/* NeXTStep/OpenStep */
#endif
#include "../include/sane/sane.h"
#include "../include/sane/sanei_usb.h"
#include "../include/sane/saneopts.h"
#include "../include/sane/sanei_config.h"
#include "../include/sane/sanei_thread.h"
#include "../include/sane/sanei_backend.h"
#define RTCMD_GETREG 0x80
#define RTCMD_READSRAM 0x81
#define RTCMD_SETREG 0x88
#define RTCMD_WRITESRAM 0x89
#define RTCMD_NVRAMCONTROL 0x8a
#define RTCMD_BYTESAVAIL 0x90
#define RTCMD_READBYTES 0x91
#define RT_CHANNEL_ALL 0
#define RT_CHANNEL_RED 1
#define RT_CHANNEL_GREEN 2
#define RT_CHANNEL_BLUE 3
typedef int (*rts8801_callback) (void *param, unsigned bytes, void *data);
#define DEBUG 1
#define SCANNER_UNIT_TO_FIXED_MM(number) SANE_FIX(number * MM_PER_INCH / 1200)
#define FIXED_MM_TO_SCANNER_UNIT(number) SANE_UNFIX(number) * 1200 / MM_PER_INCH
#define MSG_ERR 1
#define MSG_USER 5
#define MSG_INFO 6
#define FLOW_CONTROL 10
#define MSG_IO 15
#define MSG_IO_READ 17
#define IO_CMD 20
#define IO_CMD_RES 20
#define MSG_GET 25
/* ------------------------------------------------------------------------- */
enum hp3500_option
{
OPT_NUM_OPTS = 0,
OPT_RESOLUTION,
OPT_GEOMETRY_GROUP,
OPT_TL_X,
OPT_TL_Y,
OPT_BR_X,
OPT_BR_Y,
OPT_MODE_GROUP,
OPT_MODE,
OPT_BRIGHTNESS,
OPT_CONTRAST,
OPT_GAMMA,
NUM_OPTIONS
};
typedef struct
{
int left;
int top;
int right;
int bottom;
} hp3500_rect;
struct hp3500_data
{
struct hp3500_data *next;
char *devicename;
int sfd;
int pipe_r;
int pipe_w;
SANE_Pid reader_pid;
int resolution;
int mode;
time_t last_scan;
hp3500_rect request_mm;
hp3500_rect actual_mm;
hp3500_rect fullres_pixels;
hp3500_rect actres_pixels;
int rounded_left;
int rounded_top;
int rounded_right;
int rounded_bottom;
int bytes_per_scan_line;
int scan_width_pixels;
int scan_height_pixels;
int brightness;
int contrast;
double gamma;
SANE_Option_Descriptor opt[NUM_OPTIONS];
SANE_Device sane;
};
struct hp3500_write_info
{
struct hp3500_data *scanner;
int bytesleft;
};
typedef struct detailed_calibration_data
{
unsigned char const *channeldata[3];
unsigned resolution_divisor;
} detailed_calibration_data;
static struct hp3500_data *first_dev = 0;
static struct hp3500_data **new_dev = &first_dev;
static int num_devices = 0;
static SANE_Int res_list[] =
{ 9, 50, 75, 100, 150, 200, 300, 400, 600, 1200 };
static const SANE_Range range_x =
{ 0, SANE_FIX (215.9), SANE_FIX (MM_PER_INCH / 1200) };
static const SANE_Range range_y =
{ 0, SANE_FIX (298.7), SANE_FIX (MM_PER_INCH / 1200) };
static const SANE_Range range_brightness =
{ 0, 255, 0 };
static const SANE_Range range_contrast =
{ 0, 255, 0 };
static const SANE_Range range_gamma =
{ SANE_FIX (0.2), SANE_FIX(4.0), SANE_FIX(0.01) };
#define HP3500_COLOR_SCAN 0
#define HP3500_GRAY_SCAN 1
#define HP3500_LINEART_SCAN 2
#define HP3500_TOTAL_SCANS 3
static char const *scan_mode_list[HP3500_TOTAL_SCANS + 1] = { 0 };
static SANE_Status attachScanner (const char *name);
static SANE_Status init_options (struct hp3500_data *scanner);
static int reader_process (void *);
static void calculateDerivedValues (struct hp3500_data *scanner);
static void do_reset (struct hp3500_data *scanner);
static void do_cancel (struct hp3500_data *scanner);
static size_t max_string_size(char const **);
/*
* used by sane_get_devices
*/
static const SANE_Device **devlist = 0;
/*
* SANE Interface
*/
/**
* Called by SANE initially.
*
* From the SANE spec:
* This function must be called before any other SANE function can be
* called. The behavior of a SANE backend is undefined if this
* function is not called first. The version code of the backend is
* returned in the value pointed to by version_code. If that pointer
* is NULL, no version code is returned. Argument authorize is either
* a pointer to a function that is invoked when the backend requires
* authentication for a specific resource or NULL if the frontend does
* not support authentication.
*/
SANE_Status
sane_init (SANE_Int * version_code, SANE_Auth_Callback authorize)
{
authorize = authorize; /* get rid of compiler warning */
DBG_INIT ();
DBG (10, "sane_init\n");
sanei_usb_init ();
sanei_thread_init ();
if (version_code)
*version_code = SANE_VERSION_CODE (SANE_CURRENT_MAJOR, V_MINOR, 0);
sanei_usb_find_devices (0x03f0, 0x2205, attachScanner);
sanei_usb_find_devices (0x03f0, 0x2005, attachScanner);
return SANE_STATUS_GOOD;
}
/**
* Called by SANE to find out about supported devices.
*
* From the SANE spec:
* This function can be used to query the list of devices that are
* available. If the function executes successfully, it stores a
* pointer to a NULL terminated array of pointers to SANE_Device
* structures in *device_list. The returned list is guaranteed to
* remain unchanged and valid until (a) another call to this function
* is performed or (b) a call to sane_exit() is performed. This
* function can be called repeatedly to detect when new devices become
* available. If argument local_only is true, only local devices are
* returned (devices directly attached to the machine that SANE is
* running on). If it is false, the device list includes all remote
* devices that are accessible to the SANE library.
*
* SANE does not require that this function is called before a
* sane_open() call is performed. A device name may be specified
* explicitly by a user which would make it unnecessary and
* undesirable to call this function first.
*/
SANE_Status
sane_get_devices (const SANE_Device *** device_list, SANE_Bool local_only)
{
int i;
struct hp3500_data *dev;
DBG (10, "sane_get_devices %d\n", local_only);
if (devlist)
free (devlist);
devlist = calloc (num_devices + 1, sizeof (SANE_Device *));
if (!devlist)
return SANE_STATUS_NO_MEM;
for (dev = first_dev, i = 0; i < num_devices; dev = dev->next)
devlist[i++] = &dev->sane;
devlist[i++] = 0;
*device_list = devlist;
return SANE_STATUS_GOOD;
}
/**
* Called to establish connection with the scanner. This function will
* also establish meaningful defaults and initialize the options.
*
* From the SANE spec:
* This function is used to establish a connection to a particular
* device. The name of the device to be opened is passed in argument
* name. If the call completes successfully, a handle for the device
* is returned in *h. As a special case, specifying a zero-length
* string as the device requests opening the first available device
* (if there is such a device).
*/
SANE_Status
sane_open (SANE_String_Const name, SANE_Handle * handle)
{
struct hp3500_data *dev = NULL;
struct hp3500_data *scanner = NULL;
if (name[0] == 0)
{
DBG (10, "sane_open: no device requested, using default\n");
if (first_dev)
{
scanner = (struct hp3500_data *) first_dev;
DBG (10, "sane_open: device %s found\n", first_dev->sane.name);
}
}
else
{
DBG (10, "sane_open: device %s requested\n", name);
for (dev = first_dev; dev; dev = dev->next)
{
if (strcmp (dev->sane.name, name) == 0)
{
DBG (10, "sane_open: device %s found\n", name);
scanner = (struct hp3500_data *) dev;
}
}
}
if (!scanner)
{
DBG (10, "sane_open: no device found\n");
return SANE_STATUS_INVAL;
}
*handle = scanner;
init_options (scanner);
scanner->resolution = 200;
scanner->request_mm.left = 0;
scanner->request_mm.top = 0;
scanner->request_mm.right = SCANNER_UNIT_TO_FIXED_MM (10200);
scanner->request_mm.bottom = SCANNER_UNIT_TO_FIXED_MM (14100);
scanner->mode = 0;
scanner->brightness = 128;
scanner->contrast = 64;
scanner->gamma = 2.2;
calculateDerivedValues (scanner);
return SANE_STATUS_GOOD;
}
/**
* An advanced method we don't support but have to define.
*/
SANE_Status
sane_set_io_mode (SANE_Handle h, SANE_Bool non_blocking)
{
DBG (10, "sane_set_io_mode\n");
DBG (99, "%d %p\n", non_blocking, h);
return SANE_STATUS_UNSUPPORTED;
}
/**
* An advanced method we don't support but have to define.
*/
SANE_Status
sane_get_select_fd (SANE_Handle h, SANE_Int * fdp)
{
struct hp3500_data *scanner = (struct hp3500_data *) h;
DBG (10, "sane_get_select_fd\n");
*fdp = scanner->pipe_r;
DBG (99, "%p %d\n", h, *fdp);
return SANE_STATUS_GOOD;
}
/**
* Returns the options we know.
*
* From the SANE spec:
* This function is used to access option descriptors. The function
* returns the option descriptor for option number n of the device
* represented by handle h. Option number 0 is guaranteed to be a
* valid option. Its value is an integer that specifies the number of
* options that are available for device handle h (the count includes
* option 0). If n is not a valid option index, the function returns
* NULL. The returned option descriptor is guaranteed to remain valid
* (and at the returned address) until the device is closed.
*/
const SANE_Option_Descriptor *
sane_get_option_descriptor (SANE_Handle handle, SANE_Int option)
{
struct hp3500_data *scanner = handle;
DBG (MSG_GET,
"sane_get_option_descriptor: \"%s\"\n", scanner->opt[option].name);
if ((unsigned) option >= NUM_OPTIONS)
return NULL;
return &scanner->opt[option];
}
/**
* Gets or sets an option value.
*
* From the SANE spec:
* This function is used to set or inquire the current value of option
* number n of the device represented by handle h. The manner in which
* the option is controlled is specified by parameter action. The
* possible values of this parameter are described in more detail
* below. The value of the option is passed through argument val. It
* is a pointer to the memory that holds the option value. The memory
* area pointed to by v must be big enough to hold the entire option
* value (determined by member size in the corresponding option
* descriptor).
*
* The only exception to this rule is that when setting the value of a
* string option, the string pointed to by argument v may be shorter
* since the backend will stop reading the option value upon
* encountering the first NUL terminator in the string. If argument i
* is not NULL, the value of *i will be set to provide details on how
* well the request has been met.
*/
SANE_Status
sane_control_option (SANE_Handle handle, SANE_Int option,
SANE_Action action, void *val, SANE_Int * info)
{
struct hp3500_data *scanner = (struct hp3500_data *) handle;
SANE_Status status;
SANE_Word cap;
SANE_Int dummy;
int i;
/* Make sure that all those statements involving *info cannot break (better
* than having to do "if (info) ..." everywhere!)
*/
if (info == 0)
info = &dummy;
*info = 0;
if (option >= NUM_OPTIONS)
return SANE_STATUS_INVAL;
cap = scanner->opt[option].cap;
/*
* SANE_ACTION_GET_VALUE: We have to find out the current setting and
* return it in a human-readable form (often, text).
*/
if (action == SANE_ACTION_GET_VALUE)
{
DBG (MSG_GET, "sane_control_option: get value \"%s\"\n",
scanner->opt[option].name);
DBG (11, "\tcap = %d\n", cap);
if (!SANE_OPTION_IS_ACTIVE (cap))
{
DBG (10, "\tinactive\n");
return SANE_STATUS_INVAL;
}
switch (option)
{
case OPT_NUM_OPTS:
*(SANE_Word *) val = NUM_OPTIONS;
return SANE_STATUS_GOOD;
case OPT_RESOLUTION:
*(SANE_Word *) val = scanner->resolution;
return SANE_STATUS_GOOD;
case OPT_TL_X:
*(SANE_Word *) val = scanner->request_mm.left;
return SANE_STATUS_GOOD;
case OPT_TL_Y:
*(SANE_Word *) val = scanner->request_mm.top;
return SANE_STATUS_GOOD;
case OPT_BR_X:
*(SANE_Word *) val = scanner->request_mm.right;
return SANE_STATUS_GOOD;
case OPT_BR_Y:
*(SANE_Word *) val = scanner->request_mm.bottom;
return SANE_STATUS_GOOD;
case OPT_MODE:
strcpy ((SANE_Char *) val, scan_mode_list[scanner->mode]);
return SANE_STATUS_GOOD;
case OPT_CONTRAST:
*(SANE_Word *) val = scanner->contrast;
return SANE_STATUS_GOOD;
case OPT_GAMMA:
*(SANE_Word *) val = SANE_FIX(scanner->gamma);
return SANE_STATUS_GOOD;
case OPT_BRIGHTNESS:
*(SANE_Word *) val = scanner->brightness;
return SANE_STATUS_GOOD;
}
}
else if (action == SANE_ACTION_SET_VALUE)
{
DBG (10, "sane_control_option: set value \"%s\"\n",
scanner->opt[option].name);
if (!SANE_OPTION_IS_ACTIVE (cap))
{
DBG (10, "\tinactive\n");
return SANE_STATUS_INVAL;
}
if (!SANE_OPTION_IS_SETTABLE (cap))
{
DBG (10, "\tnot settable\n");
return SANE_STATUS_INVAL;
}
status = sanei_constrain_value (scanner->opt + option, val, info);
if (status != SANE_STATUS_GOOD)
{
DBG (10, "\tbad value\n");
return status;
}
/*
* Note - for those options which can assume one of a list of
* valid values, we can safely assume that they will have
* exactly one of those values because that's what
* sanei_constrain_value does. Hence no "else: invalid" branches
* below.
