/*
Copyright (C) 2000 by Adrian Perez Jorge
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
/* Developers:
Adrian Perez Jorge (APJ) -
Creator of the original HP4200C backend code.
adrianpj@easynews.com
Andrew John Lewis (AJL) -
lewi0235@tc.umn.edu
Arnar Mar Hrafnkelsson (AMH) -
addi@umich.edu
Frank Zago
some cleanups and integration into SANE
Henning Meier-Geinitz
more cleanups, bug fixes
TODO:
- support more scanning resolutions.
- support different color depths.
- support gray and lineart.
- improve scanning speed. Compute scanning parameters based on the
image size and the scanner-to-host bandwidth.
- improve image quality.
- fix problem concerning mangled images
*/
#define BUILD 2
#define BACKEND_NAME hp4200
#include "../include/sane/config.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "../include/sane/sane.h"
#include "../include/sane/sanei.h"
#include "../include/sane/sanei_debug.h"
#include "../include/sane/sanei_config.h"
#include "../include/sane/sanei_usb.h"
#include "../include/sane/sanei_pv8630.h"
#include "../include/sane/saneopts.h"
#include "../include/sane/sanei_backend.h"
#include "hp4200.h"
#include "hp4200_lm9830.c"
#define HP4200_CONFIG_FILE "hp4200.conf"
/*--------------------------------------------------------------------------*/
#if 0
/* Some of these resolution need work in color shifting. */
static const SANE_Int dpi_list[] =
{ 8, 50, 75, 100, 150, 200, 300, 400, 600 };
#else
static const SANE_Int dpi_list[] = { 4, 75, 150, 300, 600 };
#endif
static SANE_Range x_range = { SANE_FIX (0), SANE_FIX (8.5 * MM_PER_INCH), 0 };
static SANE_Range y_range =
{ SANE_FIX (0), SANE_FIX (11.75 * MM_PER_INCH), 0 };
static const SANE_Range u8_range = { 0, 255, 0 };
struct coarse_t
{
int min_red;
int min_green;
int min_blue;
int max_red;
int max_green;
int max_blue;
int red_gain;
int red_offset;
int green_gain;
int green_offset;
int blue_gain;
int blue_offset;
};
static const double hdpi_mapping[8] = { 1, 1.5, 2, 3, 4, 6, 8, 12 };
static HP4200_Device *first_device = NULL; /* device list head */
static int n_devices = 0; /* the device count */
static const SANE_Device **devlist = NULL;
static unsigned char
getreg (HP4200_Scanner * s, unsigned char reg)
{
unsigned char reg_value;
if ((reg > 0x08) && (reg < 0x5b))
return (unsigned char) LOBYTE (s->regs[reg]);
else
{
lm9830_read_register (s->fd, reg, ®_value);
return reg_value;
}
}
static void
setreg (HP4200_Scanner * s, unsigned char reg, unsigned char reg_value)
{
s->regs[reg] = reg_value; /* dirty bit should be clear with this */
if ((reg < 0x08) || (reg > 0x5b))
{
lm9830_write_register (s->fd, reg, reg_value);
}
}
static void
setbits (HP4200_Scanner * s, unsigned char reg, unsigned char bitmap)
{
s->regs[reg] = (s->regs[reg] & 0xff) | bitmap;
if ((reg < 0x08) || (reg > 0x5b))
{
lm9830_write_register (s->fd, reg, LOBYTE (s->regs[reg]));
}
}
static void
clearbits (HP4200_Scanner * s, unsigned char reg, unsigned char mask)
{
s->regs[reg] = (s->regs[reg] & ~mask) & 0xff;
if ((reg < 0x08) || (reg > 0x5b))
{
lm9830_write_register (s->fd, reg, LOBYTE (s->regs[reg]));
}
}
static int
cache_write (HP4200_Scanner * s)
{
int i;
#ifdef DEBUG_REG_CACHE
int counter = 0;
#endif
DBG (DBG_proc, "Writing registers\n");
for (i = 0; i < 0x80; i++)
if (!(s->regs[i] & 0x100))
{ /* modified register */
#ifdef DEBUG_REG_CACHE
fprintf (stderr, "%.2x", i);
if (counter == 8)
fprintf (stderr, "\n");
else
fprintf (stderr, ", ");
counter = (counter + 1) % 9;
#endif
lm9830_write_register (s->fd, i, s->regs[i]);
s->regs[i] |= 0x100; /* register is updated */
}
return 0;
}
/*
* HP4200-dependent register initialization.
