys_read_register (dev, REG6B, &val)); val &= ~REG6B_GPOADF; RIE (sanei_genesys_write_register (dev, REG6B, val)); RIE (sanei_genesys_read_register (dev, REGA8, &val)); val |= REGA8_GPO27; RIE (sanei_genesys_write_register (dev, REGA8, val)); RIE (sanei_genesys_read_register (dev, REGA9, &val)); val &= ~REGA9_GPO31; RIE (sanei_genesys_write_register (dev, REGA9, val)); } DBGCOMPLETED; return status; } DBGCOMPLETED; return status; } /** @brief light XPA lamp * toggle gpios to switch off regular lamp and light on the * XPA light * @param dev device to set up */ static SANE_Status gl843_set_xpa_lamp_power(Genesys_Device *dev, bool set) { SANE_Status status = SANE_STATUS_GOOD; uint8_t val = 0; DBGSTART; if (set) { RIE(sanei_genesys_read_register(dev, REGA6, &val)); // cut regular lamp power val &= ~(REGA6_GPIO24 | REGA6_GPIO23); // set XPA lamp power val |= REGA6_GPIO22 | REGA6_GPIO21 | REGA6_GPIO19; RIE(sanei_genesys_write_register(dev, REGA6, val)); RIE(sanei_genesys_read_register(dev, REGA7, &val)); val|=REGA7_GPOE24; /* lamp 1 off GPOE 24 */ val|=REGA7_GPOE23; /* lamp 2 off GPOE 23 */ val|=REGA7_GPOE22; /* full XPA lamp power */ RIE(sanei_genesys_write_register(dev, REGA7, val)); } else { RIE(sanei_genesys_read_register(dev, REGA6, &val)); // switch on regular lamp val |= REGA6_GPIO23; // no XPA lamp power (2 bits for level: __11 ____) val &= ~(REGA6_GPIO22 | REGA6_GPIO21); RIE(sanei_genesys_write_register(dev, REGA6, val)); } DBGCOMPLETED; return status; } /* Send the low-level scan command */ static SANE_Status gl843_begin_scan (Genesys_Device * dev, const Genesys_Sensor& sensor, Genesys_Register_Set * reg, SANE_Bool start_motor) { SANE_Status status = SANE_STATUS_GOOD; uint8_t val; uint16_t dpiset, dpihw; DBGSTART; /* get back the target dpihw */ sanei_genesys_get_double (reg, REG_DPISET, &dpiset); dpihw = sanei_genesys_compute_dpihw(dev, sensor, dpiset); /* set up GPIO for scan */ switch(dev->model->gpo_type) { /* KV case */ case GPO_KVSS080: RIE (sanei_genesys_write_register (dev, REGA9, 0x00)); RIE (sanei_genesys_write_register (dev, REGA6, 0xf6)); /* blinking led */ RIE (sanei_genesys_write_register (dev, 0x7e, 0x04)); break; case GPO_G4050: RIE (sanei_genesys_write_register (dev, REGA7, 0xfe)); RIE (sanei_genesys_write_register (dev, REGA8, 0x3e)); RIE (sanei_genesys_write_register (dev, REGA9, 0x06)); switch (dpihw) { case 1200: case 2400: case 4800: RIE (sanei_genesys_write_register (dev, REG6C, 0x60)); RIE (sanei_genesys_write_register (dev, REGA6, 0x46)); break; default: /* 600 dpi case */ RIE (sanei_genesys_write_register (dev, REG6C, 0x20)); RIE (sanei_genesys_write_register (dev, REGA6, 0x44)); } if (reg->state.is_xpa_on && reg->state.is_lamp_on) { RIE(gl843_set_xpa_lamp_power(dev, true)); } if (reg->state.is_xpa_on) { dev->needs_home_ta = SANE_TRUE; RIE(gl843_set_xpa_motor_power(dev, true)); } /* blinking led */ RIE (sanei_genesys_write_register (dev, REG7E, 0x01)); break; case GPO_CS8600F: if (reg->state.is_xpa_on) { dev->needs_home_ta = SANE_TRUE; RIE(gl843_set_xpa_motor_power(dev, true)); } break; case GPO_CS4400F: case GPO_CS8400F: default: break; } /* clear scan and feed count */ RIE (sanei_genesys_write_register (dev, REG0D, REG0D_CLRLNCNT | REG0D_CLRMCNT)); /* enable scan and motor */ RIE (sanei_genesys_read_register (dev, REG01, &val)); val |= REG01_SCAN; RIE (sanei_genesys_write_register (dev, REG01, val)); if (start_motor) { RIE (sanei_genesys_write_register (dev, REG0F, 1)); } else { RIE (sanei_genesys_write_register (dev, REG0F, 0)); } DBGCOMPLETED; return status; } /* Send the stop scan command */ static SANE_Status gl843_end_scan (Genesys_Device * dev, Genesys_Register_Set * reg, SANE_Bool check_stop) { SANE_Status status = SANE_STATUS_GOOD; DBG(DBG_proc, "%s (check_stop = %d)\n", __func__, check_stop); if (reg == NULL) return SANE_STATUS_INVAL; /* post scan gpio */ RIE(sanei_genesys_write_register(dev,0x7e,0x00)); // turn off XPA lamp if needed // BUG: the if condition below probably shouldn't be enabled when XPA is off if (reg->state.is_xpa_on || reg->state.is_lamp_on) { gl843_set_xpa_lamp_power(dev, false); } if (dev->model->is_sheetfed == SANE_TRUE) { status = SANE_STATUS_GOOD; } else /* flat bed scanners */ { status = gl843_stop_action (dev); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to stop: %s\n", __func__, sane_strstatus(status)); return status; } } DBGCOMPLETED; return status; } /** @brief park XPA lamp * park the XPA lamp if needed */ static SANE_Status gl843_park_xpa_lamp (Genesys_Device * dev) { Genesys_Register_Set local_reg; SANE_Status status = SANE_STATUS_GOOD; GenesysRegister *r; uint8_t val; int loop = 0; DBGSTART; /* copy scan settings */ local_reg = dev->reg; /* set a huge feedl and reverse direction */ sanei_genesys_set_triple(&local_reg,REG_FEEDL,0xbdcd); /* clear scan and feed count */ RIE (sanei_genesys_write_register (dev, REG0D, REG0D_CLRLNCNT | REG0D_CLRMCNT)); /* set up for reverse and no scan */ r = sanei_genesys_get_address (&local_reg, REG02); r->value |= REG02_MTRREV; r = sanei_genesys_get_address (&local_reg, REG01); r->value &= ~REG01_SCAN; /* write to scanner and start action */ RIE (dev->model->cmd_set->bulk_write_register(dev, local_reg)); RIE(gl843_set_xpa_motor_power(dev, true)); try { status = gl843_start_action (dev); } catch (...) { DBG(DBG_error, "%s: failed to start motor: %s\n", __func__, sane_strstatus(status)); try { gl843_stop_action(dev); } catch (...) {} try { // restore original registers dev->model->cmd_set->bulk_write_register(dev, dev->reg); } catch (...) {} throw; } if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to start motor: %s\n", __func__, sane_strstatus(status)); gl843_stop_action (dev); /* restore original registers */ dev->model->cmd_set->bulk_write_register(dev, dev->reg); return status; } while (loop < 600) /* do not wait longer then 60 seconds */ { status = sanei_genesys_get_status (dev, &val); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to read home sensor: %s\n", __func__, sane_strstatus(status)); return status; } if (DBG_LEVEL >= DBG_io2) { sanei_genesys_print_status (val); } if (val & REG41_HOMESNR) /* home sensor */ { DBG(DBG_info, "%s: reached home position\n", __func__); DBG(DBG_proc, "%s: finished\n", __func__); gl843_set_xpa_motor_power(dev, false); dev->needs_home_ta = SANE_FALSE; return SANE_STATUS_GOOD; } sanei_genesys_sleep_ms(100); ++loop; } /* we are not parked here.... should we fail ? */ DBG(DBG_info, "%s: XPA lamp is not parked\n", __func__); DBGCOMPLETED; return SANE_STATUS_GOOD; } /** @brief Moves the slider to the home (top) position slowly * */ static SANE_Status gl843_slow_back_home (Genesys_Device * dev, SANE_Bool wait_until_home) { Genesys_Register_Set local_reg; SANE_Status status = SANE_STATUS_GOOD; GenesysRegister *r; uint8_t val; float resolution; int loop = 0; DBG(DBG_proc, "%s (wait_until_home = %d)\n", __func__, wait_until_home); if (dev->needs_home_ta) { RIE(gl843_park_xpa_lamp(dev)); } /* regular slow back home */ dev->scanhead_position_in_steps = 0; /* first read gives HOME_SENSOR true */ status = sanei_genesys_get_status (dev, &val); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to read home sensor: %s\n", __func__, sane_strstatus(status)); return status; } sanei_genesys_sleep_ms(100); /* second is reliable */ status = sanei_genesys_get_status (dev, &val); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to read home sensor: %s\n", __func__, sane_strstatus(status)); return status; } if (DBG_LEVEL >= DBG_io) { sanei_genesys_print_status (val); } if (val & HOMESNR) /* is sensor at home? */ { DBGCOMPLETED; return SANE_STATUS_GOOD; } local_reg = dev->reg; resolution=sanei_genesys_get_lowest_ydpi(dev); const auto& sensor = sanei_genesys_find_sensor(dev, resolution); ScanSession session; session.params.xres = resolution; session.params.yres = resolution; session.params.startx = 100; session.params.starty = 40000; session.params.pixels = 100; session.params.lines = 100; session.params.depth = 8; session.params.channels = 1; session.params.scan_method = dev->settings.scan_method; session.params.scan_mode = ScanColorMode::LINEART; session.params.color_filter = dev->settings.color_filter; session.params.flags = SCAN_FLAG_DISABLE_SHADING | SCAN_FLAG_DISABLE_GAMMA | SCAN_FLAG_DISABLE_BUFFER_FULL_MOVE | SCAN_FLAG_IGNORE_LINE_DISTANCE; gl843_compute_session(dev, session, sensor); status = gl843_init_scan_regs(dev, sensor, &local_reg, session); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to set up registers: %s\n", __func__, sane_strstatus(status)); DBGCOMPLETED; return status; } /* clear scan and feed count */ RIE (sanei_genesys_write_register (dev, REG0D, REG0D_CLRLNCNT | REG0D_CLRMCNT)); /* set up for reverse and no scan */ r = sanei_genesys_get_address(&local_reg, REG02); r->value |= REG02_MTRREV; r = sanei_genesys_get_address(&local_reg, REG01); r->value &= ~REG01_SCAN; RIE (dev->model->cmd_set->bulk_write_register(dev, local_reg)); try { status = gl843_start_action (dev); } catch (...) { DBG(DBG_error, "%s: failed to start motor: %s\n", __func__, sane_strstatus(status)); try { gl843_stop_action(dev); } catch (...) {} try { // restore original registers dev->model->cmd_set->bulk_write_register(dev, dev->reg); } catch (...) {} throw; } if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to start motor: %s\n", __func__, sane_strstatus(status)); gl843_stop_action (dev); /* restore original registers */ dev->model->cmd_set->bulk_write_register(dev, dev->reg); return status; } if (wait_until_home) { while (loop < 300) /* do not wait longer then 30 seconds */ { status = sanei_genesys_get_status (dev, &val); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to read home sensor: %s\n", __func__, sane_strstatus(status)); return status; } if (DBG_LEVEL >= DBG_io2) { sanei_genesys_print_status (val); } if (val & REG41_HOMESNR) /* home sensor */ { DBG(DBG_info, "%s: reached home position\n", __func__); DBG(DBG_proc, "%s: finished\n", __func__); return SANE_STATUS_GOOD; } sanei_genesys_sleep_ms(100); ++loop; } /* when we come here then the scanner needed too much time for this, so we better stop the motor */ gl843_stop_action (dev); DBG(DBG_error, "%s: timeout while waiting for scanhead to go home\n", __func__); return SANE_STATUS_IO_ERROR; } DBG(DBG_info, "%s: scanhead is still moving\n", __func__); DBGCOMPLETED; return SANE_STATUS_GOOD; } /* Automatically set top-left edge of the scan area by scanning a 200x200 pixels area at 600 dpi from very top of scanner */ static SANE_Status gl843_search_start_position (Genesys_Device * dev) { int size; SANE_Status status = SANE_STATUS_GOOD; Genesys_Register_Set local_reg; int steps; int pixels = 600; int dpi = 300; DBG(DBG_proc, "%s\n", __func__); local_reg = dev->reg; /* sets for a 200 lines * 600 pixels */ /* normal scan with no shading */ // FIXME: the current approach of doing search only for one resolution does not work on scanners // whith employ different sensors with potentially different settings. auto& sensor = sanei_genesys_find_sensor_for_write(dev, dpi); ScanSession session; session.params.xres = dpi; session.params.yres = dpi; session.params.startx = 0; session.params.starty = 0; // we should give a small offset here - ~60 steps session.params.pixels = 600; session.params.lines = dev->model->search_lines; session.params.depth = 8; session.params.channels = 1; session.params.scan_method = dev->settings.scan_method; session.params.scan_mode = ScanColorMode::GRAY; session.params.color_filter = ColorFilter::GREEN; session.params.flags = SCAN_FLAG_DISABLE_SHADING | SCAN_FLAG_DISABLE_GAMMA | SCAN_FLAG_IGNORE_LINE_DISTANCE | SCAN_FLAG_DISABLE_BUFFER_FULL_MOVE; gl843_compute_session(dev, session, sensor); status = gl843_init_scan_regs(dev, sensor, &local_reg, session); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to bulk setup registers: %s\n", __func__, sane_strstatus(status)); return status; } /* send to scanner */ status = dev->model->cmd_set->bulk_write_register(dev, local_reg); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to bulk write registers: %s\n", __func__, sane_strstatus(status)); return status; } size = dev->read_bytes_left; std::vector data(size); status = gl843_begin_scan(dev, sensor, &local_reg, SANE_TRUE); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to begin scan: %s\n", __func__, sane_strstatus(status)); return status; } /* waits for valid data */ do sanei_genesys_test_buffer_empty (dev, &steps); while (steps); /* now we're on target, we can read data */ status = sanei_genesys_read_data_from_scanner(dev, data.data(), size); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to read data: %s\n", __func__, sane_strstatus(status)); return status; } RIE(gl843_stop_action_no_move(dev, &local_reg)); if (DBG_LEVEL >= DBG_data) sanei_genesys_write_pnm_file("gl843_search_position.pnm", data.data(), 8, 1, pixels, dev->model->search_lines); status = gl843_end_scan(dev, &local_reg, SANE_TRUE); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to end scan: %s\n", __func__, sane_strstatus(status)); return status; } /* update regs to copy ASIC internal state */ dev->reg = local_reg; status = sanei_genesys_search_reference_point (dev, sensor, data.data(), 0, dpi, pixels, dev->model->search_lines); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to set search reference point: %s\n", __func__, sane_strstatus(status)); return status; } return SANE_STATUS_GOOD; } /* * sets up register for coarse gain calibration * todo: check it for scanners using it */ static SANE_Status gl843_init_regs_for_coarse_calibration(Genesys_Device * dev, const Genesys_Sensor& sensor, Genesys_Register_Set& regs) { SANE_Status status = SANE_STATUS_GOOD; uint8_t channels; uint8_t cksel; DBGSTART; cksel = (regs.find_reg(0x18).value & REG18_CKSEL) + 1; /* clock speed = 1..4 clocks */ /* set line size */ if (dev->settings.scan_mode == ScanColorMode::COLOR_SINGLE_PASS) channels = 3; else channels = 1; int flags = SCAN_FLAG_DISABLE_SHADING | SCAN_FLAG_DISABLE_GAMMA | SCAN_FLAG_SINGLE_LINE | SCAN_FLAG_IGNORE_LINE_DISTANCE; if (dev->settings.scan_method == ScanMethod::TRANSPARENCY) { flags |= SCAN_FLAG_USE_XPA; } ScanSession session; session.params.xres = dev->settings.xres; session.params.yres = dev->settings.yres; session.params.startx = 0; session.params.starty = 0; session.params.pixels = sensor.optical_res / cksel; // XXX STEF XXX dpi instead of pixels! session.params.lines = 20; session.params.depth = 16; session.params.channels = channels; session.params.scan_method = dev->settings.scan_method; session.params.scan_mode = dev->settings.scan_mode; session.params.color_filter = dev->settings.color_filter; session.params.flags = flags; gl843_compute_session(dev, session, sensor); status = gl843_init_scan_regs(dev, sensor, ®s, session); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to setup scan: %s\n", __func__, sane_strstatus(status)); return status; } sanei_genesys_set_motor_power(regs, false); DBG(DBG_info, "%s: optical sensor res: %d dpi, actual res: %d\n", __func__, sensor.optical_res / cksel, dev->settings.xres); status = dev->model->cmd_set->bulk_write_register(dev, regs); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to bulk write registers: %s\n", __func__, sane_strstatus(status)); return status; } DBGCOMPLETED; return SANE_STATUS_GOOD; } /** @brief moves the slider to steps at motor base dpi * @param dev device to work on * @param steps number of steps to move * */ static SANE_Status gl843_feed (Genesys_Device * dev, unsigned int steps) { Genesys_Register_Set local_reg; SANE_Status status = SANE_STATUS_GOOD; GenesysRegister *r; float resolution; uint8_t val; DBGSTART; /* prepare local registers */ local_reg = dev->reg; resolution=sanei_genesys_get_lowest_ydpi(dev); const auto& sensor = sanei_genesys_find_sensor(dev, resolution); ScanSession session; session.params.xres = resolution; session.params.yres = resolution; session.params.startx = 0; session.params.starty = steps; session.params.pixels = 100; session.params.lines = 3; session.params.depth = 8; session.params.channels = 3; session.params.scan_method = dev->settings.scan_method; session.params.scan_mode = ScanColorMode::COLOR_SINGLE_PASS; session.params.color_filter = ColorFilter::RED; session.params.flags = SCAN_FLAG_DISABLE_SHADING | SCAN_FLAG_DISABLE_GAMMA | SCAN_FLAG_FEEDING | SCAN_FLAG_IGNORE_LINE_DISTANCE; gl843_compute_session(dev, session, sensor); status = gl843_init_scan_regs(dev, sensor, &local_reg, session); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to set up registers: %s\n", __func__, sane_strstatus(status)); DBGCOMPLETED; return status; } /* clear scan and feed count */ RIE (sanei_genesys_write_register (dev, REG0D, REG0D_CLRLNCNT)); RIE (sanei_genesys_write_register (dev, REG0D, REG0D_CLRMCNT)); /* set up for no scan */ r = sanei_genesys_get_address(&local_reg, REG01); r->value &= ~REG01_SCAN; /* send registers */ RIE (dev->model->cmd_set->bulk_write_register(dev, local_reg)); try { status = gl843_start_action (dev); } catch (...) { DBG(DBG_error, "%s: failed to start motor: %s\n", __func__, sane_strstatus(status)); try { gl843_stop_action(dev); } catch (...) {} try { // restore original registers dev->model->cmd_set->bulk_write_register(dev, dev->reg); } catch (...) {} throw; } if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to start motor: %s\n", __func__, sane_strstatus(status)); gl843_stop_action (dev); /* restore original registers */ dev->model->cmd_set->bulk_write_register(dev, dev->reg); return status; } /* wait until feed count reaches the required value, but do not * exceed 30s */ do { status = sanei_genesys_get_status (dev, &val); } while (status == SANE_STATUS_GOOD && !(val & FEEDFSH)); // looks like the scanner locks up if we scan immediately after feeding sanei_genesys_sleep_ms(100); DBGCOMPLETED; return SANE_STATUS_GOOD; } static SANE_Status gl843_move_to_ta (Genesys_Device * dev); /* init registers for shading calibration */ /* shading calibration is done at dpihw */ static SANE_Status gl843_init_regs_for_shading(Genesys_Device * dev, const Genesys_Sensor& sensor, Genesys_Register_Set& regs) { SANE_Status status = SANE_STATUS_GOOD; int move, resolution, dpihw, factor; uint16_t strpixel; DBGSTART; /* initial calibration reg values */ regs = dev->reg; dev->calib_channels = 3; if (dev->settings.scan_method == ScanMethod::TRANSPARENCY) dev->calib_lines = dev->model->shading_ta_lines; else dev->calib_lines = dev->model->shading_lines; dpihw = sanei_genesys_compute_dpihw_calibration(dev, sensor, dev->settings.xres); factor=sensor.optical_res/dpihw; resolution=dpihw; const auto& calib_sensor = sanei_genesys_find_sensor(dev, resolution, dev->settings.scan_method); if (dev->settings.scan_method == ScanMethod::TRANSPARENCY && dev->model->model_id == MODEL_CANON_CANOSCAN_8600F && dev->settings.xres == 4800) { float offset = SANE_UNFIX(dev->model->x_offset_ta); offset /= calib_sensor.get_ccd_size_divisor_for_dpi(resolution); offset = (offset * calib_sensor.optical_res) / MM_PER_INCH; unsigned size = SANE_UNFIX(dev->model->x_size_ta); size /= calib_sensor.get_ccd_size_divisor_for_dpi(resolution); size = (size * calib_sensor.optical_res) / MM_PER_INCH; dev->calib_pixels_offset = offset; dev->calib_pixels = size; } else { dev->calib_pixels_offset = 0; dev->calib_pixels = calib_sensor.sensor_pixels / factor; } dev->calib_resolution = resolution; int flags = SCAN_FLAG_DISABLE_SHADING | SCAN_FLAG_DISABLE_GAMMA | SCAN_FLAG_DISABLE_BUFFER_FULL_MOVE | SCAN_FLAG_IGNORE_LINE_DISTANCE; if (dev->settings.scan_method == ScanMethod::TRANSPARENCY) { // note: move_to_ta() function has already been called and the sensor is at the // transparency adapter move = 0; // already at dev->model->y_offset_calib_ta implicitly flags |= SCAN_FLAG_USE_XPA; } else move = SANE_UNFIX(dev->model->y_offset_calib); move = (move * resolution) / MM_PER_INCH; ScanSession session; session.params.xres = resolution; session.params.yres = resolution; session.params.startx = dev->calib_pixels_offset; session.params.starty = move; session.params.pixels = dev->calib_pixels; session.params.lines = dev->calib_lines; session.params.depth = 16; session.params.channels = dev->calib_channels; session.params.scan_method = dev->settings.scan_method; session.params.scan_mode = dev->settings.scan_mode; session.params.color_filter = dev->settings.color_filter; session.params.flags = flags; gl843_compute_session(dev, session, calib_sensor); status = gl843_init_scan_regs(dev, calib_sensor, ®s, session); // the pixel number may be updated to conform to scanner constraints dev->calib_pixels = dev->current_setup.pixels; if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to setup scan: %s\n", __func__, sane_strstatus(status)); return status; } dev->calib_total_bytes_to_read = dev->read_bytes_left; dev->scanhead_position_in_steps += dev->calib_lines + move; sanei_genesys_get_double(®s,REG_STRPIXEL,&strpixel); DBG(DBG_info, "%s: STRPIXEL=%d\n", __func__, strpixel); status = dev->model->cmd_set->bulk_write_register(dev, regs); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to bulk write registers: %s\n", __func__, sane_strstatus(status)); return status; } DBGCOMPLETED; return SANE_STATUS_GOOD; } /** @brief set up registers for the actual scan */ static SANE_Status gl843_init_regs_for_scan (Genesys_Device * dev, const Genesys_Sensor& sensor) { int channels; int flags; int depth; float move; int move_dpi; float start; SANE_Status status = SANE_STATUS_GOOD; DBG(DBG_info, "%s ", __func__); debug_dump(DBG_info, dev->settings); /* channels */ if (dev->settings.scan_mode == ScanColorMode::COLOR_SINGLE_PASS) channels = 3; else channels = 1; /* depth */ depth = dev->settings.depth; if (dev->settings.scan_mode == ScanColorMode::LINEART) depth = 1; move_dpi = dev->motor.base_ydpi; flags = 0; if (dev->settings.scan_method == ScanMethod::TRANSPARENCY) { // note: move_to_ta() function has already been called and the sensor is at the // transparency adapter move = SANE_UNFIX(dev->model->y_offset_ta) - SANE_UNFIX(dev->model->y_offset_calib_ta); flags |= SCAN_FLAG_USE_XPA; } else move = SANE_UNFIX(dev->model->y_offset); move += dev->settings.tl_y; move = (move * move_dpi) / MM_PER_INCH; DBG(DBG_info, "%s: move=%f steps\n", __func__, move); /* start */ if(dev->settings.scan_method==ScanMethod::TRANSPARENCY) start = SANE_UNFIX (dev->model->x_offset_ta); else start = SANE_UNFIX (dev->model->x_offset); start /= sensor.get_ccd_size_divisor_for_dpi(dev->settings.xres); start += dev->settings.tl_x; start = (start * sensor.optical_res) / MM_PER_INCH; /* enable emulated lineart from gray data */ if(dev->settings.scan_mode == ScanColorMode::LINEART && dev->settings.dynamic_lineart) { flags |= SCAN_FLAG_DYNAMIC_LINEART; } ScanSession session; session.params.xres = dev->settings.xres; session.params.yres = dev->settings.yres; session.params.startx = start; session.params.starty = move; session.params.pixels = dev->settings.pixels; session.params.lines = dev->settings.lines; session.params.depth = depth; session.params.channels = channels; session.params.scan_method = dev->settings.scan_method; session.params.scan_mode = dev->settings.scan_mode; session.params.color_filter = dev->settings.color_filter; session.params.flags = flags; gl843_compute_session(dev, session, sensor); status = gl843_init_scan_regs(dev, sensor, &dev->reg, session); if (status != SANE_STATUS_GOOD) return status; DBGCOMPLETED; return SANE_STATUS_GOOD; } /** * This function sends gamma tables to ASIC */ static SANE_Status gl843_send_gamma_table(Genesys_Device* dev, const Genesys_Sensor& sensor) { int size; SANE_Status status = SANE_STATUS_GOOD; int i; DBGSTART; size = 256; /* allocate temporary gamma tables: 16 bits words, 3 channels */ std::vector gamma(size * 2 * 3); std::vector rgamma = get_gamma_table(dev, sensor, GENESYS_RED); std::vector ggamma = get_gamma_table(dev, sensor, GENESYS_GREEN); std::vector bgamma = get_gamma_table(dev, sensor, GENESYS_BLUE); // copy sensor specific's gamma tables for (i = 0; i < size; i++) { gamma[i * 2 + size * 0 + 0] = rgamma[i] & 0xff; gamma[i * 2 + size * 0 + 1] = (rgamma[i] >> 8) & 0xff; gamma[i * 2 + size * 2 + 0] = ggamma[i] & 0xff; gamma[i * 2 + size * 2 + 1] = (ggamma[i] >> 8) & 0xff; gamma[i * 2 + size * 4 + 0] = bgamma[i] & 0xff; gamma[i * 2 + size * 4 + 1] = (bgamma[i] >> 8) & 0xff; } /* send address */ status = gl843_set_buffer_address (dev, 0x0000); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to set buffer address: %s\n", __func__, sane_strstatus(status)); return status; } /* send data */ status = sanei_genesys_bulk_write_data(dev, 0x28, gamma.data(), size * 2 * 3); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to send gamma table: %s\n", __func__, sane_strstatus(status)); return status; } DBG(DBG_proc, "%s: completed\n", __func__); return SANE_STATUS_GOOD; } /* this function does the led calibration by scanning one line of the calibration area below scanner's top on white strip. -needs working coarse/gain */ static SANE_Status gl843_led_calibration (Genesys_Device * dev, Genesys_Sensor& sensor, Genesys_Register_Set& regs) { int num_pixels; int total_size; int used_res; int i, j; SANE_Status status = SANE_STATUS_GOOD; int val; int channels, depth; int avg[3], avga, avge; int turn; uint16_t expr, expg, expb; SANE_Bool acceptable = SANE_FALSE; DBG(DBG_proc, "%s\n", __func__); /* offset calibration is always done in color mode */ channels = 3; depth = 16; used_res = sensor.optical_res; auto& calib_sensor = sanei_genesys_find_sensor_for_write(dev, used_res, dev->settings.scan_method); num_pixels = (calib_sensor.sensor_pixels * used_res) / calib_sensor.optical_res; /* initial calibration reg values */ regs = dev->reg; ScanSession session; session.params.xres = used_res; session.params.yres = dev->motor.base_ydpi; session.params.startx = 0; session.params.starty = 0; session.params.pixels = num_pixels; session.params.lines = 1; session.params.depth = depth; session.params.channels = channels; session.params.scan_method = dev->settings.scan_method; session.params.scan_mode = ScanColorMode::COLOR_SINGLE_PASS; session.params.color_filter = dev->settings.color_filter; session.params.flags = SCAN_FLAG_DISABLE_SHADING | SCAN_FLAG_DISABLE_GAMMA | SCAN_FLAG_SINGLE_LINE | SCAN_FLAG_IGNORE_LINE_DISTANCE; gl843_compute_session(dev, session, calib_sensor); status = gl843_init_scan_regs(dev, calib_sensor, ®s, session); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to setup scan: %s\n", __func__, sane_strstatus(status)); return status; } RIE(dev->model->cmd_set->bulk_write_register(dev, regs)); total_size = dev->read_bytes_left; std::vector line(total_size); /* we try to get equal bright leds here: loop: average per color adjust exposure times */ expr = calib_sensor.exposure.red; expg = calib_sensor.exposure.green; expb = calib_sensor.exposure.blue; turn = 0; do { calib_sensor.exposure.red = expr; calib_sensor.exposure.green = expg; calib_sensor.exposure.blue = expb; sanei_genesys_set_exposure(regs, calib_sensor.exposure); RIE(dev->model->cmd_set->bulk_write_register(dev, regs)); DBG(DBG_info, "%s: starting first line reading\n", __func__); RIE (gl843_begin_scan(dev, calib_sensor, ®s, SANE_TRUE)); RIE (sanei_genesys_read_data_from_scanner(dev, line.data(), total_size)); RIE(gl843_stop_action_no_move(dev, ®s)); if (DBG_LEVEL >= DBG_data) { char fn[30]; snprintf(fn, 30, "gl843_led_%02d.pnm", turn); sanei_genesys_write_pnm_file(fn, line.data(), depth, channels, num_pixels, 1); } acceptable = SANE_TRUE; for (j = 0; j < channels; j++) { avg[j] = 0; for (i = 0; i < num_pixels; i++) { if (dev->model->is_cis) val = line[i * 2 + j * 2 * num_pixels + 1] * 256 + line[i * 2 + j * 2 * num_pixels]; else val = line[i * 2 * channels + 2 * j + 1] * 256 + line[i * 2 * channels + 2 * j]; avg[j] += val; } avg[j] /= num_pixels; } DBG(DBG_info, "%s: average: %d,%d,%d\n", __func__, avg[0], avg[1], avg[2]); acceptable = SANE_TRUE; if (avg[0] < avg[1] * 0.95 || avg[1] < avg[0] * 0.95 || avg[0] < avg[2] * 0.95 || avg[2] < avg[0] * 0.95 || avg[1] < avg[2] * 0.95 || avg[2] < avg[1] * 0.95) acceptable = SANE_FALSE; if (!acceptable) { avga = (avg[0] + avg[1] + avg[2]) / 3; expr = (expr * avga) / avg[0]; expg = (expg * avga) / avg[1]; expb = (expb * avga) / avg[2]; /* keep the resulting exposures below this value. too long exposure drives the ccd into saturation. we may fix this by relying on the fact that we get a striped scan without shading, by means of statistical calculation */ avge = (expr + expg + expb) / 3; /* don't overflow max exposure */ if (avge > 3000) { expr = (expr * 2000) / avge; expg = (expg * 2000) / avge; expb = (expb * 2000) / avge; } if (avge < 50) { expr = (expr * 50) / avge; expg = (expg * 50) / avge; expb = (expb * 50) / avge; } } RIE (gl843_stop_action (dev)); turn++; } while (!acceptable && turn < 100); DBG(DBG_info, "%s: acceptable exposure: %d,%d,%d\n", __func__, expr, expg, expb); sensor.exposure = calib_sensor.exposure; gl843_slow_back_home (dev, SANE_TRUE); DBG(DBG_proc, "%s: completed\n", __func__); return status; } /** * average dark pixels of a 8 bits scan of a given channel */ static int dark_average_channel (uint8_t * data, unsigned int pixels, unsigned int lines, unsigned int channels, unsigned int black, int channel) { unsigned int i, j, k, count; unsigned int avg[3]; uint8_t val; /* computes average values on black margin */ for (k = 0; k < channels; k++) { avg[k] = 