*/
switch (option)
{
case OPT_RESOLUTION:
if (scanner->resolution == *(SANE_Word *) val)
{
return SANE_STATUS_GOOD;
}
scanner->resolution = (*(SANE_Word *) val);
calculateDerivedValues (scanner);
*info |= SANE_INFO_RELOAD_PARAMS;
return SANE_STATUS_GOOD;
case OPT_TL_X:
if (scanner->request_mm.left == *(SANE_Word *) val)
return SANE_STATUS_GOOD;
scanner->request_mm.left = *(SANE_Word *) val;
calculateDerivedValues (scanner);
if (scanner->actual_mm.left != scanner->request_mm.left)
*info |= SANE_INFO_INEXACT;
*info |= SANE_INFO_RELOAD_PARAMS;
return SANE_STATUS_GOOD;
case OPT_TL_Y:
if (scanner->request_mm.top == *(SANE_Word *) val)
return SANE_STATUS_GOOD;
scanner->request_mm.top = *(SANE_Word *) val;
calculateDerivedValues (scanner);
if (scanner->actual_mm.top != scanner->request_mm.top)
*info |= SANE_INFO_INEXACT;
*info |= SANE_INFO_RELOAD_PARAMS;
return SANE_STATUS_GOOD;
case OPT_BR_X:
if (scanner->request_mm.right == *(SANE_Word *) val)
{
return SANE_STATUS_GOOD;
}
scanner->request_mm.right = *(SANE_Word *) val;
calculateDerivedValues (scanner);
if (scanner->actual_mm.right != scanner->request_mm.right)
*info |= SANE_INFO_INEXACT;
*info |= SANE_INFO_RELOAD_PARAMS;
return SANE_STATUS_GOOD;
case OPT_BR_Y:
if (scanner->request_mm.bottom == *(SANE_Word *) val)
{
return SANE_STATUS_GOOD;
}
scanner->request_mm.bottom = *(SANE_Word *) val;
calculateDerivedValues (scanner);
if (scanner->actual_mm.bottom != scanner->request_mm.bottom)
*info |= SANE_INFO_INEXACT;
*info |= SANE_INFO_RELOAD_PARAMS;
return SANE_STATUS_GOOD;
case OPT_MODE:
for (i = 0; scan_mode_list[i]; ++i)
{
if (!strcmp ((SANE_Char const *) val, scan_mode_list[i]))
{
DBG (10, "Setting scan mode to %s (request: %s)\n",
scan_mode_list[i], (SANE_Char const *) val);
scanner->mode = i;
return SANE_STATUS_GOOD;
}
}
/* Impossible */
return SANE_STATUS_INVAL;
case OPT_BRIGHTNESS:
scanner->brightness = *(SANE_Word *) val;
return SANE_STATUS_GOOD;
case OPT_CONTRAST:
scanner->contrast = *(SANE_Word *) val;
return SANE_STATUS_GOOD;
case OPT_GAMMA:
scanner->gamma = SANE_UNFIX(*(SANE_Word *) val);
return SANE_STATUS_GOOD;
} /* switch */
} /* else */
return SANE_STATUS_INVAL;
}
/**
* Called by SANE when a page acquisition operation is to be started.
*
*/
SANE_Status
sane_start (SANE_Handle handle)
{
struct hp3500_data *scanner = handle;
int defaultFds[2];
int ret;
DBG (10, "sane_start\n");
if (scanner->sfd < 0)
{
/* first call */
DBG (10, "sane_start opening USB device\n");
if (sanei_usb_open (scanner->sane.name, &(scanner->sfd)) !=
SANE_STATUS_GOOD)
{
DBG (MSG_ERR,
"sane_start: open of %s failed:\n", scanner->sane.name);
return SANE_STATUS_INVAL;
}
}
calculateDerivedValues (scanner);
DBG (10, "\tbytes per line = %d\n", scanner->bytes_per_scan_line);
DBG (10, "\tpixels_per_line = %d\n", scanner->scan_width_pixels);
DBG (10, "\tlines = %d\n", scanner->scan_height_pixels);
/* create a pipe, fds[0]=read-fd, fds[1]=write-fd */
if (pipe (defaultFds) < 0)
{
DBG (MSG_ERR, "ERROR: could not create pipe\n");
do_cancel (scanner);
return SANE_STATUS_IO_ERROR;
}
scanner->pipe_r = defaultFds[0];
scanner->pipe_w = defaultFds[1];
ret = SANE_STATUS_GOOD;
scanner->reader_pid = sanei_thread_begin (reader_process, scanner);
time (&scanner->last_scan);
if (!sanei_thread_is_valid (scanner->reader_pid))
{
DBG (MSG_ERR, "cannot fork reader process.\n");
DBG (MSG_ERR, "%s", strerror (errno));
ret = SANE_STATUS_IO_ERROR;
}
if (sanei_thread_is_forked ())
{
close (scanner->pipe_w);
}
if (ret == SANE_STATUS_GOOD)
{
DBG (10, "sane_start: ok\n");
}
return ret;
}
/**
* Called by SANE to retrieve information about the type of data
* that the current scan will return.
*
* From the SANE spec:
* This function is used to obtain the current scan parameters. The
* returned parameters are guaranteed to be accurate between the time
* a scan has been started (sane_start() has been called) and the
* completion of that request. Outside of that window, the returned
* values are best-effort estimates of what the parameters will be
* when sane_start() gets invoked.
*
* Calling this function before a scan has actually started allows,
* for example, to get an estimate of how big the scanned image will
* be. The parameters passed to this function are the handle h of the
* device for which the parameters should be obtained and a pointer p
* to a parameter structure.
*/
SANE_Status
sane_get_parameters (SANE_Handle handle, SANE_Parameters * params)
{
struct hp3500_data *scanner = (struct hp3500_data *) handle;
DBG (10, "sane_get_parameters\n");
calculateDerivedValues (scanner);
params->format =
(scanner->mode == HP3500_COLOR_SCAN) ? SANE_FRAME_RGB : SANE_FRAME_GRAY;
params->depth = (scanner->mode == HP3500_LINEART_SCAN) ? 1 : 8;
params->pixels_per_line = scanner->scan_width_pixels;
params->lines = scanner->scan_height_pixels;
params->bytes_per_line = scanner->bytes_per_scan_line;
params->last_frame = 1;
DBG (10, "\tdepth %d\n", params->depth);
DBG (10, "\tlines %d\n", params->lines);
DBG (10, "\tpixels_per_line %d\n", params->pixels_per_line);
DBG (10, "\tbytes_per_line %d\n", params->bytes_per_line);
return SANE_STATUS_GOOD;
}
/**
* Called by SANE to read data.
*
* In this implementation, sane_read does nothing much besides reading
* data from a pipe and handing it back. On the other end of the pipe
* there's the reader process which gets data from the scanner and
* stuffs it into the pipe.
*
* From the SANE spec:
* This function is used to read image data from the device
* represented by handle h. Argument buf is a pointer to a memory
* area that is at least maxlen bytes long. The number of bytes
* returned is stored in *len. A backend must set this to zero when
* the call fails (i.e., when a status other than SANE_STATUS_GOOD is
* returned).
*
* When the call succeeds, the number of bytes returned can be
* anywhere in the range from 0 to maxlen bytes.
*/
SANE_Status
sane_read (SANE_Handle handle, SANE_Byte * buf,
SANE_Int max_len, SANE_Int * len)
{
struct hp3500_data *scanner = (struct hp3500_data *) handle;
ssize_t nread;
int source = scanner->pipe_r;
*len = 0;
nread = read (source, buf, max_len);
DBG (30, "sane_read: read %ld bytes of %ld\n",
(long) nread, (long) max_len);
if (nread < 0)
{
if (errno == EAGAIN)
{
return SANE_STATUS_GOOD;
}
else
{
do_cancel (scanner);
return SANE_STATUS_IO_ERROR;
}
}
*len = nread;
if (nread == 0)
{
close (source);
DBG (10, "sane_read: pipe closed\n");
return SANE_STATUS_EOF;
}
return SANE_STATUS_GOOD;
} /* sane_read */
/**
* Cancels a scan.
*
* It has been said on the mailing list that sane_cancel is a bit of a
* misnomer because it is routinely called to signal the end of a
* batch - quoting David Mosberger-Tang:
*
* > In other words, the idea is to have sane_start() be called, and
* > collect as many images as the frontend wants (which could in turn
* > consist of multiple frames each as indicated by frame-type) and
* > when the frontend is done, it should call sane_cancel().
* > Sometimes it's better to think of sane_cancel() as "sane_stop()"
* > but that name would have had some misleading connotations as
* > well, that's why we stuck with "cancel".
*
* The current consensus regarding duplex and ADF scans seems to be
* the following call sequence: sane_start; sane_read (repeat until
* EOF); sane_start; sane_read... and then call sane_cancel if the
* batch is at an end. I.e. do not call sane_cancel during the run but
* as soon as you get a SANE_STATUS_NO_DOCS.
*
* From the SANE spec:
* This function is used to immediately or as quickly as possible
* cancel the currently pending operation of the device represented by
* handle h. This function can be called at any time (as long as
* handle h is a valid handle) but usually affects long-running
* operations only (such as image is acquisition). It is safe to call
* this function asynchronously (e.g., from within a signal handler).
* It is important to note that completion of this operation does not
* imply that the currently pending operation has been cancelled. It
* only guarantees that cancellation has been initiated. Cancellation
* completes only when the cancelled call returns (typically with a
* status value of SANE_STATUS_CANCELLED). Since the SANE API does
* not require any other operations to be re-entrant, this implies
* that a frontend must not call any other operation until the
* cancelled operation has returned.
*/
void
sane_cancel (SANE_Handle h)
{
DBG (10, "sane_cancel\n");
do_cancel ((struct hp3500_data *) h);
}
/**
* Ends use of the scanner.
*
* From the SANE spec:
* This function terminates the association between the device handle
* passed in argument h and the device it represents. If the device is
* presently active, a call to sane_cancel() is performed first. After
* this function returns, handle h must not be used anymore.
*/
void
sane_close (SANE_Handle handle)
{
DBG (10, "sane_close\n");
do_reset (handle);
do_cancel (handle);
}
/**
* Terminates the backend.
*
* From the SANE spec:
* This function must be called to terminate use of a backend. The
* function will first close all device handles that still might be
* open (it is recommended to close device handles explicitly through
* a call to sane_clo-se(), but backends are required to release all
* resources upon a call to this function). After this function
* returns, no function other than sane_init() may be called
* (regardless of the status value returned by sane_exit(). Neglecting
* to call this function may result in some resources not being
* released properly.