*/
static int
hp4200_init_registers (HP4200_Scanner * s)
{
/* set up hardware parameters */
s->hw_parms.crystal_frequency = 48000000;
s->hw_parms.SRAM_size = 128; /* Kb */
s->hw_parms.scan_area_width = 5100; /* pixels */
s->hw_parms.scan_area_length = 11; /* inches */
s->hw_parms.min_pixel_data_buffer_limit = 1024; /* bytes */
s->hw_parms.sensor_line_separation = 4; /* lines */
s->hw_parms.sensor_max_integration_time = 12; /* milliseconds */
s->hw_parms.home_sensor = 2;
s->hw_parms.sensor_resolution = 1; /* 600 dpi */
s->hw_parms.motor_full_steps_per_inch = 300;
s->hw_parms.motor_max_speed = 1.4; /* inches/second */
s->hw_parms.num_tr_pulses = 1;
s->hw_parms.guard_band_duration = 1;
s->hw_parms.pulse_duration = 3;
s->hw_parms.fsteps_25_speed = 3;
s->hw_parms.fsteps_50_speed = 3;
s->hw_parms.target_value.red = 1000;
s->hw_parms.target_value.green = 1000;
s->hw_parms.target_value.blue = 1000;
{
int i;
/*
* we are using a cache-like data structure so registers whose
* values were written to the lm9830 and aren't volatile, have
* bit 0x100 activated. This bit must be cleared if you want the
* value to be written to the chip once cache_write() is called.
*/
/* clears the registers cache */
memset (s->regs, 0, sizeof (s->regs));
/*
* registers 0x00 - 0x07 are non-cacheable/volatile, so don't
* read the values using the cache. Instead use direct functions
* to read/write registers.
*/
for (i = 0; i < 0x08; i++)
s->regs[i] = 0x100;
}
setreg (s, 0x70, 0x70); /* noise filter */
setreg (s, 0x0b,
INPUT_SIGNAL_POLARITY_NEGATIVE |
CDS_ON |
SENSOR_STANDARD |
SENSOR_RESOLUTION_600 | LINE_SKIPPING_COLOR_PHASE_DELAY (0));
setreg (s, 0x0c,
PHI1_POLARITY_POSITIVE |
PHI2_POLARITY_POSITIVE |
RS_POLARITY_POSITIVE |
CP1_POLARITY_POSITIVE |
CP2_POLARITY_POSITIVE |
TR1_POLARITY_NEGATIVE | TR2_POLARITY_NEGATIVE);
setreg (s, 0x0d,
PHI1_ACTIVE |
PHI2_ACTIVE |
RS_ACTIVE |
CP1_ACTIVE |
CP2_OFF |
TR1_ACTIVE |
TR2_OFF | NUMBER_OF_TR_PULSES (s->hw_parms.num_tr_pulses));
setreg (s, 0x0e,
TR_PULSE_DURATION (s->hw_parms.pulse_duration) |
TR_PHI1_GUARDBAND_DURATION (s->hw_parms.guard_band_duration));
/* for pixel rate timing */
setreg (s, 0x0f, 6);
setreg (s, 0x10, 23);
setreg (s, 0x11, 1);
setreg (s, 0x12, 3);
setreg (s, 0x13, 3); /* 0 */
setreg (s, 0x14, 5); /* 0 */
setreg (s, 0x15, 0);
setreg (s, 0x16, 0);
setreg (s, 0x17, 11);
setreg (s, 0x18, 2); /* 1 */
setreg (s, 0x19, CIS_TR1_TIMING_OFF | FAKE_OPTICAL_BLACK_PIXELS_OFF);
setreg (s, 0x1a, 0);
setreg (s, 0x1b, 0);
setreg (s, 0x1c, 0x0d);
setreg (s, 0x1d, 0x21);
setreg (s, 0x27, TR_RED_DROP (0) | TR_GREEN_DROP (0) | TR_BLUE_DROP (0));
setreg (s, 0x28, 0x00);
setreg (s, 0x29, ILLUMINATION_MODE (1));
setreg (s, 0x2a, HIBYTE (0)); /* 0 */
setreg (s, 0x2b, LOBYTE (0)); /* 0 */
setreg (s, 0x2c, HIBYTE (16383));
setreg (s, 0x2d, LOBYTE (16383));
setreg (s, 0x2e, HIBYTE (2)); /* 2 */