0; count = 0; // FIXME: start with the second line because the black pixels often have noise on the first // line; the cause is probably incorrectly cleaned up previous scan for (i = 1; i < lines; i++) { for (j = 0; j < black; j++) { val = data[i * channels * pixels + j*channels + k]; avg[k] += val; count++; } } if (count) avg[k] /= count; DBG(DBG_info, "%s: avg[%d] = %d\n", __func__, k, avg[k]); } DBG(DBG_info, "%s: average = %d\n", __func__, avg[channel]); return avg[channel]; } /** @brief calibrate AFE offset * Iterate doing scans at target dpi until AFE offset if correct. One * color line is scanned at a time. Scanning head doesn't move. * @param dev device to calibrate */ static SANE_Status gl843_offset_calibration(Genesys_Device * dev, const Genesys_Sensor& sensor, Genesys_Register_Set& regs) { SANE_Status status = SANE_STATUS_GOOD; unsigned int channels, bpp; int pass, total_size, i, resolution, lines; int topavg[3], bottomavg[3], avg[3]; int top[3], bottom[3], black_pixels, pixels, factor, dpihw; DBGSTART; /* offset calibration is always done in color mode */ channels = 3; lines = 8; bpp = 8; /* compute divider factor to compute final pixels number */ dpihw = sanei_genesys_compute_dpihw_calibration(dev, sensor, dev->settings.xres); factor = sensor.optical_res / dpihw; resolution = dpihw; const auto& calib_sensor = sanei_genesys_find_sensor(dev, resolution, dev->settings.scan_method); int target_pixels = calib_sensor.sensor_pixels / factor; int start_pixel = 0; black_pixels = calib_sensor.black_pixels / factor; if (dev->settings.scan_method == ScanMethod::TRANSPARENCY && dev->model->model_id == MODEL_CANON_CANOSCAN_8600F && dev->settings.xres == 4800) { start_pixel = SANE_UNFIX(dev->model->x_offset_ta); start_pixel /= calib_sensor.get_ccd_size_divisor_for_dpi(resolution); start_pixel = (start_pixel * calib_sensor.optical_res) / MM_PER_INCH; target_pixels = SANE_UNFIX(dev->model->x_size_ta); target_pixels /= calib_sensor.get_ccd_size_divisor_for_dpi(resolution); target_pixels = (target_pixels * calib_sensor.optical_res) / MM_PER_INCH; } int flags = SCAN_FLAG_DISABLE_SHADING | SCAN_FLAG_DISABLE_GAMMA | SCAN_FLAG_SINGLE_LINE | SCAN_FLAG_IGNORE_LINE_DISTANCE; if (dev->settings.scan_method == ScanMethod::TRANSPARENCY) { flags |= SCAN_FLAG_USE_XPA; } ScanSession session; session.params.xres = resolution; session.params.yres = resolution; session.params.startx = start_pixel; session.params.starty = 0; session.params.pixels = target_pixels; session.params.lines = lines; session.params.depth = bpp; session.params.channels = channels; session.params.scan_method = dev->settings.scan_method; session.params.scan_mode = ScanColorMode::COLOR_SINGLE_PASS; session.params.color_filter = ColorFilter::RED; session.params.flags = flags; gl843_compute_session(dev, session, calib_sensor); pixels = session.output_pixels; DBG(DBG_io, "%s: dpihw =%d\n", __func__, dpihw); DBG(DBG_io, "%s: factor =%d\n", __func__, factor); DBG(DBG_io, "%s: resolution =%d\n", __func__, resolution); DBG(DBG_io, "%s: pixels =%d\n", __func__, pixels); DBG(DBG_io, "%s: black_pixels=%d\n", __func__, black_pixels); status = gl843_init_scan_regs(dev, calib_sensor, ®s, session); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to setup scan: %s\n", __func__, sane_strstatus(status)); return status; } sanei_genesys_set_motor_power(regs, false); /* allocate memory for scans */ total_size = dev->read_bytes_left; std::vector first_line(total_size); std::vector second_line(total_size); /* init gain and offset */ for (i = 0; i < 3; i++) { bottom[i] = 10; dev->frontend.set_offset(i, bottom[i]); dev->frontend.set_gain(i, 0); } RIE(gl843_set_fe(dev, calib_sensor, AFE_SET)); /* scan with obttom AFE settings */ RIE(dev->model->cmd_set->bulk_write_register(dev, regs)); DBG(DBG_info, "%s: starting first line reading\n", __func__); RIE(gl843_begin_scan(dev, calib_sensor, ®s, SANE_TRUE)); RIE(sanei_genesys_read_data_from_scanner(dev, first_line.data(), total_size)); RIE(gl843_stop_action_no_move(dev, ®s)); if (DBG_LEVEL >= DBG_data) { char fn[40]; snprintf(fn, 40, "gl843_bottom_offset_%03d_%03d_%03d.pnm", bottom[0], bottom[1], bottom[2]); sanei_genesys_write_pnm_file(fn, first_line.data(), bpp, channels, pixels, lines); } for (i = 0; i < 3; i++) { bottomavg[i] = dark_average_channel(first_line.data(), pixels, lines, channels, black_pixels, i); DBG(DBG_io2, "%s: bottom avg %d=%d\n", __func__, i, bottomavg[i]); } /* now top value */ for (i = 0; i < 3; i++) { top[i] = 255; dev->frontend.set_offset(i, top[i]); } RIE(gl843_set_fe(dev, calib_sensor, AFE_SET)); /* scan with top AFE values */ RIE(dev->model->cmd_set->bulk_write_register(dev, regs)); DBG(DBG_info, "%s: starting second line reading\n", __func__); RIE(gl843_begin_scan(dev, calib_sensor, ®s, SANE_TRUE)); RIE(sanei_genesys_read_data_from_scanner(dev, second_line.data(), total_size)); RIE(gl843_stop_action_no_move(dev, ®s)); for (i = 0; i < 3; i++) { topavg[i] = dark_average_channel(second_line.data(), pixels, lines, channels, black_pixels, i); DBG(DBG_io2, "%s: top avg %d=%d\n", __func__, i, topavg[i]); } pass = 0; std::vector debug_image; size_t debug_image_lines = 0; std::string debug_image_info; /* loop until acceptable level */ while ((pass < 32) && ((top[0] - bottom[0] > 1) || (top[1] - bottom[1] > 1) || (top[2] - bottom[2] > 1))) { pass++; /* settings for new scan */ for (i = 0; i < 3; i++) { if (top[i] - bottom[i] > 1) { dev->frontend.set_offset(i, (top[i] + bottom[i]) / 2); } } RIE(gl843_set_fe(dev, calib_sensor, AFE_SET)); /* scan with no move */ RIE(dev->model->cmd_set->bulk_write_register(dev, regs)); DBG(DBG_info, "%s: starting second line reading\n", __func__); RIE(gl843_begin_scan(dev, calib_sensor, ®s, SANE_TRUE)); RIE(sanei_genesys_read_data_from_scanner(dev, second_line.data(), total_size)); RIE(gl843_stop_action_no_move(dev, ®s)); if (DBG_LEVEL >= DBG_data) { char title[100]; snprintf(title, 100, "lines: %d pixels_per_line: %d offsets[0..2]: %d %d %d\n", lines, pixels, dev->frontend.get_offset(0), dev->frontend.get_offset(1), dev->frontend.get_offset(2)); debug_image_info += title; std::copy(second_line.begin(), second_line.end(), std::back_inserter(debug_image)); debug_image_lines += lines; } for (i = 0; i < 3; i++) { avg[i] = dark_average_channel(second_line.data(), pixels, lines, channels, black_pixels, i); DBG(DBG_info, "%s: avg[%d]=%d offset=%d\n", __func__, i, avg[i], dev->frontend.get_offset(i)); } /* compute new boundaries */ for (i = 0; i < 3; i++) { if (topavg[i] >= avg[i]) { topavg[i] = avg[i]; top[i] = dev->frontend.get_offset(i); } else { bottomavg[i] = avg[i]; bottom[i] = dev->frontend.get_offset(i); } } } if (DBG_LEVEL >= DBG_data) { sanei_genesys_write_file("gl843_offset_all_desc.txt", (uint8_t*) debug_image_info.data(), debug_image_info.size()); sanei_genesys_write_pnm_file("gl843_offset_all.pnm", debug_image.data(), bpp, channels, pixels, debug_image_lines); } DBG(DBG_info, "%s: offset=(%d,%d,%d)\n", __func__, dev->frontend.get_offset(0), dev->frontend.get_offset(1), dev->frontend.get_offset(2)); DBGCOMPLETED; return SANE_STATUS_GOOD; } /* alternative coarse gain calibration this on uses the settings from offset_calibration and uses only one scanline */ /* with offset and coarse calibration we only want to get our input range into a reasonable shape. the fine calibration of the upper and