*/
void
sane_exit (void)
{
struct hp3500_data *dev, *next;
DBG (10, "sane_exit\n");
for (dev = first_dev; dev; dev = next)
{
next = dev->next;
free (dev->devicename);
free (dev);
}
if (devlist)
free (devlist);
}
/*
* The scanning code
*/
static SANE_Status
attachScanner (const char *devicename)
{
struct hp3500_data *dev;
DBG (15, "attach_scanner: %s\n", devicename);
for (dev = first_dev; dev; dev = dev->next)
{
if (strcmp (dev->sane.name, devicename) == 0)
{
DBG (5, "attach_scanner: scanner already attached (is ok)!\n");
return SANE_STATUS_GOOD;
}
}
if (NULL == (dev = malloc (sizeof (*dev))))
return SANE_STATUS_NO_MEM;
memset (dev, 0, sizeof (*dev));
dev->devicename = strdup (devicename);
dev->sfd = -1;
dev->last_scan = 0;
dev->reader_pid = (SANE_Pid) -1;
dev->pipe_r = dev->pipe_w = -1;
dev->sane.name = dev->devicename;
dev->sane.vendor = "Hewlett-Packard";
dev->sane.model = "ScanJet 3500";
dev->sane.type = "scanner";
++num_devices;
*new_dev = dev;
DBG (15, "attach_scanner: done\n");
return SANE_STATUS_GOOD;
}
static SANE_Status
init_options (struct hp3500_data *scanner)
{
int i;
SANE_Option_Descriptor *opt;
memset (scanner->opt, 0, sizeof (scanner->opt));
for (i = 0; i < NUM_OPTIONS; ++i)
{
scanner->opt[i].name = "filler";
scanner->opt[i].size = sizeof (SANE_Word);
scanner->opt[i].cap = SANE_CAP_INACTIVE;
}
opt = scanner->opt + OPT_NUM_OPTS;
opt->title = SANE_TITLE_NUM_OPTIONS;
opt->desc = SANE_DESC_NUM_OPTIONS;
opt->type = SANE_TYPE_INT;
opt->cap = SANE_CAP_SOFT_DETECT;
opt = scanner->opt + OPT_RESOLUTION;
opt->name = SANE_NAME_SCAN_RESOLUTION;
opt->title = SANE_TITLE_SCAN_RESOLUTION;
opt->desc = SANE_DESC_SCAN_RESOLUTION;
opt->type = SANE_TYPE_INT;
opt->constraint_type = SANE_CONSTRAINT_WORD_LIST;
opt->constraint.word_list = res_list;
opt->unit = SANE_UNIT_DPI;
opt->cap = SANE_CAP_SOFT_SELECT | SANE_CAP_SOFT_DETECT;
opt = scanner->opt + OPT_GEOMETRY_GROUP;
opt->title = SANE_I18N ("Geometry");
opt->desc = SANE_I18N ("Geometry Group");
opt->type = SANE_TYPE_GROUP;
opt->constraint_type = SANE_CONSTRAINT_NONE;
opt = scanner->opt + OPT_TL_X;
opt->name = SANE_NAME_SCAN_TL_X;
opt->title = SANE_TITLE_SCAN_TL_X;
opt->desc = SANE_DESC_SCAN_TL_X;
opt->type = SANE_TYPE_FIXED;
opt->unit = SANE_UNIT_MM;
opt->constraint_type = SANE_CONSTRAINT_RANGE;
opt->constraint.range = &range_x;
opt->cap = SANE_CAP_SOFT_SELECT | SANE_CAP_SOFT_DETECT;
opt = scanner->opt + OPT_TL_Y;
opt->name = SANE_NAME_SCAN_TL_Y;
opt->title = SANE_TITLE_SCAN_TL_Y;
opt->desc = SANE_DESC_SCAN_TL_Y;
opt->type = SANE_TYPE_FIXED;
opt->unit = SANE_UNIT_MM;
opt->constraint_type = SANE_CONSTRAINT_RANGE;
opt->constraint.range = &range_y;
opt->cap = SANE_CAP_SOFT_SELECT | SANE_CAP_SOFT_DETECT;
opt = scanner->opt + OPT_BR_X;
opt->name = SANE_NAME_SCAN_BR_X;
opt->title = SANE_TITLE_SCAN_BR_X;
opt->desc = SANE_DESC_SCAN_BR_X;
opt->type = SANE_TYPE_FIXED;
opt->unit = SANE_UNIT_MM;
opt->constraint_type = SANE_CONSTRAINT_RANGE;
opt->constraint.range = &range_x;
opt->cap = SANE_CAP_SOFT_SELECT | SANE_CAP_SOFT_DETECT;
opt = scanner->opt + OPT_BR_Y;
opt->name = SANE_NAME_SCAN_BR_Y;
opt->title = SANE_TITLE_SCAN_BR_Y;
opt->desc = SANE_DESC_SCAN_BR_Y;
opt->type = SANE_TYPE_FIXED;
opt->unit = SANE_UNIT_MM;
opt->constraint_type = SANE_CONSTRAINT_RANGE;
opt->constraint.range = &range_y;
opt->cap = SANE_CAP_SOFT_SELECT | SANE_CAP_SOFT_DETECT;
if (!scan_mode_list[0])
{
scan_mode_list[HP3500_COLOR_SCAN] = SANE_VALUE_SCAN_MODE_COLOR;
scan_mode_list[HP3500_GRAY_SCAN] = SANE_VALUE_SCAN_MODE_GRAY;
scan_mode_list[HP3500_LINEART_SCAN] = SANE_VALUE_SCAN_MODE_LINEART;
scan_mode_list[HP3500_TOTAL_SCANS] = 0;
}
opt = scanner->opt + OPT_MODE_GROUP;
opt->title = SANE_I18N ("Scan Mode Group");
opt->desc = SANE_I18N ("Scan Mode Group");
opt->type = SANE_TYPE_GROUP;
opt->constraint_type = SANE_CONSTRAINT_NONE;
opt = scanner->opt + OPT_MODE;
opt->name = SANE_NAME_SCAN_MODE;
opt->title = SANE_TITLE_SCAN_MODE;
opt->desc = SANE_DESC_SCAN_MODE;
opt->type = SANE_TYPE_STRING;
opt->size = max_string_size(scan_mode_list);
opt->constraint_type = SANE_CONSTRAINT_STRING_LIST;
opt->constraint.string_list = (SANE_String_Const *) scan_mode_list;
opt->cap = SANE_CAP_SOFT_SELECT | SANE_CAP_SOFT_DETECT;
opt = scanner->opt + OPT_BRIGHTNESS;
opt->name = SANE_NAME_BRIGHTNESS;
opt->title = SANE_TITLE_BRIGHTNESS;
opt->desc = SANE_DESC_BRIGHTNESS;
opt->type = SANE_TYPE_INT;
opt->constraint_type = SANE_CONSTRAINT_RANGE;
opt->constraint.range = &range_brightness;
opt->cap = SANE_CAP_SOFT_SELECT | SANE_CAP_SOFT_DETECT;
opt = scanner->opt + OPT_CONTRAST;
opt->name = SANE_NAME_CONTRAST;
opt->title = SANE_TITLE_CONTRAST;
opt->desc = SANE_DESC_CONTRAST;
opt->type = SANE_TYPE_INT;
opt->constraint_type = SANE_CONSTRAINT_RANGE;
opt->constraint.range = &range_contrast;
opt->cap = SANE_CAP_SOFT_SELECT | SANE_CAP_SOFT_DETECT;
opt = scanner->opt + OPT_GAMMA;
opt->name = SANE_NAME_ANALOG_GAMMA;
opt->title = SANE_TITLE_ANALOG_GAMMA;
opt->desc = SANE_DESC_ANALOG_GAMMA;
opt->type = SANE_TYPE_FIXED;
opt->unit = SANE_UNIT_NONE;
opt->constraint_type = SANE_CONSTRAINT_RANGE;
opt->constraint.range = &range_gamma;
opt->cap = SANE_CAP_SOFT_SELECT | SANE_CAP_SOFT_DETECT;
return SANE_STATUS_GOOD;
}
static void
do_reset (struct hp3500_data *scanner)
{
scanner = scanner; /* kill warning */
}
static void
do_cancel (struct hp3500_data *scanner)
{
if (sanei_thread_is_valid (scanner->reader_pid))
{
if (sanei_thread_kill (scanner->reader_pid) == 0)
{
int exit_status;
sanei_thread_waitpid (scanner->reader_pid, &exit_status);
}
sanei_thread_invalidate (scanner->reader_pid);
}
if (scanner->pipe_r >= 0)
{
close (scanner->pipe_r);
scanner->pipe_r = -1;
}
}
static void
calculateDerivedValues (struct hp3500_data *scanner)
{
DBG (12, "calculateDerivedValues\n");
/* Convert the SANE_FIXED values for the scan area into 1/1200 inch
* scanner units */
scanner->fullres_pixels.left =
FIXED_MM_TO_SCANNER_UNIT (scanner->request_mm.left);
scanner->fullres_pixels.top =
FIXED_MM_TO_SCANNER_UNIT (scanner->request_mm.top);
scanner->fullres_pixels.right =
FIXED_MM_TO_SCANNER_UNIT (scanner->request_mm.right);
scanner->fullres_pixels.bottom =
FIXED_MM_TO_SCANNER_UNIT (scanner->request_mm.bottom);
DBG (12, "\tleft margin: %u\n", scanner->fullres_pixels.left);
DBG (12, "\ttop margin: %u\n", scanner->fullres_pixels.top);
DBG (12, "\tright margin: %u\n", scanner->fullres_pixels.right);
DBG (12, "\tbottom margin: %u\n", scanner->fullres_pixels.bottom);
scanner->scan_width_pixels =
scanner->resolution * (scanner->fullres_pixels.right -
scanner->fullres_pixels.left) / 1200;
scanner->scan_height_pixels =
scanner->resolution * (scanner->fullres_pixels.bottom -
scanner->fullres_pixels.top) / 1200;
if (scanner->mode == HP3500_LINEART_SCAN)
scanner->bytes_per_scan_line = (scanner->scan_width_pixels + 7) / 8;
else if (scanner->mode == HP3500_GRAY_SCAN)
scanner->bytes_per_scan_line = scanner->scan_width_pixels;
else
scanner->bytes_per_scan_line = scanner->scan_width_pixels * 3;
if (scanner->scan_width_pixels < 1)
scanner->scan_width_pixels = 1;
if (scanner->scan_height_pixels < 1)
scanner->scan_height_pixels = 1;
scanner->actres_pixels.left =
scanner->fullres_pixels.left * scanner->resolution / 1200;
scanner->actres_pixels.top =
scanner->fullres_pixels.top * scanner->resolution / 1200;
scanner->actres_pixels.right =
scanner->actres_pixels.left + scanner->scan_width_pixels;
scanner->actres_pixels.bottom =
scanner->actres_pixels.top + scanner->scan_height_pixels;
scanner->actual_mm.left =
SCANNER_UNIT_TO_FIXED_MM (scanner->fullres_pixels.left);
scanner->actual_mm.top =
SCANNER_UNIT_TO_FIXED_MM (scanner->fullres_pixels.top);
scanner->actual_mm.bottom =
SCANNER_UNIT_TO_FIXED_MM (scanner->scan_width_pixels * 1200 /
scanner->resolution);
scanner->actual_mm.right =
SCANNER_UNIT_TO_FIXED_MM (scanner->scan_height_pixels * 1200 /
scanner->resolution);
DBG (12, "calculateDerivedValues: ok\n");
}
/* From here on in we have the original code written for the scanner demo */
#define MAX_COMMANDS_BYTES 131072
#define MAX_READ_COMMANDS 1 /* Issuing more than one register
* read command in a single request
* seems to put the device in an
* unpredictable state.
*/
#define MAX_READ_BYTES 0xffc0
#define REG_DESTINATION_POSITION 0x60
#define REG_MOVE_CONTROL_TEST 0xb3
static int command_reads_outstanding = 0;
static int command_bytes_outstanding = 0;
static unsigned char command_buffer[MAX_COMMANDS_BYTES];
static int receive_bytes_outstanding = 0;
static char *command_readmem_outstanding[MAX_READ_COMMANDS];
static int command_readbytes_outstanding[MAX_READ_COMMANDS];
static unsigned char sram_access_method = 0;
static unsigned sram_size = 0;
static int udh;
static int
rt_execute_commands (void)
{
SANE_Status result;
size_t bytes;
if (!command_bytes_outstanding)
return 0;
bytes = command_bytes_outstanding;
result = sanei_usb_write_bulk (udh, /* 0x02, */ command_buffer, &bytes);
if (result == SANE_STATUS_GOOD && receive_bytes_outstanding)
{
unsigned char readbuf[MAX_READ_BYTES];
int total_read = 0;
do
{
bytes = receive_bytes_outstanding - total_read;
result = sanei_usb_read_bulk (udh,
/* 0x81, */
readbuf + total_read, &bytes);
if (result == SANE_STATUS_GOOD)
total_read += bytes;
else
break;
}
while (total_read < receive_bytes_outstanding);
if (result == SANE_STATUS_GOOD)
{
unsigned char *readptr;
int i;
for (i = 0, readptr = readbuf;
i < command_reads_outstanding;
readptr += command_readbytes_outstanding[i++])
{
memcpy (command_readmem_outstanding[i],
readptr, command_readbytes_outstanding[i]);
}
}
}
receive_bytes_outstanding = command_reads_outstanding =
command_bytes_outstanding = 0;
return (result == SANE_STATUS_GOOD) ? 0 : -1;
}
static int
rt_queue_command (int command,
int reg,
int count,
int bytes, void const *data_, int readbytes, void *readdata)
{
int len = 4 + bytes;
unsigned char *buffer;
unsigned char const *data = data_;
/* We add "bytes" here to account for the possibility that all of the
* data bytes are 0xaa and hence require a following 0x00 byte.
*/
if (command_bytes_outstanding + len + bytes > MAX_COMMANDS_BYTES ||
(readbytes &&
((command_reads_outstanding >= MAX_READ_COMMANDS) ||
(receive_bytes_outstanding >= MAX_READ_BYTES))))
{
if (rt_execute_commands () < 0)
return -1;
}
buffer = command_buffer + command_bytes_outstanding;
*buffer++ = command;
*buffer++ = reg;
*buffer++ = count >> 8;
*buffer++ = count;
while (bytes--)
{
*buffer++ = *data;
if (*data++ == 0xaa)
{
*buffer++ = 0;
++len;
}
}
command_bytes_outstanding += len;
if (readbytes)
{
command_readbytes_outstanding[command_reads_outstanding] = readbytes;
command_readmem_outstanding[command_reads_outstanding] = readdata;
receive_bytes_outstanding += readbytes;
++command_reads_outstanding;
}
return 0;
}
static int
rt_send_command_immediate (int command,
int reg,
int count,
int bytes,
void *data, int readbytes, void *readdata)
{
rt_queue_command (command, reg, count, bytes, data, readbytes, readdata);
return rt_execute_commands ();
}
static int
rt_queue_read_register (int reg, int bytes, void *data)
{
return rt_queue_command (RTCMD_GETREG, reg, bytes, 0, 0, bytes, data);
}
static int
rt_read_register_immediate (int reg, int bytes, void *data)
{
if (rt_queue_read_register (reg, bytes, data) < 0)
return -1;
return rt_execute_commands ();
}
static int
rt_queue_set_register (int reg, int bytes, void *data)
{
return rt_queue_command (RTCMD_SETREG, reg, bytes, bytes, data, 0, 0);
}
static int
rt_set_register_immediate (int reg, int bytes, void *data)
{
if (reg < 0xb3 && reg + bytes > 0xb3)
{
int bytes_in_first_block = 0xb3 - reg;
if (rt_set_register_immediate (reg, bytes_in_first_block, data) < 0 ||
rt_set_register_immediate (0xb4, bytes - bytes_in_first_block - 1,
(char *) data + bytes_in_first_block +
1) < 0)
return -1;
return 0;
}
if (rt_queue_set_register (reg, bytes, data) < 0)
return -1;
return rt_execute_commands ();
}
static int
rt_set_one_register (int reg, int val)
{
char r = val;
return rt_set_register_immediate (reg, 1, &r);
}
static int
rt_write_sram (int bytes, void *data_)
{
unsigned char *data = (unsigned char *) data_;
/* The number of bytes passed in could be much larger than we can transmit
* (0xffc0) bytes. With 0xaa escapes it could be even larger. Accordingly
* we need to count the 0xaa escapes and write in chunks if the number of
* bytes would otherwise exceed a limit (I have used 0xf000 as the limit).
*/
while (bytes > 0)
{
int now = 0;
int bufsize = 0;
while (now < bytes && bufsize < 0xf000)
{
int i;
/* Try to avoid writing part pages */
for (i = 0; i < 32 && now < bytes; ++i)
{
++bufsize;
if (data[now++] == 0xaa)
++bufsize;
}
}
if (rt_send_command_immediate (RTCMD_WRITESRAM, 0, now, now, data, 0,
0) < 0)
return -1;
bytes -= now;
data += now;
}
return 0;
}
static int
rt_read_sram (int bytes, void *data_)
{
unsigned char *data = (unsigned char *) data_;
while (bytes > 0)
{
int now = (bytes > 0xf000) ? 0xf000 : bytes;
if (rt_send_command_immediate (RTCMD_READSRAM, 0, bytes, 0, 0, bytes,
data) < 0)
return -1;
bytes -= now;
data += now;
}
return 0;
}
static int
rt_set_sram_page (int page)
{
unsigned char regs[2];
regs[0] = page;
regs[1] = page >> 8;
return rt_set_register_immediate (0x91, 2, regs);
}
static int
rt_detect_sram (unsigned *totalbytes, unsigned char *r93setting)
{
char data[0x818];
char testbuf[0x818];
unsigned i;
int test_values[] = { 6, 2, 1, -1 };
for (i = 0; i < sizeof (data); ++i)
data[i] = i % 0x61;
for (i = 0; test_values[i] != -1; ++i)
{
if (rt_set_one_register (0x93, test_values[i]) ||
rt_set_sram_page (0x81) ||
rt_write_sram (0x818, data) ||
rt_set_sram_page (0x81) || rt_read_sram (0x818, testbuf))
return -1;
if (!memcmp (testbuf, data, 0x818))
{
sram_access_method = test_values[i];
if (r93setting)
*r93setting = sram_access_method;
break;
}
}
if (!sram_access_method)
return -1;
for (i = 0; i < 16; ++i)
{
int j;
char write_data[32];
char read_data[32];
int pagesetting;
for (j = 0; j < 16; j++)
{
write_data[j * 2] = j * 2;
write_data[j * 2 + 1] = i;
}
pagesetting = i * 4096;
if (rt_set_sram_page (pagesetting) < 0 ||
rt_write_sram (32, write_data) < 0)
return -1;
if (i)
{
if (rt_set_sram_page (0) < 0 || rt_read_sram (32, read_data) < 0)
return -1;
if (!memcmp (read_data, write_data, 32))
{
sram_size = i * 0x20000;
if (totalbytes)
*totalbytes = sram_size;
return 0;
}
}
}
return -1;
}
static int
rt_get_available_bytes (void)
{
unsigned char data[3];
if (rt_queue_command (RTCMD_BYTESAVAIL, 0, 3, 0, 0, 3, data) < 0 ||
rt_execute_commands () < 0)
return -1;
return ((unsigned) data[0]) |
((unsigned) data[1] << 8) | ((unsigned) data[2] << 16);
}
static int
rt_get_data (int bytes, void *data)
{
int total = 0;
while (bytes)
{
int bytesnow = bytes;
if (bytesnow > 0xffc0)
bytesnow = 0xffc0;
if (rt_queue_command
(RTCMD_READBYTES, 0, bytesnow, 0, 0, bytesnow, data) < 0
|| rt_execute_commands () < 0)
return -1;
total += bytesnow;
bytes -= bytesnow;
data = (char *) data + bytesnow;
}
return 0;
}
static int
rt_is_moving (void)
{
char r;
if (rt_read_register_immediate (REG_MOVE_CONTROL_TEST, 1, &r) < 0)
return -1;
if (r == 0x08)
return 1;
return 0;
}
static int
rt_is_rewound (void)
{
char r;
if (rt_read_register_immediate (0x1d, 1, &r) < 0)
return -1;
if (r & 0x02)
return 1;
return 0;
}
static int
rt_set_direction_forwards (unsigned char *regs)
{
regs[0xc6] |= 0x08;
return 0;
}
static int
rt_set_direction_rewind (unsigned char *regs)
{
regs[0xc6] &= 0xf7;
return 0;
}
static int
rt_set_stop_when_rewound (unsigned char *regs, int stop)
{
if (stop)
regs[0xb2] |= 0x10;
else
regs[0xb2] &= 0xef;
return 0;
}
static int
rt_start_moving (void)
{
if (rt_set_one_register (REG_MOVE_CONTROL_TEST, 2) < 0 ||
rt_set_one_register (REG_MOVE_CONTROL_TEST, 2) < 0 ||
rt_set_one_register (REG_MOVE_CONTROL_TEST, 0) < 0 ||
rt_set_one_register (REG_MOVE_CONTROL_TEST, 0) < 0 ||
rt_set_one_register (REG_MOVE_CONTROL_TEST, 8) < 0 ||
rt_set_one_register (REG_MOVE_CONTROL_TEST, 8) < 0)
return -1;
return 0;
}
static int
rt_stop_moving (void)
{
if (rt_set_one_register (REG_MOVE_CONTROL_TEST, 2) < 0 ||
rt_set_one_register (REG_MOVE_CONTROL_TEST, 2) < 0 ||
rt_set_one_register (REG_MOVE_CONTROL_TEST, 0) < 0 ||
rt_set_one_register (REG_MOVE_CONTROL_TEST, 0) < 0)
return -1;
return 0;
}
static int
rt_set_powersave_mode (int enable)
{
unsigned char r;
if (rt_read_register_immediate (REG_MOVE_CONTROL_TEST, 1, &r) < 0)
return -1;
if (r & 0x04)
{
if (enable == 1)
return 0;
r &= ~0x04;
}
else
{
if (enable == 0)
return 0;
r |= 0x04;
}
if (rt_set_one_register (REG_MOVE_CONTROL_TEST, r) < 0 ||
rt_set_one_register (REG_MOVE_CONTROL_TEST, r) < 0)
return -1;
return 0;
}
static int
rt_turn_off_lamp (void)
{
return rt_set_one_register (0x3a, 0);
}
static int
rt_turn_on_lamp (void)
{
char r3ab[2];
char r10;
char r58;
if (rt_read_register_immediate (0x3a, 1, r3ab) < 0 ||
rt_read_register_immediate (0x10, 1, &r10) < 0 ||
rt_read_register_immediate (0x58, 1, &r58) < 0)
return -1;
r3ab[0] |= 0x80;
r3ab[1] = 0x40;
r10 |= 0x01;
r58 &= 0x0f;
if (rt_set_register_immediate (0x3a, 2, r3ab) < 0 ||
rt_set_one_register (0x10, r10) < 0 ||
rt_set_one_register (0x58, r58) < 0)
return -1;
return 0;
}
static int
rt_set_value_lsbfirst (unsigned char *regs,
int firstreg, int totalregs, unsigned value)
{
while (totalregs--)
{
regs[firstreg++] = value & 0xff;
value >>= 8;
}
return 0;
}
#if 0
static int
rt_set_value_msbfirst (unsigned char *regs,
int firstreg, int totalregs, unsigned value)
{
while (totalregs--)
{
regs[firstreg + totalregs] = value & 0xff;
value >>= 8;
}
return 0;
}
#endif
static int
rt_set_ccd_shift_clock_multiplier (unsigned char *regs, unsigned value)
{
return rt_set_value_lsbfirst (regs, 0xf0, 3, value);
}
static int
rt_set_ccd_clock_reset_interval (unsigned char *regs, unsigned value)
{
return rt_set_value_lsbfirst (regs, 0xf9, 3, value);
}
static int
rt_set_ccd_clamp_clock_multiplier (unsigned char *regs, unsigned value)
{
return rt_set_value_lsbfirst (regs, 0xfc, 3, value);
}
static int
rt_set_movement_pattern (unsigned char *regs, unsigned value)
{
return rt_set_value_lsbfirst (regs, 0xc0, 3, value);
}
static int
rt_set_motor_movement_clock_multiplier (unsigned char *regs, unsigned value)
{
regs[0x40] = (regs[0x40] & ~0xc0) | (value << 6);
return 0;
}
static int
rt_set_motor_type (unsigned char *regs, unsigned value)
{
regs[0xc9] = (regs[0xc9] & 0xf8) | (value & 0x7);
return 0;
}
static int
rt_set_noscan_distance (unsigned char *regs, unsigned value)
{
DBG (10, "Setting distance without scanning to %d\n", value);
return rt_set_value_lsbfirst (regs, 0x60, 2, value);
}
static int
rt_set_total_distance (unsigned char *regs, unsigned value)
{
DBG (10, "Setting total distance to %d\n", value);
return rt_set_value_lsbfirst (regs, 0x62, 2, value);
}
static int
rt_set_scanline_start (unsigned char *regs, unsigned value)
{
return rt_set_value_lsbfirst (regs, 0x66, 2, value);
}
static int
rt_set_scanline_end (unsigned char *regs, unsigned value)
{
return rt_set_value_lsbfirst (regs, 0x6c, 2, value);
}
static int
rt_set_basic_calibration (unsigned char *regs,
int redoffset1,
int redoffset2,
int redgain,
int greenoffset1,
int greenoffset2,
int greengain,
int blueoffset1, int blueoffset2, int bluegain)
{
regs[0x02] = redoffset1;
regs[0x05] = redoffset2;
regs[0x08] = redgain;
regs[0x03] = greenoffset1;
regs[0x06] = greenoffset2;
regs[0x09] = greengain;
regs[0x04] = blueoffset1;
regs[0x07] = blueoffset2;
regs[0x0a] = bluegain;
return 0;
}
static int
rt_set_calibration_addresses (unsigned char *regs,
unsigned redaddr,
unsigned greenaddr,
unsigned blueaddr,
unsigned endaddr,
unsigned width)
{
unsigned endpage = (endaddr + 31) / 32;
unsigned scanline_pages = ((width + 1) * 3 + 31) / 32;
/* Red, green and blue detailed calibration addresses */
regs[0x84] = redaddr;
regs[0x8e] = (regs[0x8e] & 0x0f) | ((redaddr >> 4) & 0xf0);
rt_set_value_lsbfirst (regs, 0x85, 2, greenaddr);
rt_set_value_lsbfirst (regs, 0x87, 2, blueaddr);
/* I don't know what the next three are used for, but each buffer commencing
* at 0x80 and 0x82 needs to hold a full scan line.
*/
rt_set_value_lsbfirst (regs, 0x80, 2, endpage);
rt_set_value_lsbfirst (regs, 0x82, 2, endpage + scanline_pages);
rt_set_value_lsbfirst (regs, 0x89, 2, endpage + scanline_pages * 2);
/* I don't know what this is, but it seems to be a number of pages that can hold
* 16 complete scan lines, but not calculated as an offset from any other page
*/
rt_set_value_lsbfirst (regs, 0x51, 2, (48 * (width + 1) + 31) / 32);
/* I don't know what this is either, but this is what the Windows driver does */
rt_set_value_lsbfirst (regs, 0x8f, 2, 0x1c00);
return 0;
}
static int
rt_set_lamp_duty_cycle (unsigned char *regs,
int enable, int frequency, int offduty)
{
if (enable)
regs[0x3b] |= 0x80;
else
regs[0x3b] &= 0x7f;
regs[0x3b] =
(regs[0x3b] & 0x80) | ((frequency & 0x7) << 4) | (offduty & 0x0f);
regs[0x3d] = (regs[0x3d] & 0x7f) | ((frequency & 0x8) << 4);
return 0;
}
static int
rt_set_data_feed_on (unsigned char *regs)
{
regs[0xb2] &= ~0x04;
return 0;
}
static int
rt_set_data_feed_off (unsigned char *regs)
{
regs[0xb2] |= 0x04;
return 0;
}
static int
rt_enable_ccd (unsigned char *regs, int enable)
{
if (enable)
regs[0x00] &= ~0x10;
else
regs[0x00] |= 0x10;
return 0;
}
static int
rt_set_cdss (unsigned char *regs, int val1, int val2)
{
regs[0x28] = (regs[0x28] & 0xe0) | (val1 & 0x1f);
regs[0x2a] = (regs[0x2a] & 0xe0) | (val2 & 0x1f);
return 0;
}
static int
rt_set_cdsc (unsigned char *regs, int val1, int val2)
{
regs[0x29] = (regs[0x29] & 0xe0) | (val1 & 0x1f);
regs[0x2b] = (regs[0x2b] & 0xe0) | (val2 & 0x1f);
return 0;
}
static int
rt_update_after_setting_cdss2 (unsigned char *regs)
{
int fullcolour = (!(regs[0x2f] & 0xc0) && (regs[0x2f] & 0x04));
int value = regs[0x2a] & 0x1f;
regs[0x2a] = (regs[0x2a] & 0xe0) | (value & 0x1f);
if (fullcolour)
value *= 3;
if ((regs[0x40] & 0xc0) == 0x40)
value += 17;
else
value += 16;
regs[0x2c] = (regs[0x2c] & 0xe0) | (value % 24);
regs[0x2d] = (regs[0x2d] & 0xe0) | ((value + 2) % 24);
return 0;
}
static int
rt_set_cph0s (unsigned char *regs, int on)
{
if (on)
regs[0x2d] |= 0x20; /* 1200dpi horizontal coordinate space */
else
regs[0x2d] &= ~0x20; /* 600dpi horizontal coordinate space */
return 0;
}
static int
rt_set_cvtr_lm (unsigned char *regs, int val1, int val2, int val3)
{
regs[0x28] = (regs[0x28] & ~0xe0) | (val1 << 5);
regs[0x29] = (regs[0x29] & ~0xe0) | (val2 << 5);
regs[0x2a] = (regs[0x2a] & ~0xe0) | (val3 << 5);
return 0;
}
static int
rt_set_cvtr_mpt (unsigned char *regs, int val1, int val2, int val3)
{
regs[0x3c] = (val1 & 0x0f) | (val2 << 4);
regs[0x3d] = (regs[0x3d] & 0xf0) | (val3 & 0x0f);
return 0;
}
static int
rt_set_cvtr_wparams (unsigned char *regs,
unsigned fpw, unsigned bpw, unsigned w)
{