lower bounds will be done with shading. */ static SANE_Status gl843_coarse_gain_calibration(Genesys_Device * dev, const Genesys_Sensor& sensor, Genesys_Register_Set& regs, int dpi) { int pixels, factor, dpihw; int total_size; int i, j, channels; SANE_Status status = SANE_STATUS_GOOD; int max[3]; float coeff; int val, lines; int resolution; int bpp; DBG(DBG_proc, "%s: dpi = %d\n", __func__, dpi); dpihw=sanei_genesys_compute_dpihw_calibration(dev, sensor, dpi); factor=sensor.optical_res/dpihw; /* coarse gain calibration is always done in color mode */ channels = 3; /* follow CKSEL */ if (dev->model->ccd_type == CCD_KVSS080) { if(dev->settings.xressettings.scan_method == ScanMethod::TRANSPARENCY) { flags |= SCAN_FLAG_USE_XPA; } const auto& calib_sensor = sanei_genesys_find_sensor(dev, resolution, dev->settings.scan_method); ScanSession session; session.params.xres = resolution; session.params.yres = resolution; session.params.startx = 0; session.params.starty = 0; session.params.pixels = target_pixels; session.params.lines = lines; session.params.depth = bpp; session.params.channels = channels; session.params.scan_method = dev->settings.scan_method; session.params.scan_mode = ScanColorMode::COLOR_SINGLE_PASS; session.params.color_filter = dev->settings.color_filter; session.params.flags = flags; gl843_compute_session(dev, session, calib_sensor); pixels = session.output_pixels; try { status = gl843_init_scan_regs(dev, calib_sensor, ®s, session); } catch (...) { try { sanei_genesys_set_motor_power(regs, false); } catch (...) {} throw; } sanei_genesys_set_motor_power(regs, false); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to setup scan: %s\n", __func__, sane_strstatus(status)); return status; } RIE(dev->model->cmd_set->bulk_write_register(dev, regs)); total_size = dev->read_bytes_left; std::vector line(total_size); RIE(gl843_set_fe(dev, calib_sensor, AFE_SET)); RIE(gl843_begin_scan(dev, calib_sensor, ®s, SANE_TRUE)); RIE(sanei_genesys_read_data_from_scanner (dev, line.data(), total_size)); RIE(gl843_stop_action_no_move(dev, ®s)); if (DBG_LEVEL >= DBG_data) sanei_genesys_write_pnm_file("gl843_gain.pnm", line.data(), bpp, channels, pixels, lines); /* average value on each channel */ for (j = 0; j < channels; j++) { max[j] = 0; // FIXME: start from the second line because the first line often has artifacts. Probably // caused by unclean cleanup of previous scans for (i = pixels/4 + pixels; i < (pixels*3/4) + pixels; i++) { if(bpp==16) { if (dev->model->is_cis) val = line[i * 2 + j * 2 * pixels + 1] * 256 + line[i * 2 + j * 2 * pixels]; else val = line[i * 2 * channels + 2 * j + 1] * 256 + line[i * 2 * channels + 2 * j]; } else { if (dev->model->is_cis) val = line[i + j * pixels]; else val = line[i * channels + j]; } max[j] += val; } max[j] = max[j] / (pixels/2); /* the flow of data through the frontend ADC is as follows (see e.g. VM8192 datasheet) input -> apply offset (o = i + 260mV * (DAC[7:0]-127.5)/127.5) -> -> apply gain (o = i * 208/(283-PGA[7:0]) -> ADC Here we have some input data that was acquired with zero gain (PGA==0). We want to compute gain such that the output would approach full ADC range (controlled by gain_white_ref). We want to solve the following for {PGA}: {input} * 208 / (283 - 0) = {output} {input} * 208 / (283 - {PGA}) = {target output} The solution is the following equation: {PGA} = 283 * (1 - {output} / {target output}) */ float gain = ((float) max[j] / (calib_sensor.gain_white_ref*coeff)); int code = 283 * (1 - gain); if (code > 255) code = 255; else if (code < 0) code = 0; dev->frontend.set_gain(j, code); DBG(DBG_proc, "%s: channel %d, max=%d, gain = %f, setting:%d\n", __func__, j, max[j], gain, code); } if (dev->model->is_cis) { uint8_t gain0 = dev->frontend.get_gain(0); if (gain0 > dev->frontend.get_gain(1)) { gain0 = dev->frontend.get_gain(1); } if (gain0 > dev->frontend.get_gain(2)) { gain0 = dev->frontend.get_gain(2); } dev->frontend.set_gain(0, gain0); dev->frontend.set_gain(1, gain0); dev->frontend.set_gain(2, gain0); } if (channels == 1) { dev->frontend.set_gain(0, dev->frontend.get_gain(1)); dev->frontend.set_gain(2, dev->frontend.get_gain(1)); } RIE (gl843_stop_action (dev)); status=gl843_slow_back_home (dev, SANE_TRUE); DBGCOMPLETED; return status; } /* * wait for lamp warmup by scanning the same line until difference * between 2 scans is below a threshold */ static SANE_Status gl843_init_regs_for_warmup (Genesys_Device * dev, const Genesys_Sensor& sensor, Genesys_Register_Set * reg, int *channels, int *total_size) { int num_pixels; SANE_Status status = SANE_STATUS_GOOD; int dpihw; int resolution; int factor; DBGSTART; if (dev == NULL || reg == NULL || channels == NULL || total_size == NULL) return SANE_STATUS_INVAL; /* setup scan */ *channels=3; resolution=600; dpihw=sanei_genesys_compute_dpihw_calibration(dev, sensor, resolution); resolution=dpihw; const auto& calib_sensor = sanei_genesys_find_sensor(dev, resolution, dev->settings.scan_method); factor = calib_sensor.optical_res/dpihw; num_pixels = calib_sensor.sensor_pixels/(factor*2); *total_size = num_pixels * 3 * 1; *reg = dev->reg; ScanSession session; session.params.xres = resolution; session.params.yres = resolution; session.params.startx = num_pixels/2; session.params.starty = 0; session.params.pixels = num_pixels; session.params.lines = 1; session.params.depth = 8; session.params.channels = *channels; session.params.scan_method = dev->settings.scan_method; session.params.scan_mode = ScanColorMode::COLOR_SINGLE_PASS; session.params.color_filter = dev->settings.color_filter; session.params.flags = SCAN_FLAG_DISABLE_SHADING | SCAN_FLAG_DISABLE_GAMMA | SCAN_FLAG_SINGLE_LINE | SCAN_FLAG_IGNORE_LINE_DISTANCE; gl843_compute_session(dev, session, calib_sensor); status = gl843_init_scan_regs(dev, calib_sensor, reg, session); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to setup scan: %s\n", __func__, sane_strstatus(status)); return status; } sanei_genesys_set_motor_power(*reg, false); RIE(dev->model->cmd_set->bulk_write_register(dev, *reg)); DBGCOMPLETED; return SANE_STATUS_GOOD; } /** * set up GPIO/GPOE for idle state WRITE GPIO[17-21]= GPIO19 WRITE GPOE[17-21]= GPOE21 GPOE20 GPOE19 GPOE18 genesys_write_register(0xa8,0x3e) GPIO(0xa8)=0x3e */ static SANE_Status gl843_init_gpio (Genesys_Device * dev) { SANE_Status status = SANE_STATUS_GOOD; int idx; DBGSTART; RIE (sanei_genesys_write_register (dev, REG6E, dev->gpo.enable[0])); RIE (sanei_genesys_write_register (dev, REG6F, dev->gpo.enable[1])); RIE (sanei_genesys_write_register (dev, REG6C, dev->gpo.value[0])); RIE (sanei_genesys_write_register (dev, REG6D, dev->gpo.value[1])); idx=0; while(dev->model->gpo_type != gpios[idx].gpo_type && gpios[idx].gpo_type!=0) { idx++; } if (gpios[idx].gpo_type!