regs[0x31] = (w & 0x0f) | ((bpw << 4) & 0x30) | (fpw << 6);
return 0;
}
static int
rt_enable_movement (unsigned char *regs, int enable)
{
if (enable)
regs[0xc3] |= 0x80;
else
regs[0xc3] &= ~0x80;
return 0;
}
static int
rt_set_scan_frequency (unsigned char *regs, int frequency)
{
regs[0x64] = (regs[0x64] & 0xf0) | (frequency & 0x0f);
return 0;
}
static int
rt_set_merge_channels (unsigned char *regs, int on)
{
/* RGBRGB instead of RRRRR...GGGGG...BBBB */
regs[0x2f] &= ~0x14;
regs[0x2f] |= on ? 0x04 : 0x10;
return 0;
}
static int
rt_set_channel (unsigned char *regs, int channel)
{
regs[0x2f] = (regs[0x2f] & ~0xc0) | (channel << 6);
return 0;
}
static int
rt_set_single_channel_scanning (unsigned char *regs, int on)
{
if (on)
regs[0x2f] |= 0x20;
else
regs[0x2f] &= ~0x20;
return 0;
}
static int
rt_set_colour_mode (unsigned char *regs, int on)
{
if (on)
regs[0x2f] |= 0x02;
else
regs[0x2f] &= ~0x02;
return 0;
}
static int
rt_set_horizontal_resolution (unsigned char *regs, int resolution)
{
int base_resolution = 300;
if (regs[0x2d] & 0x20)
base_resolution *= 2;
if (regs[0xd3] & 0x08)
base_resolution *= 2;
regs[0x7a] = base_resolution / resolution;
return 0;
}
static int
rt_set_last_sram_page (unsigned char *regs, int pagenum)
{
rt_set_value_lsbfirst (regs, 0x8b, 2, pagenum);
return 0;
}
static int
rt_set_step_size (unsigned char *regs, int stepsize)
{
rt_set_value_lsbfirst (regs, 0xe2, 2, stepsize);
rt_set_value_lsbfirst (regs, 0xe0, 2, 0);
return 0;
}
static int
rt_set_all_registers (void const *regs_)
{
char regs[255];
memcpy (regs, regs_, 255);
regs[0x32] &= ~0x40;
if (rt_set_one_register (0x32, regs[0x32]) < 0 ||
rt_set_register_immediate (0, 255, regs) < 0 ||
rt_set_one_register (0x32, regs[0x32] | 0x40) < 0)
return -1;
return 0;
}
static int
rt_adjust_misc_registers (unsigned char *regs)
{
/* Mostly unknown purposes - probably no need to adjust */
regs[0xc6] = (regs[0xc6] & 0x0f) | 0x20; /* Purpose unknown - appears to do nothing */
regs[0x2e] = 0x86; /* ???? - Always has this value */
regs[0x30] = 2; /* CCPL = 1 */
regs[0xc9] |= 0x38; /* Doesn't have any obvious effect, but the Windows driver does this */
return 0;
}
#define NVR_MAX_ADDRESS_SIZE 11
#define NVR_MAX_OPCODE_SIZE 3
#define NVR_DATA_SIZE 8
#define NVR_MAX_COMMAND_SIZE ((NVR_MAX_ADDRESS_SIZE + \
NVR_MAX_OPCODE_SIZE + \
NVR_DATA_SIZE) * 2 + 1)
static int
rt_nvram_enable_controller (int enable)
{
unsigned char r;
if (rt_read_register_immediate (0x1d, 1, &r) < 0)
return -1;
if (enable)
r |= 1;
else
r &= ~1;
return rt_set_one_register (0x1d, r);
}
static int
rt_nvram_init_command (void)
{
unsigned char regs[13];
if (rt_read_register_immediate (0x10, 13, regs) < 0)
return -1;
regs[2] |= 0xf0;
regs[4] = (regs[4] & 0x1f) | 0x60;
return rt_set_register_immediate (0x10, 13, regs);
}
static int
rt_nvram_init_stdvars (int block, int *addrbits, unsigned char *basereg)
{
int bitsneeded;
int capacity;
switch (block)
{
case 0:
bitsneeded = 7;
break;
case 1:
bitsneeded = 9;
break;
case 2:
bitsneeded = 11;
break;
default:
bitsneeded = 0;
capacity = 1;
while (capacity < block)
capacity <<= 1, ++bitsneeded;
break;
}
*addrbits = bitsneeded;
if (rt_read_register_immediate (0x10, 1, basereg) < 0)
return -1;
*basereg &= ~0x60;
return 0;
}
static void
rt_nvram_set_half_bit (unsigned char *buffer,
int value, unsigned char stdbits, int whichhalf)
{
*buffer = stdbits | (value ? 0x40 : 0) | (whichhalf ? 0x20 : 0);
}
static void
rt_nvram_set_command_bit (unsigned char *buffer,
int value, unsigned char stdbits)
{
rt_nvram_set_half_bit (buffer, value, stdbits, 0);
rt_nvram_set_half_bit (buffer + 1, value, stdbits, 1);
}
static void
rt_nvram_set_addressing_bits (unsigned char *buffer,
int location,
int addressingbits, unsigned char stdbits)
{
int currentbit = 1 << (addressingbits - 1);
while (addressingbits--)
{
rt_nvram_set_command_bit (buffer,
(location & currentbit) ? 1 : 0, stdbits);
buffer += 2;
currentbit >>= 1;
}
}
#if 0
static int
rt_nvram_enable_write (int addressingbits, int enable, unsigned char stdbits)
{
unsigned char cmdbuffer[NVR_MAX_COMMAND_SIZE];
int cmdsize = 6 + addressingbits * 2;
rt_nvram_set_command_bit (cmdbuffer, 1, stdbits);
rt_nvram_set_command_bit (cmdbuffer + 2, 0, stdbits);
rt_nvram_set_command_bit (cmdbuffer + 4, 0, stdbits);
rt_nvram_set_command_bit (cmdbuffer + 6, enable, stdbits);
if (addressingbits > 1)
rt_nvram_set_addressing_bits (cmdbuffer + 8, 0, addressingbits - 1,
stdbits);
if (rt_nvram_enable_controller (1) < 0 ||
rt_send_command_immediate (RTCMD_NVRAMCONTROL, 0, cmdsize, cmdsize,
cmdbuffer, 0, 0) < 0
|| rt_nvram_enable_controller (0) < 0)
{
return -1;
}
return 0;
}
static int
rt_nvram_write (int block, int location, char const *data, int bytes)
{
int addressingbits;
unsigned char stdbits;
unsigned char cmdbuffer[NVR_MAX_COMMAND_SIZE];
unsigned char *address_bits;
unsigned char *data_bits;
int cmdsize;
/* This routine doesn't appear to work, but I can't see anything wrong with it */
if (rt_nvram_init_stdvars (block, &addressingbits, &stdbits) < 0)
return -1;
cmdsize = (addressingbits + 8) * 2 + 6;
address_bits = cmdbuffer + 6;
data_bits = address_bits + (addressingbits * 2);
rt_nvram_set_command_bit (cmdbuffer, 1, stdbits);
rt_nvram_set_command_bit (cmdbuffer + 2, 0, stdbits);
rt_nvram_set_command_bit (cmdbuffer + 4, 1, stdbits);
if (rt_nvram_init_command () < 0 ||
rt_nvram_enable_write (addressingbits, 1, stdbits) < 0)
return -1;
while (bytes--)
{
int i;
rt_nvram_set_addressing_bits (address_bits, location, addressingbits,
stdbits);
rt_nvram_set_addressing_bits (data_bits, *data++, 8, stdbits);
if (rt_nvram_enable_controller (1) < 0 ||
rt_send_command_immediate (RTCMD_NVRAMCONTROL, 0, cmdsize, cmdsize,
cmdbuffer, 0, 0) < 0
|| rt_nvram_enable_controller (0) < 0)
return -1;
if (rt_nvram_enable_controller (1) < 0)
return -1;
for (i = 0; i < cmdsize; ++i)
{
unsigned char r;
unsigned char cmd;
rt_nvram_set_half_bit (&cmd, 0, stdbits, i & 1);
if (rt_send_command_immediate
(RTCMD_NVRAMCONTROL, 0, 1, 1, &cmd, 0, 0) < 0
|| rt_read_register_immediate (0x10, 1, &r) < 0)
{
return -1;
}
else if (r & 0x80)
{
break;
}
}
if (rt_nvram_enable_controller (0) < 0)
return -1;
++location;
}
if (rt_nvram_enable_write (addressingbits, 0, stdbits) < 0)
return -1;
return 0;
}
#endif
static int
rt_nvram_read (int block, int location, unsigned char *data, int bytes)
{
int addressingbits;
unsigned char stdbits;
unsigned char cmdbuffer[NVR_MAX_COMMAND_SIZE];
unsigned char *address_bits;
unsigned char readbit_command[2];
int cmdsize;
if (rt_nvram_init_stdvars (block, &addressingbits, &stdbits) < 0)
return -1;
cmdsize = addressingbits * 2 + 7;
address_bits = cmdbuffer + 6;
rt_nvram_set_command_bit (cmdbuffer, 1, stdbits);
rt_nvram_set_command_bit (cmdbuffer + 2, 1, stdbits);
rt_nvram_set_command_bit (cmdbuffer + 4, 0, stdbits);
rt_nvram_set_half_bit (cmdbuffer + cmdsize - 1, 0, stdbits, 0);
rt_nvram_set_half_bit (readbit_command, 0, stdbits, 1);
rt_nvram_set_half_bit (readbit_command + 1, 0, stdbits, 0);
if (rt_nvram_init_command () < 0)
return -1;
while (bytes--)
{
char c = 0;
unsigned char r;
int i;
rt_nvram_set_addressing_bits (address_bits, location, addressingbits,
stdbits);
if (rt_nvram_enable_controller (1) < 0 ||
rt_send_command_immediate (RTCMD_NVRAMCONTROL, 0x1d, cmdsize,
cmdsize, cmdbuffer, 0, 0) < 0)
return -1;
for (i = 0; i < 8; ++i)
{
c <<= 1;
if (rt_send_command_immediate
(RTCMD_NVRAMCONTROL, 0x1d, 2, 2, readbit_command, 0, 0) < 0
|| rt_read_register_immediate (0x10, 1, &r) < 0)
return -1;
if (r & 0x80)
c |= 1;
}
if (rt_nvram_enable_controller (0) < 0)
return -1;
*data++ = c;
++location;
}
return 0;
}
/* This is what we want as the initial registers, not what they
* are at power on time. In particular 13 bytes at 0x10 are
* different, and the byte at 0x94 is different.
*/
static unsigned char initial_regs[] = {
/* 0x00 */ 0xf5, 0x41, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 0x08 */ 0x00, 0x00, 0x00, 0x70, 0x00, 0x00, 0x00, 0x00,
/* 0x10 */ 0x81, 0x00, 0x01, 0x00, 0x01, 0x00, 0x00, 0x00,
/* 0x18 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00,
/* 0x20 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 0x28 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x06, 0x19,
/* 0x30 */ 0xd0, 0x7a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 0x38 */ 0x00, 0x00, 0xa0, 0x37, 0xff, 0x0f, 0x00, 0x00,
/* 0x40 */ 0x80, 0x00, 0x00, 0x00, 0x8c, 0x76, 0x00, 0x00,
/* 0x48 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 0x50 */ 0x20, 0xbc, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 0x58 */ 0x1d, 0x1f, 0x00, 0x1f, 0x00, 0x00, 0x00, 0x00,
/* 0x60 */ 0x5e, 0xea, 0x5f, 0xea, 0x00, 0x80, 0x64, 0x00,
/* 0x68 */ 0x00, 0x00, 0x00, 0x00, 0x84, 0x04, 0x00, 0x00,
/* 0x70 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 0x78 */ 0x00, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 0x80 */ 0x0f, 0x02, 0x4b, 0x02, 0x00, 0xec, 0x19, 0xd8,
/* 0x88 */ 0x2d, 0x87, 0x02, 0xff, 0x3f, 0x78, 0x60, 0x00,
/* 0x90 */ 0x1c, 0x00, 0x00, 0x00, 0x0e, 0x00, 0x00, 0x00,
/* 0x98 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 0xa0 */ 0x00, 0x00, 0x00, 0x0c, 0x27, 0x64, 0x00, 0x00,
/* 0xa8 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 0xb0 */ 0x12, 0x08, 0x06, 0x04, 0x00, 0x00, 0x00, 0x00,
/* 0xb8 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 0xc0 */ 0x00, 0x00, 0x80, 0x00, 0x10, 0x00, 0x00, 0x00,
/* 0xc8 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 0xd0 */ 0xff, 0xbf, 0xff, 0xff, 0x00, 0x00, 0xff, 0xff,
/* 0xd8 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 0xe0 */ 0x00, 0x00, 0x0f, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 0xe8 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 0xf0 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
/* 0xf8 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
#define RT_NORMAL_TG 0
#define RT_DOUBLE_TG 1
#define RT_TRIPLE_TG 2
#define RT_DDOUBLE_TG 3
#define RT_300_TG 4
#define RT_150_TG 5
#define RT_TEST_TG 6
static struct tg_info__
{
int tg_cph0p;
int tg_crsp;
int tg_cclpp;
int tg_cph0s;
int tg_cdss1;
int tg_cdsc1;
int tg_cdss2;
int tg_cdsc2;
} tg_info[] =
{
/* CPH CCD Shifting Clock
* 0P ??? Perhaps CCD rising edge position
* 0S ???
* CRS Reset CCD Clock
* P ??? Perhaps CCD falling edge position
* CCLP CCD Clamp Clock
* P ???
* CDS ???
* S1 ???
* S2 ???
* C1 ???
* C2 ???
*/
/*CPH0P CRSP CCLPP CPH0S CDSS1 CDSC1 CDSS2 CDSC2 */
{
0x01FFE0, 0x3c0000, 0x003000, 1, 0xb, 0xd, 0x00, 0x01}, /* NORMAL */
{
0x7ff800, 0xf00000, 0x01c000, 0, 0xb, 0xc, 0x14, 0x15}, /* DOUBLE */
{
0x033fcc, 0x300000, 0x060000, 1, 0x8, 0xa, 0x00, 0x01}, /* TRIPLE */
{
0x028028, 0x300000, 0x060000, 1, 0x8, 0xa, 0x00, 0x01}, /* DDOUBLE */
{
0x7ff800, 0x030000, 0x060000, 0, 0xa, 0xc, 0x17, 0x01}, /* 300 */
{
0x7fc700, 0x030000, 0x060000, 0, 0x7, 0x9, 0x17, 0x01}, /* 150 */
{
0x7ff800, 0x300000, 0x060000, 0, 0xa, 0xc, 0x17, 0x01}, /* TEST */
};
struct resolution_parameters
{
unsigned resolution;
int reg_39_value;
int reg_c3_value;
int reg_c6_value;
int scan_frequency;
int cph0s;
int red_green_offset;
int green_blue_offset;
int intra_channel_offset;
int motor_movement_clock_multiplier;
int d3_bit_3_value;
int tg;
int step_size;
};
/* The TG value sets seem to affect the exposure time:
* At 200dpi:
* NORMAL gets higher values than DOUBLE
* DDOUBLE gives a crazy spike in the data
* TRIPLE gives a black result
* TEST gives a black result
* 300 gives a black result
* 150 gives a black result
*/
static struct resolution_parameters resparms[] = {
/* Acceptable values for stepsz are:
* 0x157b 0xabd, 0x55e, 0x2af, 0x157, 0xab, 0x55
*/
/* My values - all work */
/*res r39 rC3 rC6 freq cph0s rgo gbo intra mmcm d3 tg stepsz */
{1200, 3, 6, 4, 2, 1, 22, 22, 4, 2, 1, RT_NORMAL_TG, 0x157b},
{600, 15, 6, 4, 1, 1, 9, 10, 0, 2, 1, RT_NORMAL_TG, 0x055e},
{400, 3, 1, 4, 1, 1, 6, 6, 1, 2, 1, RT_NORMAL_TG, 0x157b},
{300, 15, 3, 4, 1, 1, 5, 4, 0, 2, 1, RT_NORMAL_TG, 0x02af},
{200, 7, 1, 4, 1, 1, 3, 3, 0, 2, 1, RT_NORMAL_TG, 0x055e},
{150, 15, 3, 1, 1, 1, 2, 2, 0, 2, 1, RT_NORMAL_TG, 0x02af},
{100, 3, 1, 3, 1, 1, 1, 1, 0, 2, 1, RT_NORMAL_TG, 0x0abd},
{75, 15, 3, 3, 1, 1, 1, 1, 0, 2, 1, RT_NORMAL_TG, 0x02af},
{50, 15, 1, 1, 1, 1, 0, 0, 0, 2, 1, RT_NORMAL_TG, 0x055e},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
};
struct dcalibdata
{
unsigned char *buffers[3];
int pixelsperrow;
int pixelnow;
int channelnow;
int firstrowdone;
};
static void dump_registers (unsigned char const *);
static int
rts8801_rewind (void)
{
unsigned char regs[255];
int n;
int tg_setting = RT_DOUBLE_TG;
rt_read_register_immediate (0, 255, regs);
rt_set_noscan_distance (regs, 59998);
rt_set_total_distance (regs, 59999);
rt_set_stop_when_rewound (regs, 0);
rt_set_one_register (0xc6, 0);
rt_set_one_register (0xc6, 0);
rt_set_direction_rewind (regs);
rt_set_step_size (regs, 0x55);
regs[0x39] = 3;
regs[0xc3] = (regs[0xc3] & 0xf8) | 0x86;
regs[0xc6] = (regs[0xc6] & 0xf8) | 4;
rt_set_horizontal_resolution (regs, 25);
rt_set_ccd_shift_clock_multiplier (regs, tg_info[tg_setting].tg_cph0p);
rt_set_ccd_clock_reset_interval (regs, tg_info[tg_setting].tg_crsp);
rt_set_ccd_clamp_clock_multiplier (regs, tg_info[tg_setting].tg_cclpp);
rt_set_cdss (regs, tg_info[tg_setting].tg_cdss1,
tg_info[tg_setting].tg_cdss2);
rt_set_cdsc (regs, tg_info[tg_setting].tg_cdsc1,
tg_info[tg_setting].tg_cdsc2);
rt_update_after_setting_cdss2 (regs);
rt_set_cvtr_wparams (regs, 3, 0, 6);
rt_set_cvtr_mpt (regs, 15, 15, 15);
rt_set_cvtr_lm (regs, 7, 7, 7);
rt_set_motor_type (regs, 2);
if (DBG_LEVEL >= 5)
dump_registers (regs);
rt_set_all_registers (regs);
rt_set_one_register (0x2c, regs[0x2c]);
rt_start_moving ();
while (!rt_is_rewound () &&
((n = rt_get_available_bytes ()) > 0 || rt_is_moving () > 0))
{
if (n)
{
char buffer[0xffc0];
if (n > (int) sizeof (buffer))
n = sizeof (buffer);
rt_get_data (n, buffer);
}
else
{
usleep (10000);
}
}
rt_stop_moving ();
return 0;
}
static int cancelled_scan = 0;
static unsigned
get_lsbfirst_int (unsigned char const *p, int n)
{
unsigned value = *p++;
int shift = 8;
while (--n)
{
unsigned now = *p++;
value |= now << shift;
shift += 8;
}
return value;
}
static int
convert_c6 (int i)
{
switch (i)
{
case 3:
return 1;
case 1:
return 2;
case 4:
return 4;
}
return -1;
}
static void
dump_registers (unsigned char const *regs)
{
int i = 0;
long pixels;
DBG (5, "Scan commencing with registers:\n");
while (i < 255)
{
int j = 0;
char buffer[80];
buffer[0] = 0;
sprintf (buffer + strlen (buffer), "%02x:", i);
while (j < 8)
{
sprintf (buffer + strlen (buffer), " %02x", regs[i++]);
j++;
}
sprintf (buffer + strlen (buffer), " -");
while (j++ < 16 && i < 255)
sprintf (buffer + strlen (buffer), " %02x", regs[i++]);
DBG (5, " %s\n", buffer);
}
DBG (5, " Position:\n");
DBG (5, " Distance without scanning: %u\n",
get_lsbfirst_int (regs + 0x60, 2));
DBG (5, " Total distance: %u\n",
get_lsbfirst_int (regs + 0x62, 2));
DBG (5, " Scanning distance: %u\n",
get_lsbfirst_int (regs + 0x62, 2) - get_lsbfirst_int (regs + 0x60, 2));
DBG (5, " Direction: %s\n",
(regs[0xc6] & 0x08) ? "forward" : "rewind");
DBG (5, " Motor: %s\n",
(regs[0xc3] & 0x80) ? "enabled" : "disabled");
if (regs[0x7a])
DBG (5, " X range: %u-%u\n",
get_lsbfirst_int (regs + 0x66, 2) / regs[0x7a],
get_lsbfirst_int (regs + 0x6c, 2) / regs[0x7a]);
DBG (5, " TG Info:\n");
DBG (5, " CPH0P: %06x\n",
get_lsbfirst_int (regs + 0xf0, 3));
DBG (5, " CRSP: %06x\n",
get_lsbfirst_int (regs + 0xf9, 3));
DBG (5, " CCLPP: %06x\n",
get_lsbfirst_int (regs + 0xfc, 3));
DBG (5, " CPH0S: %d\n",
(regs[0x2d] & 0x20) ? 1 : 0);
DBG (5, " CDSS1: %02x\n", regs[0x28] & 0x1f);
DBG (5, " CDSC1: %02x\n", regs[0x29] & 0x1f);
DBG (5, " CDSS2: %02x\n", regs[0x2a] & 0x1f);
DBG (5, " CDSC2: %02x\n", regs[0x2b] & 0x1f);
DBG (5, " Resolution specific:\n");
if (!regs[0x7a])
DBG (5, " Horizontal resolution: Denominator is zero!\n");
else
DBG (5, " Horizontal resolution: %u\n", 300
* ((regs[0x2d] & 0x20) ? 2 : 1)
* ((regs[0xd3] & 0x08) ? 2 : 1) / regs[0x7a]);
DBG (5, " Derived vertical resolution: %u\n",
400 * (regs[0xc3] & 0x1f) * convert_c6 (regs[0xc6] & 0x7) /
(regs[0x39] + 1));
DBG (5, " Register D3:3 %u\n",
(regs[0xd3] & 0x08) ? 1 : 0);
DBG (5, " Register 39: %u\n", regs[0x39]);
DBG (5, " Register C3:0-5: %u\n", regs[0xc3] & 0x1f);
DBG (5, " Register C6:0-2: %u\n", regs[0xc6] & 0x7);
DBG (5, " Motor movement clock multiplier: %u\n", regs[0x40] >> 6);
DBG (5, " Step Size: %04x\n",
get_lsbfirst_int (regs + 0xe2, 2));
DBG (5, " Frequency: %u\n", regs[0x64] & 0xf);
DBG (5, " Colour registers\n");
DBG (5, " Register 2F: %02x\n", regs[0x2f]);
DBG (5, " Register 2C: %02x\n", regs[0x2c]);
if (regs[0x7a])
{
DBG (5, " Scan data estimates:\n");
pixels =
(long) (get_lsbfirst_int (regs + 0x62, 2) -
get_lsbfirst_int (regs + 0x60,
2)) * (long) (get_lsbfirst_int (regs + 0x6c,
2) -
get_lsbfirst_int (regs + 0x66,
2)) /
regs[0x7a];
DBG (5, " Pixels: %ld\n", pixels);
DBG (5, " Bytes at 24BPP: %ld\n", pixels * 3);
DBG (5, " Bytes at 1BPP: %ld\n", pixels / 8);
}
DBG (5, "\n");
}
static int
constrain (int val, int min, int max)
{
if (val < min)
{
DBG (10, "Clipped %d to %d\n", val, min);
val = min;
}
else if (val > max)
{
DBG (10, "Clipped %d to %d\n", val, max);
val = max;
}
return val;
}
#if 0
static void
sram_dump_byte(FILE *fp,
unsigned char const *left,
unsigned leftstart,
unsigned leftlimit,
unsigned char const *right,
unsigned rightstart,
unsigned rightlimit,
unsigned idx)
{
unsigned ridx = rightstart + idx;
unsigned lidx = leftstart + idx;
putc(' ', fp);
if (rightstart < rightlimit && leftstart < leftlimit && left[lidx] != right[ridx])
fputs("", fp);
if (leftstart < leftlimit)
fprintf(fp, "%02x", left[lidx]);
else
fputs(" ", fp);
if (rightstart < rightlimit && leftstart < leftlimit && left[lidx] != right[ridx])
fputs("", fp);
}
static void
dump_sram_to_file(char const *fname,
unsigned char const *expected,
unsigned end_calibration_offset)
{
FILE *fp = fopen(fname, "w");
rt_set_sram_page(0);
if (fp)
{
unsigned char buf[1024];
unsigned loc = 0;
fprintf(fp, "\n");
while (loc < end_calibration_offset)
{
unsigned byte = 0;
rt_read_sram(1024, buf);
while (byte < 1024)
{
unsigned idx = 0;
fprintf(fp, "%06x:", loc);
do
{
sram_dump_byte(fp, buf, byte, 1024, expected, loc, end_calibration_offset, idx);
} while (++idx & 0x7);
fprintf(fp, " -");
do
{
sram_dump_byte(fp, buf, byte, 1024, expected, loc, end_calibration_offset, idx);
} while (++idx & 0x7);
idx = 0;
fputs(" ", fp);
do
{
sram_dump_byte(fp, expected, loc, end_calibration_offset, buf, byte, 1024, idx);
} while (++idx & 0x7);
fprintf(fp, " -");
do
{
sram_dump_byte(fp, expected, loc, end_calibration_offset, buf, byte, 1024, idx);
} while (++idx & 0x7);
fputs("\n", fp);
byte += 16;
loc += 16;
}
}
fprintf(fp, "
");
fclose(fp);
}
}
#endif
static int
rts8801_doscan (unsigned width,
unsigned height,
unsigned colour,
unsigned red_green_offset,
unsigned green_blue_offset,
unsigned intra_channel_offset,
rts8801_callback cbfunc,
void *params,
int oddfirst,
unsigned char const *calib_info,
int merged_channels,
double *postprocess_offsets,
double *postprocess_gains)
{
unsigned rowbytes = 0;
unsigned output_rowbytes = 0;
unsigned channels = 0;
unsigned total_rows = 0;
unsigned char *row_buffer;
unsigned char *output_buffer;
unsigned buffered_rows;
int rows_to_begin;
int rowbuffer_bytes;
int n;
unsigned rownow = 0;
unsigned bytenow = 0;
unsigned char *channel_data[3][2];
unsigned i;
unsigned j;
int result = 0;
unsigned rows_supplied = 0;
calib_info = calib_info; /* Kill warning */
if (cancelled_scan)
return -1;
rt_start_moving ();
channels = 3;
rowbytes = width * 3;
switch (colour)
{
case HP3500_GRAY_SCAN:
output_rowbytes = width;
break;
case HP3500_COLOR_SCAN:
output_rowbytes = rowbytes;
break;
case HP3500_LINEART_SCAN:
output_rowbytes = (width + 7) / 8;
break;
}
buffered_rows =
red_green_offset + green_blue_offset + intra_channel_offset + 1;
rows_to_begin = buffered_rows;
rowbuffer_bytes = buffered_rows * rowbytes;
row_buffer = (unsigned char *) malloc (rowbuffer_bytes);
output_buffer = (unsigned char *) malloc (rowbytes);
for (i = j = 0; i < channels; ++i)
{
if (i == 1)
j += red_green_offset;
else if (i == 2)
j += green_blue_offset;
if (merged_channels)
channel_data[i][1 - oddfirst] = row_buffer + rowbytes * j + i;
else
channel_data[i][1 - oddfirst] = row_buffer + rowbytes * j + width * i;
channel_data[i][oddfirst] =
channel_data[i][1 - oddfirst] + rowbytes * intra_channel_offset;
}
while (((n = rt_get_available_bytes ()) > 0 || rt_is_moving () > 0)
&& !cancelled_scan)
{
if (n == 1 && (rt_is_moving () || rt_get_available_bytes () != 1))
n = 0;
if (n > 0)
{
unsigned char buffer[0xffc0];
if (n > 0xffc0)
n = 0xffc0;
else if ((n > 1) && (n & 1))
--n;
if (rt_get_data (n, buffer) >= 0)
{
unsigned char *bufnow = buffer;
while (n)
{
int numcopy = rowbytes - bytenow;
if (numcopy > n)
numcopy = n;
memcpy (row_buffer + rownow * rowbytes + bytenow,
bufnow, numcopy);
bytenow += numcopy;
bufnow += numcopy;
n -= numcopy;
if (bytenow == rowbytes)
{
if (!rows_to_begin || !--rows_to_begin)
{
unsigned char *outnow = output_buffer;
unsigned x;
for (i = x = 0;
x < width;
++x, i += merged_channels ? channels : 1)
{
for (j = 0; j < channels; ++j)
{
unsigned pix =
(unsigned char) channel_data[j][i & 1][i];