=0) { RIE (sanei_genesys_write_register (dev, REGA6, gpios[idx].ra6)); RIE (sanei_genesys_write_register (dev, REGA7, gpios[idx].ra7)); RIE (sanei_genesys_write_register (dev, REGA8, gpios[idx].ra8)); RIE (sanei_genesys_write_register (dev, REGA9, gpios[idx].ra9)); } else { status=SANE_STATUS_INVAL; } DBGCOMPLETED; return status; } /* * * initialize ASIC from power on condition */ static SANE_Status gl843_boot (Genesys_Device * dev, SANE_Bool cold) { SANE_Status status = SANE_STATUS_GOOD; uint8_t val; DBGSTART; if(cold) { RIE (sanei_genesys_write_register (dev, 0x0e, 0x01)); RIE (sanei_genesys_write_register (dev, 0x0e, 0x00)); } if(dev->usb_mode == 1) { val = 0x14; } else { val = 0x11; } RIE (sanei_genesys_write_0x8c (dev, 0x0f, val)); /* test CHKVER */ RIE (sanei_genesys_read_register (dev, REG40, &val)); if (val & REG40_CHKVER) { RIE (sanei_genesys_read_register (dev, 0x00, &val)); DBG(DBG_info, "%s: reported version for genesys chip is 0x%02x\n", __func__, val); } /* Set default values for registers */ gl843_init_registers (dev); if (dev->model->model_id == MODEL_CANON_CANOSCAN_8600F) { // turns on vref control for maximum current of the motor driver RIE(sanei_genesys_write_register (dev, REG6B, 0x72)); } else { RIE(sanei_genesys_write_register (dev, REG6B, 0x02)); } /* Write initial registers */ RIE (dev->model->cmd_set->bulk_write_register(dev, dev->reg)); // Enable DRAM by setting a rising edge on bit 3 of reg 0x0b val = dev->reg.find_reg(0x0b).value & REG0B_DRAMSEL; val = (val | REG0B_ENBDRAM); RIE (sanei_genesys_write_register (dev, REG0B, val)); dev->reg.find_reg(0x0b).value = val; if (dev->model->model_id == MODEL_CANON_CANOSCAN_8600F) { RIE (sanei_genesys_write_0x8c (dev, 0x10, 0xc8)); } else { RIE (sanei_genesys_write_0x8c (dev, 0x10, 0xb4)); } /* CLKSET */ int clock_freq = REG0B_48MHZ; if (dev->model->model_id == MODEL_CANON_CANOSCAN_8600F) clock_freq = REG0B_60MHZ; val = (dev->reg.find_reg(0x0b).value & ~REG0B_CLKSET) | clock_freq; RIE (sanei_genesys_write_register (dev, REG0B, val)); dev->reg.find_reg(0x0b).value = val; /* prevent further writings by bulk write register */ dev->reg.remove_reg(0x0b); if (dev->model->model_id != MODEL_CANON_CANOSCAN_8600F) { // set up end access // FIXME: this is overwritten in gl843_init_gpio sanei_genesys_write_register(dev, REGA7, 0x04); sanei_genesys_write_register(dev, REGA9, 0x00); } /* set RAM read address */ RIE (sanei_genesys_write_register (dev, REG29, 0x00)); RIE (sanei_genesys_write_register (dev, REG2A, 0x00)); RIE (sanei_genesys_write_register (dev, REG2B, 0x00)); /* setup gpio */ RIE (gl843_init_gpio (dev)); gl843_feed (dev, 300); sanei_genesys_sleep_ms(100); DBGCOMPLETED; return SANE_STATUS_GOOD; } /* * * initialize backend and ASIC : registers, motor tables, and gamma tables * then ensure scanner's head is at home */ static SANE_Status gl843_init (Genesys_Device * dev) { SANE_Status status = SANE_STATUS_GOOD; DBG_INIT (); DBGSTART; status=sanei_genesys_asic_init(dev, 0); DBGCOMPLETED; return status; } static SANE_Status gl843_update_hardware_sensors (Genesys_Scanner * s) { /* do what is needed to get a new set of events, but try to not lose any of them. */ SANE_Status status = SANE_STATUS_GOOD; uint8_t val; RIE (sanei_genesys_read_register (s->dev, REG6D, &val)); switch (s->dev->model->gpo_type) { case GPO_KVSS080: s->buttons[BUTTON_SCAN_SW].write((val & 0x04) == 0); break; case GPO_G4050: s->buttons[BUTTON_SCAN_SW].write((val & 0x01) == 0); s->buttons[BUTTON_FILE_SW].write((val & 0x02) == 0); s->buttons[BUTTON_EMAIL_SW].write((val & 0x04) == 0); s->buttons[BUTTON_COPY_SW].write((val & 0x08) == 0); break; case GPO_CS4400F: case GPO_CS8400F: default: break; } return status; } /** @brief move sensor to transparency adaptor * Move sensor to the calibration of the transparency adapator (XPA). * @param dev device to use */ static SANE_Status gl843_move_to_ta (Genesys_Device * dev) { SANE_Status status = SANE_STATUS_GOOD; float resolution; unsigned int feed; DBGSTART; resolution=sanei_genesys_get_lowest_ydpi(dev); feed = 16*(SANE_UNFIX (dev->model->y_offset_calib_ta) * resolution) / MM_PER_INCH; status = gl843_feed (dev, feed); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to move to XPA calibration area\n", __func__); return status; } DBGCOMPLETED; return status; } /** @brief search for a full width black or white strip. * This function searches for a black or white stripe across the scanning area. * When searching backward, the searched area must completely be of the desired * color since this area will be used for calibration which scans forward. * @param dev scanner device * @param forward SANE_TRUE if searching forward, SANE_FALSE if searching backward * @param black SANE_TRUE if searching for a black strip, SANE_FALSE for a white strip * @return SANE_STATUS_GOOD if a matching strip is found, SANE_STATUS_UNSUPPORTED if not */ static SANE_Status gl843_search_strip (Genesys_Device * dev, const Genesys_Sensor& sensor, SANE_Bool forward, SANE_Bool black) { unsigned int pixels, lines, channels; SANE_Status status = SANE_STATUS_GOOD; Genesys_Register_Set local_reg; size_t size; int steps, depth, dpi; unsigned int pass, count, found, x, y; GenesysRegister *r; DBG(DBG_proc, "%s %s %s\n", __func__, black ? "black" : "white", forward ? "forward" : "reverse"); gl843_set_fe(dev, sensor, AFE_SET); status = gl843_stop_action (dev); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to stop: %s\n", __func__, sane_strstatus(status)); return status; } /* set up for a gray scan at lowest dpi */ dpi = sanei_genesys_get_lowest_dpi(dev); channels = 1; const auto& calib_sensor = sanei_genesys_find_sensor(dev, dpi, dev->settings.scan_method); /* 10 MM */ /* lines = (10 * dpi) / MM_PER_INCH; */ /* shading calibation is done with dev->motor.base_ydpi */ lines = (dev->model->shading_lines * dpi) / dev->motor.base_ydpi; depth = 8; pixels = (calib_sensor.sensor_pixels * dpi) / calib_sensor.optical_res; dev->scanhead_position_in_steps = 0; local_reg = dev->reg; ScanSession session; session.params.xres = dpi; session.params.yres = dpi; session.params.startx = 0; session.params.starty = 0; session.params.pixels = pixels; session.params.lines = lines; session.params.depth = depth; session.params.channels = channels; session.params.scan_method = dev->settings.scan_method; session.params.scan_mode = ScanColorMode::GRAY; session.params.color_filter = ColorFilter::RED; session.params.flags = SCAN_FLAG_DISABLE_SHADING | SCAN_FLAG_DISABLE_SHADING; gl843_compute_session(dev, session, calib_sensor); status = gl843_init_scan_regs(dev, calib_sensor, &local_reg, session); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to setup for scan: %s\n", __func__, sane_strstatus(status)); return status; } size = dev->read_bytes_left; std::vector data(size); /* set up for reverse or forward */ r = sanei_genesys_get_address(&local_reg, REG02); if (forward) r->value &= ~REG02_MTRREV; else r->value |= REG02_MTRREV; status = dev->model->cmd_set->bulk_write_register(dev, local_reg); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to bulk write registers: %s\n", __func__, sane_strstatus(status)); return status; } status = gl843_begin_scan(dev, calib_sensor, &local_reg, SANE_TRUE); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to begin scan: %s\n", __func__, sane_strstatus(status)); return status; } /* waits for valid data */ do sanei_genesys_test_buffer_empty (dev, &steps); while (steps); /* now we're on target, we can read data */ status = sanei_genesys_read_data_from_scanner(dev, data.data(), size); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to read data: %s\n", __func__, sane_strstatus(status)); return status; } status = gl843_stop_action (dev); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: gl843_stop_action failed\n", __func__); return status; } pass = 0; if (DBG_LEVEL >= DBG_data) { char fn[40]; snprintf(fn, 40, "gl843_search_strip_%s_%s%02d.pnm", black ? "black" : "white", forward ? "fwd" : "bwd", (int)pass); sanei_genesys_write_pnm_file(fn, data.data(), depth, channels, pixels, lines); } /* loop until strip is found or maximum pass number done */ found = 0; while (pass < 20 && !found) { status = dev->model->cmd_set->bulk_write_register(dev, local_reg); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to bulk write registers: %s\n", __func__, sane_strstatus(status)); return status; } /* now start scan */ status = gl843_begin_scan(dev, calib_sensor, &local_reg, SANE_TRUE); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to begin scan: %s\n", __func__, sane_strstatus(status)); return status; } /* waits for valid data */ do sanei_genesys_test_buffer_empty (dev, &steps); while (steps); /* now we're on target, we can read data */ status = sanei_genesys_read_data_from_scanner(dev, data.data(), size); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to read data: %s\n", __func__, sane_strstatus(status)); return status; } status = gl843_stop_action (dev); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: gl843_stop_action failed\n", __func__); return status; } if (DBG_LEVEL >= DBG_data) { char fn[40]; snprintf(fn, 40, "gl843_search_strip_%s_%s%02d.pnm", black ? "black" : "white", forward ? "fwd" : "bwd", (int)pass); sanei_genesys_write_pnm_file(fn, data.data(), depth, channels, pixels, lines); } /* search data to find black strip */ /* when searching forward, we only need one line of the searched color since we * will scan forward. But when doing backward search, we need all the area of the * same color */ if (forward) { for (y = 0; y < lines && !found; y++) { count = 0; /* count of white/black pixels depending on the color searched */ for (x = 0; x < pixels; x++) { /* when searching for black, detect white pixels */ if (black && data[y * pixels + x] > 90) { count++; } /* when searching for white, detect black pixels */ if (!black && data[y * pixels + x] < 60) { count++; } } /* at end of line, if count >= 3%, line is not fully of the desired color * so we must go to next line of the buffer */ /* count*100/pixels < 3 */ if ((count * 100) / pixels < 3) { found = 1; DBG(DBG_data, "%s: strip found forward during pass %d at line %d\n", __func__, pass, y); } else { DBG(DBG_data, "%s: pixels=%d, count=%d (%d%%)\n", __func__, pixels, count, (100 * count) / pixels); } } } else /* since calibration scans are done forward, we need the whole area to be of the required color when searching backward */ { count = 0; for (y = 0; y < lines; y++) { /* count of white/black pixels depending on the color searched */ for (x = 0; x < pixels; x++) { /* when searching for black, detect white pixels */ if (black && data[y * pixels + x] > 90) { count++; } /* when searching for white, detect black pixels */ if (!black && data[y * pixels + x] < 60) { count++; } } } /* at end of area, if count >= 3%, area is not fully of the desired color * so we must go to next buffer */ if ((count * 100) / (pixels * lines) < 3) { found = 1; DBG(DBG_data, "%s: strip found backward during pass %d \n", __func__, pass); } else { DBG(DBG_data, "%s: pixels=%d, count=%d (%d%%)\n", __func__, pixels, count, (100 * count) / pixels); } } pass++; } if (found) { status = SANE_STATUS_GOOD; DBG(DBG_info, "%s: %s strip found\n", __func__, black ? "black" : "white"); } else { status = SANE_STATUS_UNSUPPORTED; DBG(DBG_info, "%s: %s strip not found\n", __func__, black ? "black" : "white"); } DBG(DBG_proc, "%s: completed\n", __func__); return status; } /** * Send shading calibration data. The buffer is considered to always hold values * for all the channels. */ static SANE_Status gl843_send_shading_data (Genesys_Device * dev, const Genesys_Sensor& sensor, uint8_t * data, int size) { SANE_Status status = SANE_STATUS_GOOD; uint32_t final_size, length, i; uint8_t *buffer; int count,offset; unsigned int cksel; GenesysRegister *r; uint16_t dpiset, strpixel, endpixel, startx, factor; DBGSTART; offset=0; length=size; r = sanei_genesys_get_address(&dev->reg, REG01); if(r->value & REG01_SHDAREA) { /* recompute STRPIXEL used shading calibration so we can * compute offset within data for SHDAREA case */ r = sanei_genesys_get_address(&dev->reg, REG18); cksel= (r->value & REG18_CKSEL)+1; sanei_genesys_get_double(&dev->reg,REG_DPISET,&strpixel); sanei_genesys_get_double(&dev->reg,REG_DPISET,&dpiset); factor=sensor.optical_res/sanei_genesys_compute_dpihw(dev, sensor, dpiset); /* start coordinate in optical dpi coordinates */ startx = (sensor.dummy_pixel / cksel) / factor; /* current scan coordinates */ sanei_genesys_get_double(&dev->reg,REG_STRPIXEL,&strpixel); sanei_genesys_get_double(&dev->reg,REG_ENDPIXEL,&endpixel); if (dev->model->model_id == MODEL_CANON_CANOSCAN_8600F) { int optical_res = sensor.optical_res / dev->current_setup.ccd_size_divisor; int dpiset_real = dpiset / dev->current_setup.ccd_size_divisor; int half_ccd_factor = optical_res / sanei_genesys_compute_dpihw_calibration(dev, sensor, dpiset_real); strpixel /= half_ccd_factor; endpixel /= half_ccd_factor; } /* 16 bit words, 2 words per color, 3 color channels */ offset=(strpixel-startx)*2*2*3; length=(endpixel-strpixel)*2*2*3; DBG(DBG_info, "%s: STRPIXEL=%d, ENDPIXEL=%d, startx=%d\n", __func__, strpixel, endpixel, startx); } /* compute and allocate size for final data */ final_size = ((length+251) / 252) * 256; DBG(DBG_io, "%s: final shading size=%04x (length=%d)\n", __func__, final_size, length); std::vector final_data(final_size, 0); /* copy regular shading data to the expected layout */ buffer = final_data.data(); count = 0; /* loop over calibration data */ for (i = 0; i < length; i++) { buffer[count] = data[offset+i]; count++; if ((count % (256*2)) == (252*2)) { count += 4*2; } } /* send data */ status = sanei_genesys_set_buffer_address (dev, 0); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to set buffer address: %s\n", __func__, sane_strstatus(status)); return status; } status = dev->model->cmd_set->bulk_write_data (dev, 0x3c, final_data.data(), count); if (status != SANE_STATUS_GOOD) { DBG(DBG_error, "%s: failed to send shading table: %s\n", __func__, sane_strstatus(status)); } DBGCOMPLETED; return status; } /** the gl843 command set */ static Genesys_Command_Set gl843_cmd_set = { "gl843-generic", /* the name of this set */ [](Genesys_Device* dev) -> bool { (void) dev; return true; }, gl843_init, gl843_init_regs_for_warmup, gl843_init_regs_for_coarse_calibration, gl843_init_regs_for_shading, gl843_init_regs_for_scan, gl843_get_filter_bit, gl843_get_lineart_bit, gl843_get_bitset_bit, gl843_get_gain4_bit, gl843_get_fast_feed_bit, gl843_test_buffer_empty_bit, gl843_test_motor_flag_bit, gl843_set_fe, gl843_set_powersaving, gl843_save_power, gl843_begin_scan, gl843_end_scan, gl843_send_gamma_table, gl843_search_start_position, gl843_offset_calibration, gl843_coarse_gain_calibration, gl843_led_calibration, NULL, gl843_slow_back_home, NULL, sanei_genesys_bulk_write_register, sanei_genesys_bulk_write_data, sanei_genesys_bulk_read_data, gl843_update_hardware_sensors, gl843_load_document, gl843_detect_document_end, gl843_eject_document, gl843_search_strip, sanei_genesys_is_compatible_calibration, gl843_move_to_ta, gl843_send_shading_data, gl843_calculate_current_setup, gl843_boot }; SANE_Status sanei_gl843_init_cmd_set (Genesys_Device * dev) { dev->model->cmd_set = &gl843_cmd_set; return SANE_STATUS_GOOD; }