if (postprocess_gains && postprocess_offsets)
{
int ppidx = j * width + x;
pix = constrain ( pix
* postprocess_gains[ppidx]
- postprocess_offsets[ppidx],
0,
255);
}
*outnow++ = pix;
}
}
if (colour == HP3500_GRAY_SCAN || colour == HP3500_LINEART_SCAN)
{
unsigned char const *in_now = output_buffer;
int bit = 7;
outnow = output_buffer;
for (i = 0; i < width; ++i)
{
if (colour == HP3500_GRAY_SCAN)
{
*outnow++ = ((unsigned) in_now[0] * 2989 +
(unsigned) in_now[1] * 5870 +
(unsigned) in_now[2] * 1140) / 10000;
}
else
{
if (bit == 7)
*outnow = ((in_now[1] < 0x80) ? 0x80 : 0);
else if (in_now[1] < 0x80)
*outnow |= (1 << bit);
if (bit == 0)
{
++outnow;
bit = 7;
}
else
{
--bit;
}
}
in_now += 3;
}
}
if (rows_supplied++ < height &&
!((*cbfunc) (params, output_rowbytes, output_buffer)))
break;
for (i = 0; i < channels; ++i)
{
for (j = 0; j < 2; ++j)
{
channel_data[i][j] += rowbytes;
if (channel_data[i][j] - row_buffer >=
rowbuffer_bytes)
channel_data[i][j] -= rowbuffer_bytes;
}
}
}
++total_rows;
if (++rownow == buffered_rows)
rownow = 0;
bytenow = 0;
}
}
}
DBG (30, "total_rows = %d\r", total_rows);
}
else
{
usleep (10000);
}
}
DBG (10, "\n");
if (n < 0)
result = -1;
free (output_buffer);
free (row_buffer);
rt_stop_moving ();
return result;
}
static unsigned local_sram_size;
static unsigned char r93setting;
#define RTS8801_F_SUPPRESS_MOVEMENT 1
#define RTS8801_F_LAMP_OFF 2
#define RTS8801_F_NO_DISPLACEMENTS 4
#define RTS8801_F_ODDX 8
static int
find_resolution_index (unsigned resolution)
{
int res = 0;
for (res = 0; resparms[res].resolution != resolution; ++res)
{
if (!resparms[res].resolution)
return -1;
}
return res;
}
static int
rts8801_fullscan (unsigned x,
unsigned y,
unsigned w,
unsigned h,
unsigned xresolution,
unsigned yresolution,
unsigned colour,
rts8801_callback cbfunc,
void *param,
unsigned char *calib_info,
int flags,
int red_calib_offset,
int green_calib_offset,
int blue_calib_offset,
int end_calib_offset,
double *postprocess_offsets,
double *postprocess_gains)
{
int ires, jres;
int tg_setting;
unsigned char regs[256];
unsigned char offdutytime;
int result;
int scan_frequency;
unsigned intra_channel_offset;
unsigned red_green_offset;
unsigned green_blue_offset;
unsigned total_offsets;
ires = find_resolution_index (xresolution);
jres = find_resolution_index (yresolution);
if (ires < 0 || jres < 0)
return -1;
/* Set scan parameters */
rt_read_register_immediate (0, 255, regs);
regs[255] = 0;
rt_enable_ccd (regs, 1);
rt_enable_movement (regs, 1);
rt_set_scan_frequency (regs, 1);
rt_adjust_misc_registers (regs);
rt_set_cvtr_wparams (regs, 3, 0, 6);
rt_set_cvtr_mpt (regs, 15, 15, 15);
rt_set_cvtr_lm (regs, 7, 7, 7);
rt_set_motor_type (regs, 2);
if (rt_nvram_read (0, 0x7b, &offdutytime, 1) < 0 || offdutytime >= 15)
{
offdutytime = 6;
}
rt_set_lamp_duty_cycle (regs, 1, /* On */
10, /* Frequency */
offdutytime); /* Off duty time */
rt_set_movement_pattern (regs, 0x800000);
rt_set_direction_forwards (regs);
rt_set_stop_when_rewound (regs, 0);
rt_set_calibration_addresses (regs, 0, 0, 0, 0, 0);
rt_set_basic_calibration (regs,
calib_info[0], calib_info[1], calib_info[2],
calib_info[3], calib_info[4], calib_info[5],
calib_info[6], calib_info[7], calib_info[8]);
regs[0x0b] = 0x70; /* If set to 0x71, the alternative, all values are low */
regs[0x40] &= 0xc0;
if (red_calib_offset >= 0
&& green_calib_offset >= 0
&& blue_calib_offset >= 0)
{
rt_set_calibration_addresses (regs, red_calib_offset,
green_calib_offset, blue_calib_offset,
end_calib_offset,
w);
regs[0x40] |= 0x2f;
}
else if (end_calib_offset >= 0)
{
rt_set_calibration_addresses (regs, 0x600, 0x600, 0x600,
end_calib_offset, w);
}
rt_set_channel (regs, RT_CHANNEL_ALL);
rt_set_single_channel_scanning (regs, 0);
rt_set_merge_channels (regs, 1);
rt_set_colour_mode (regs, 1);
rt_set_last_sram_page (regs, (local_sram_size - 1) >> 5);
scan_frequency = resparms[jres].scan_frequency;
rt_set_cph0s (regs, resparms[ires].cph0s);
if (resparms[ires].d3_bit_3_value)
regs[0xd3] |= 0x08;
else
regs[0xd3] &= 0xf7;
if (flags & RTS8801_F_SUPPRESS_MOVEMENT)
regs[0xc3] &= 0x7f;
regs[0xb2] &= 0xf7;
rt_set_horizontal_resolution (regs, xresolution);
rt_set_scanline_start (regs,
x * (1200 / xresolution) /
(resparms[ires].cph0s ? 1 : 2) /
(resparms[ires].d3_bit_3_value ? 1 : 2));
rt_set_scanline_end (regs,
(x +
w) * (1200 / xresolution) /
(resparms[ires].cph0s ? 1 : 2) /
(resparms[ires].d3_bit_3_value ? 1 : 2));
if (flags & RTS8801_F_NO_DISPLACEMENTS)
{
red_green_offset = green_blue_offset = intra_channel_offset = 0;
}
else
{
red_green_offset = resparms[jres].red_green_offset;
green_blue_offset = resparms[jres].green_blue_offset;
intra_channel_offset = resparms[jres].intra_channel_offset;
}
total_offsets = red_green_offset + green_blue_offset + intra_channel_offset;
if (y > total_offsets + 2)
y -= total_offsets;
h += total_offsets;
if (yresolution > 75 && !(flags & RTS8801_F_SUPPRESS_MOVEMENT))
{
int rmres = find_resolution_index (50);
if (rmres >= 0)
{
int factor = yresolution / 50;
int fastres = y / factor;
int remainder = y % factor;
while (remainder < 2)
{
--fastres;
remainder += factor;
}
if (fastres >= 3)
{
y = remainder;
rt_set_noscan_distance(regs, fastres * resparms[rmres].scan_frequency - 2);
rt_set_total_distance(regs, fastres * resparms[rmres].scan_frequency - 1);
rt_set_scan_frequency(regs, 1);
tg_setting = resparms[rmres].tg;
rt_set_ccd_shift_clock_multiplier (regs, tg_info[tg_setting].tg_cph0p);
rt_set_ccd_clock_reset_interval (regs, tg_info[tg_setting].tg_crsp);
rt_set_ccd_clamp_clock_multiplier (regs, tg_info[tg_setting].tg_cclpp);
rt_set_one_register (0xc6, 0);
rt_set_one_register (0xc6, 0);
rt_set_step_size (regs, resparms[rmres].step_size);
rt_set_motor_movement_clock_multiplier (regs,
resparms[rmres].
motor_movement_clock_multiplier);
rt_set_cdss (regs, tg_info[tg_setting].tg_cdss1,
tg_info[tg_setting].tg_cdss2);
rt_set_cdsc (regs, tg_info[tg_setting].tg_cdsc1,
tg_info[tg_setting].tg_cdsc2);
rt_update_after_setting_cdss2 (regs);
regs[0x39] = resparms[rmres].reg_39_value;
regs[0xc3] = (regs[0xc3] & 0xf8) | resparms[rmres].reg_c3_value;
regs[0xc6] = (regs[0xc6] & 0xf8) | resparms[rmres].reg_c6_value;
rt_set_data_feed_off (regs);
rt_set_all_registers (regs);
rt_set_one_register (0x2c, regs[0x2c]);
if (DBG_LEVEL >= 5)
dump_registers (regs);
rt_start_moving ();
while (rt_is_moving ());
}
}
}
rt_set_noscan_distance (regs, y * scan_frequency - 1);
rt_set_total_distance (regs, scan_frequency * (y + h) - 1);
rt_set_scan_frequency (regs, scan_frequency);
tg_setting = resparms[jres].tg;
rt_set_ccd_shift_clock_multiplier (regs, tg_info[tg_setting].tg_cph0p);
rt_set_ccd_clock_reset_interval (regs, tg_info[tg_setting].tg_crsp);
rt_set_ccd_clamp_clock_multiplier (regs, tg_info[tg_setting].tg_cclpp);
rt_set_one_register (0xc6, 0);
rt_set_one_register (0xc6, 0);
rt_set_step_size (regs, resparms[jres].step_size);
rt_set_motor_movement_clock_multiplier (regs,
resparms[jres].
motor_movement_clock_multiplier);
rt_set_cdss (regs, tg_info[tg_setting].tg_cdss1,
tg_info[tg_setting].tg_cdss2);
rt_set_cdsc (regs, tg_info[tg_setting].tg_cdsc1,
tg_info[tg_setting].tg_cdsc2);
rt_update_after_setting_cdss2 (regs);
regs[0x39] = resparms[jres].reg_39_value;
regs[0xc3] = (regs[0xc3] & 0xf8) | resparms[jres].reg_c3_value;
regs[0xc6] = (regs[0xc6] & 0xf8) | resparms[jres].reg_c6_value;
rt_set_data_feed_on (regs);
rt_set_all_registers (regs);
rt_set_one_register (0x2c, regs[0x2c]);
if (DBG_LEVEL >= 5)
dump_registers (regs);
result = rts8801_doscan (w,
h,
colour,
red_green_offset,
green_blue_offset,
intra_channel_offset,
cbfunc, param, (x & 1), calib_info,
(regs[0x2f] & 0x04) != 0,
postprocess_offsets,
postprocess_gains);
return result;
}
static int
accumfunc (struct dcalibdata *dcd, int bytes, char *data)
{
unsigned char *c = (unsigned char *) data;
while (bytes > 0)
{
if (dcd->firstrowdone)
dcd->buffers[dcd->channelnow][dcd->pixelnow - dcd->pixelsperrow] = *c;
if (++dcd->channelnow >= 3)
{
dcd->channelnow = 0;
if (++dcd->pixelnow == dcd->pixelsperrow)
++dcd->firstrowdone;
}
c++;
bytes--;
}
return 1;
}
static int
calcmedian (unsigned char const *data,
int pixel, int pixels_per_row, int elements)
{
int tallies[256];
int i;
int elemstogo = elements / 2;
memset (tallies, 0, sizeof (tallies));
data += pixel;
for (i = 0; i < elements; ++i)
{
++tallies[*data];
data += pixels_per_row;
}
i = 0;
while (elemstogo - tallies[i] > 0)
elemstogo -= tallies[i++];
return i;
}
struct calibdata
{
unsigned char *buffer;
int space;
};
static int
storefunc (struct calibdata *cd, int bytes, char *data)
{
if (cd->space > 0)
{
if (bytes > cd->space)
bytes = cd->space;
memcpy (cd->buffer, data, bytes);
cd->buffer += bytes;
cd->space -= bytes;
}
return 1;
}
static unsigned
sum_channel (unsigned char *p, int n, int bytwo)
{
unsigned v = 0;
while (n-- > 0)
{
v += *p;
p += 3;
if (bytwo)
p += 3;
}
return v;
}
static int do_warmup = 1;
#define DETAILED_PASS_COUNT 3
#define DETAILED_PASS_OFFSETS 0
#define DETAILED_PASS_GAINS_FIRSTPASS 1
#define DETAILED_PASS_GAINS_SECONDPASS 2
static int
rts8801_scan (unsigned x,
unsigned y,
unsigned w,
unsigned h,
unsigned resolution,
unsigned colour,
unsigned brightness,
unsigned contrast,
rts8801_callback cbfunc,
void *param,
double gamma)
{
unsigned char calib_info[9];
unsigned char calibbuf[2400];
struct dcalibdata dcd;
struct calibdata cd;
unsigned char *detail_buffer = 0;
int iCalibY;
int iCalibTarget;
int iMoveFlags = 0;
unsigned aiBestOffset[6];
int aiPassed[6];
int i;
unsigned j;
int k;
int calibration_size;
unsigned char *pDetailedCalib;
int red_calibration_offset;
int green_calibration_offset;
int blue_calibration_offset;
int end_calibration_offset;
int base_resolution;
int resolution_divisor;
int resolution_index;
int detailed_calibration_rows = 50;
unsigned char *tdetail_buffer;
int pass;
int onechanged;
double *postprocess_gains;
double *postprocess_offsets;
int needs_postprocessed_calibration = 0;
double contrast_adjust = (double) contrast / 64;
int brightness_adjust = brightness - 0x80;
/* Initialise and power up */
rt_set_all_registers (initial_regs);
rt_set_powersave_mode (0);
/* Initial rewind in case scanner is stuck away from home position */
rts8801_rewind ();
/* Detect SRAM */
rt_detect_sram (&local_sram_size, &r93setting);
/* Warm up the lamp */
DBG (10, "Warming up the lamp\n");
rt_turn_on_lamp ();
if (do_warmup)
sleep (25);
/* Basic calibration */
DBG (10, "Calibrating (stage 1)\n");
calib_info[2] = calib_info[5] = calib_info[8] = 1;
iCalibY = (resolution == 25) ? 1 : 2;
iCalibTarget = 550;
rt_turn_off_lamp();
for (i = 0; i < 6; ++i)
{
aiBestOffset[i] = 0xbf;
aiPassed[i] = 0;
}
do
{
DBG (30, "Initial calibration pass commences\n");
onechanged = 0;
for (i = 0; i < 3; ++i)
{
calib_info[i * 3] = aiBestOffset[i];
calib_info[i * 3 + 1] = aiBestOffset[i + 3];
}
cd.buffer = calibbuf;
cd.space = sizeof (calibbuf);
DBG (30, "Commencing scan for initial calibration pass\n");
rts8801_fullscan (1401, iCalibY, 100, 2, 400, resolution,
HP3500_COLOR_SCAN, (rts8801_callback) storefunc, &cd,
calib_info, iMoveFlags, -1, -1, -1, -1, 0, 0);
DBG (30, "Completed scan for initial calibration pass\n");
iMoveFlags = RTS8801_F_SUPPRESS_MOVEMENT | RTS8801_F_NO_DISPLACEMENTS;
iCalibY = 2;
for (i = 0; i < 6; ++i)
{
int sum;
if (aiBestOffset[i] >= 255 || aiPassed[i] > 2)
continue;
sum = sum_channel (calibbuf + i, 50, 1);
DBG (20, "channel[%d] sum = %d (target %d)\n", i, sum,
iCalibTarget);
if (sum < iCalibTarget)
{
onechanged = 1;
++aiBestOffset[i];
}
else
{
++aiPassed[i];
}
}
DBG (30, "Initial calibration pass completed\n");
}
while (onechanged);
DBG (20, "Offsets calculated\n");
rt_turn_on_lamp();
usleep(500000);
tdetail_buffer =
(unsigned char *) malloc (w * 3 * detailed_calibration_rows);
for (i = 0; i < 3; ++i)
{
calib_info[i * 3 + 2] = 1;
aiPassed[i] = 0;
}
do
{
struct dcalibdata dcdt;
dcdt.buffers[0] = tdetail_buffer;
dcdt.buffers[1] = (tdetail_buffer + w * detailed_calibration_rows);
dcdt.buffers[2] = (dcdt.buffers[1] + w * detailed_calibration_rows);
dcdt.pixelsperrow = w;
dcdt.pixelnow = dcdt.channelnow = dcdt.firstrowdone = 0;
DBG (20, "Scanning for part 2 of initial calibration\n");
rts8801_fullscan (x, 4, w, detailed_calibration_rows + 1, resolution,
resolution, HP3500_COLOR_SCAN,
(rts8801_callback) accumfunc, &dcdt, calib_info,
RTS8801_F_SUPPRESS_MOVEMENT | RTS8801_F_NO_DISPLACEMENTS, -1, -1, -1, -1, 0, 0);
DBG (20, "Scan for part 2 of initial calibration completed\n");
onechanged = 0;
for (i = 0; i < 3; ++i)
{
int largest = 1;
if (aiPassed[i] > 2 || calib_info[i * 3 + 2] >= 63)
continue;
for (j = 0; j < w; ++j)
{
int val =
calcmedian (dcdt.buffers[i], j, w, detailed_calibration_rows);
if (val > largest)
largest = val;
}
if (largest < 0xe0)
{
++calib_info[i * 3 + 2];
onechanged = 1;
}
else
{
++aiPassed[i];
}
}
}
while (onechanged);
for (i = 0; i < 3; ++i)
{
DBG (10, "Channel [%d] gain=%02x offset=%02x\n",
i, calib_info[i * 3] + 2, calib_info[i * 3]);
}
DBG (20, "Gain factors calculated\n");
/* Stage 2 calibration */
DBG (10, "Calibrating (stage 2)\n");
detail_buffer =
(unsigned char *) malloc (w * 3 * detailed_calibration_rows);
dcd.buffers[0] = detail_buffer;
dcd.buffers[1] = (detail_buffer + w * detailed_calibration_rows);
dcd.buffers[2] = (dcd.buffers[1] + w * detailed_calibration_rows);
dcd.pixelsperrow = w;
/* And now for the detailed calibration */
resolution_index = find_resolution_index (resolution);
base_resolution = 300;
if (resparms[resolution_index].cph0s)
base_resolution *= 2;
if (resparms[resolution_index].d3_bit_3_value)
base_resolution *= 2;
resolution_divisor = base_resolution / resolution;
calibration_size = w * resolution_divisor * 6 + 1568 + 96;
red_calibration_offset = 0x600;
green_calibration_offset =
red_calibration_offset + w * resolution_divisor * 2;
blue_calibration_offset =
green_calibration_offset + w * resolution_divisor * 2;
end_calibration_offset =
blue_calibration_offset + w * resolution_divisor * 2;
pDetailedCalib = (unsigned char *) malloc (calibration_size);
memset (pDetailedCalib, 0, calibration_size);
for (i = 0; i < 3; ++i)
{
int idx =
(i == 0) ? red_calibration_offset :
(i == 1) ? green_calibration_offset :
blue_calibration_offset;
for (j = 0; j < 256; j++)
{
/* Gamma table - appears to be 256 byte pairs for each input
* range (so the first entry cover inputs in the range 0 to 1,
* the second 1 to 2, and so on), mapping that input range
* (including the fractional parts within it) to an output
* range.
*/
pDetailedCalib[i * 512 + j * 2] = j;
pDetailedCalib[i * 512 + j * 2 + 1] = j;
}
for (j = 0; j < w; ++j)
{
for (k = 0; k < resolution_divisor; ++k)
{
pDetailedCalib[idx++] = 0;
pDetailedCalib[idx++] = 0x80;
}
}
}
rt_set_sram_page (0);
rt_set_one_register (0x93, r93setting);
rt_write_sram (calibration_size, pDetailedCalib);
postprocess_gains = (double *) malloc(sizeof(double) * 3 * w);
postprocess_offsets = (double *) malloc(sizeof(double) * 3 * w);
for (pass = 0; pass < DETAILED_PASS_COUNT; ++pass)
{
int ppidx = 0;
DBG (10, "Performing detailed calibration scan %d\n", pass);
switch (pass)
{
case DETAILED_PASS_OFFSETS:
rt_turn_off_lamp();
usleep(500000); /* To be sure it has gone off */
break;
case DETAILED_PASS_GAINS_FIRSTPASS:
rt_turn_on_lamp();
usleep(500000); /* Give the lamp time to settle */
break;
}
dcd.pixelnow = dcd.channelnow = dcd.firstrowdone = 0;
rts8801_fullscan (x, iCalibY, w, detailed_calibration_rows + 1,
resolution, resolution, HP3500_COLOR_SCAN,
(rts8801_callback) accumfunc, &dcd,
calib_info,
RTS8801_F_SUPPRESS_MOVEMENT | RTS8801_F_NO_DISPLACEMENTS,
red_calibration_offset,
green_calibration_offset,
blue_calibration_offset,
end_calibration_offset,
0, 0);
DBG (10, " Detailed calibration scan %d completed\n", pass);
for (i = 0; i < 3; ++i)
{
int idx =
(i == 0) ? red_calibration_offset :
(i == 1) ? green_calibration_offset :
blue_calibration_offset;
for (j = 0; j < w; ++j)
{
double multnow = 0x80;
int offnow = 0;
/* This seems to be the approach for reg 0x40 & 0x3f == 0x27, which allows detailed
* calibration to return either higher or lower values.
*/
{
double denom1 =
calcmedian (dcd.buffers[i], j, w, detailed_calibration_rows);
switch (pass)
{
case DETAILED_PASS_OFFSETS:
/* The offset is the number needed to be subtracted from "black" at detailed gain = 0x80,
* which is the value we started with. For the next round, pull the gain down to 0x20. Our
* next scan is a test scan to confirm the offset works.
*/
multnow = 0x20;
offnow = denom1;
break;
case DETAILED_PASS_GAINS_FIRSTPASS:
multnow = 128.0 / denom1 * 0x20; /* Then bring it up to whatever we need to hit 192 */
if (multnow > 255)
multnow = 255;
offnow = pDetailedCalib[idx];
break;
case DETAILED_PASS_GAINS_SECONDPASS:
multnow = 255.0 / denom1 * contrast_adjust * pDetailedCalib[idx+1]; /* And finally to 255 */
offnow = pDetailedCalib[idx] - brightness_adjust * 0x80 / multnow;
if (offnow < 0)
{
postprocess_offsets[ppidx] = multnow * offnow / 0x80;
offnow = 0;
needs_postprocessed_calibration = 1;
}
else if (offnow > 255)
{
postprocess_offsets[ppidx] = multnow * (offnow - 255) / 0x80;
offnow = 255;
needs_postprocessed_calibration = 1;
}
else
{
postprocess_offsets[ppidx] = 0;
}
if (multnow > 255)
{
postprocess_gains[ppidx] = multnow / 255;
multnow = 255;
needs_postprocessed_calibration = 1;
}
else
{
postprocess_gains[ppidx] = 1.0;
}
break;
}
}
if (offnow > 255)
offnow = 255;
for (k = 0; k < resolution_divisor; ++k)
{
pDetailedCalib[idx++] = offnow; /* Subtract this value from the result at gains = 0x80*/
pDetailedCalib[idx++] = multnow; /* Then multiply by this value divided by 0x80 */
}
++ppidx;
}
}
if (pass == DETAILED_PASS_GAINS_SECONDPASS)
{
/* Build gamma table */
unsigned char *redgamma = pDetailedCalib;
unsigned char *greengamma = redgamma + 512;
unsigned char *bluegamma = greengamma + 512;
double val;
double invgamma = 1.0l / gamma;
*redgamma++ = *bluegamma++ = *greengamma++ = 0;
/* The windows driver does a linear interpolation for the next 19 boundaries */
val = pow (20.0l / 255, invgamma) * 255;
for (j = 1; j <= 20; ++j)
{
*redgamma++ = *bluegamma++ = *greengamma++ = val * j / 20 + 0.5;
*redgamma++ = *bluegamma++ = *greengamma++ = val * j / 20 + 0.5;
}
for (; j <= 255; ++j)
{
val = pow((double) j / 255, invgamma) * 255;
*redgamma++ = *bluegamma++ = *greengamma++ = val + 0.5;
*redgamma++ = *bluegamma++ = *greengamma++ = val + 0.5;
}
*redgamma++ = *bluegamma++ = *greengamma++ = 255;
}
DBG (10, "\n");
rt_set_sram_page (0);
rt_set_one_register (0x93, r93setting);
rt_write_sram (calibration_size, pDetailedCalib);
}
/* And finally, perform the scan */
DBG (10, "Scanning\n");
rts8801_rewind ();
rts8801_fullscan (x, y, w, h, resolution, resolution, colour, cbfunc, param,
calib_info, 0,
red_calibration_offset, green_calibration_offset,
blue_calibration_offset, end_calibration_offset,
needs_postprocessed_calibration ? postprocess_offsets : 0,
needs_postprocessed_calibration ? postprocess_gains : 0);
rt_turn_off_lamp ();
rts8801_rewind ();
rt_set_powersave_mode (1);
if (pDetailedCalib)
free (pDetailedCalib);
if (detail_buffer)
free (detail_buffer);
if (tdetail_buffer)
free(tdetail_buffer);
if (postprocess_gains)
free(postprocess_gains);
if (postprocess_offsets)
free(postprocess_offsets);
return 0;
}
static int
writefunc (struct hp3500_write_info *winfo, int bytes, char *data)
{
static int warned = 0;
if (bytes > winfo->bytesleft)
{
if (!warned)
{
warned = 1;
DBG (1, "Overflow protection triggered\n");
rt_stop_moving ();
}
bytes = winfo->bytesleft;
if (!bytes)
return 0;
}
winfo->bytesleft -= bytes;
return write (winfo->scanner->pipe_w, data, bytes) == bytes;
}
#ifdef _POSIX_SOURCE
static void
sigtermHandler (int signal)
{
signal = signal; /* get rid of compiler warning */
cancelled_scan = 1;
}
#endif
static int
reader_process (void *pv)
{
struct hp3500_data *scanner = pv;
time_t t;
sigset_t ignore_set;
sigset_t sigterm_set;
struct SIGACTION act;
struct hp3500_write_info winfo;
int status;
if (sanei_thread_is_forked ())
{
close (scanner->pipe_r);
sigfillset (&ignore_set);
sigdelset (&ignore_set, SIGTERM);
#if defined (__APPLE__) && defined (__MACH__)
sigdelset (&ignore_set, SIGUSR2);
#endif
sigprocmask (SIG_SETMASK, &ignore_set, 0);
sigemptyset (&sigterm_set);
sigaddset (&sigterm_set, SIGTERM);
memset (&act, 0, sizeof (act));
#ifdef _POSIX_SOURCE
act.sa_handler = sigtermHandler;
#endif
sigaction (SIGTERM, &act, 0);
}
/* Warm up the lamp again if our last scan ended more than 5 minutes ago. */
time (&t);
do_warmup = (t - scanner->last_scan) > 300;
if (getenv ("HP3500_NOWARMUP") && atoi (getenv ("HP3500_NOWARMUP")) > 0)
do_warmup = 0;
udh = scanner->sfd;
cancelled_scan = 0;
winfo.scanner = scanner;
winfo.bytesleft =
scanner->bytes_per_scan_line * scanner->scan_height_pixels;
if (getenv ("HP3500_SLEEP"))
{
int seconds = atoi (getenv ("HP3500_SLEEP"));
DBG (1, "Backend process %d sleeping for %d seconds\n", getpid (),
seconds);
sleep (seconds);
}
DBG (10, "Scanning at %ddpi, mode=%s\n", scanner->resolution,
scan_mode_list[scanner->mode]);
if (rts8801_scan
(scanner->actres_pixels.left + 250 * scanner->resolution / 1200,
scanner->actres_pixels.top + 599 * scanner->resolution / 1200,
scanner->actres_pixels.right - scanner->actres_pixels.left,
scanner->actres_pixels.bottom - scanner->actres_pixels.top,
scanner->resolution, scanner->mode, scanner->brightness,
scanner->contrast, (rts8801_callback) writefunc, &winfo,
scanner->gamma) >= 0)
status = SANE_STATUS_GOOD;
status = SANE_STATUS_IO_ERROR;
close (scanner->pipe_w);
return status;
}
static size_t
max_string_size (char const **strings)
{
size_t size, max_size = 0;
SANE_Int i;
for (i = 0; strings[i]; ++i)
{
size = strlen (strings[i]) + 1;
if (size > max_size)
max_size = size;
}
return max_size;
}