setreg (s, 0x2f, LOBYTE (2)); /* 1 */
setreg (s, 0x30, HIBYTE (0));
setreg (s, 0x31, LOBYTE (0));
setreg (s, 0x32, HIBYTE (0));
setreg (s, 0x33, LOBYTE (0));
setreg (s, 0x34, HIBYTE (32));
setreg (s, 0x35, LOBYTE (32));
setreg (s, 0x36, HIBYTE (48));
setreg (s, 0x37, LOBYTE (48));
setreg (s, 0x42, EPP_MODE | PPORT_DRIVE_CURRENT (3));
setreg (s, 0x43,
RAM_SIZE_128 |
SRAM_DRIVER_CURRENT (3) | SRAM_BANDWIDTH_8 | SCANNING_FULL_DUPLEX);
setreg (s, 0x45,
MICRO_STEPPING |
CURRENT_SENSING_PHASES (2) |
PHASE_A_POLARITY_POSITIVE |
PHASE_B_POLARITY_POSITIVE | STEPPER_MOTOR_OUTPUT);
setreg (s, 0x4a, HIBYTE (100));
setreg (s, 0x4b, LOBYTE (100));
setreg (s, 0x4c, HIBYTE (0));
setreg (s, 0x4d, LOBYTE (0));
/* resume scan threshold */
setreg (s, 0x4f, 64);
/* steps to reverse */
setreg (s, 0x50, 40);
setreg (s, 0x51,
ACCELERATION_PROFILE_STOPPED (3) |
ACCELERATION_PROFILE_25P (s->hw_parms.fsteps_25_speed) |
ACCELERATION_PROFILE_50P (s->hw_parms.fsteps_50_speed));
setreg (s, 0x54, NON_REVERSING_EXTRA_LINES (0) | FIRST_LINE_TO_PROCESS (0));
setreg (s, 0x55, KICKSTART_STEPS (0) | HOLD_CURRENT_TIMEOUT (2));
/* stepper PWM frequency */
setreg (s, 0x56, 8);
/* stepper pwm duty cycle */
setreg (s, 0x57, 23);
setreg (s, 0x58,
PAPER_SENSOR_1_POLARITY_HIGH |
PAPER_SENSOR_1_TRIGGER_EDGE |
PAPER_SENSOR_1_NO_STOP_SCAN |
PAPER_SENSOR_2_POLARITY_HIGH |
PAPER_SENSOR_2_TRIGGER_EDGE | PAPER_SENSOR_2_STOP_SCAN);
setreg (s, 0x59,
MISCIO_1_TYPE_OUTPUT |
MISCIO_1_POLARITY_HIGH |
MISCIO_1_TRIGGER_EDGE |
MISCIO_1_OUTPUT_STATE_HIGH |
MISCIO_2_TYPE_OUTPUT |
MISCIO_2_POLARITY_HIGH |
MISCIO_2_TRIGGER_EDGE | MISCIO_2_OUTPUT_STATE_HIGH);
return 0;
}
#ifdef DEBUG
static int
dump_register_cache (HP4200_Scanner * s)
{
int i;
for (i = 0; i < 0x80; i++)
{
fprintf (stderr, "%.2x:0x%.2x", i, s->regs[i]);
if ((i + 1) % 8)
fprintf (stderr, ", ");
else
fprintf (stderr, "\n");
}
fputs ("", stderr);
return 0;
}
#endif
/*
* returns the scanner head to home position
*/
static int
hp4200_goto_home (HP4200_Scanner * s)
{
unsigned char cmd_reg;
unsigned char status_reg;
unsigned char old_paper_sensor_reg;
cmd_reg = getreg (s, 0x07);
if (cmd_reg != 2)
{
unsigned char paper_sensor_reg;
unsigned char sensor_bit[2] = { 0x02, 0x10 };
/* sensor head is not returning */
/* let's see if it's already at home */
/* first put paper (head) sensor level sensitive */
paper_sensor_reg = getreg (s, 0x58);
old_paper_sensor_reg = paper_sensor_reg;
paper_sensor_reg &= ~sensor_bit[s->hw_parms.home_sensor - 1];
setreg (s, 0x58, paper_sensor_reg);
cache_write (s);
/* if the scan head is not at home then move motor backwards */
status_reg = getreg (s, 0x02);
setreg (s, 0x58, old_paper_sensor_reg);
cache_write (s);
if (!(status_reg & s->hw_parms.home_sensor))
{
setreg (s, 0x07, 0x08);
usleep (10 * 1000);
setreg (s, 0x07, 0x00);
usleep (10 * 1000);
setreg (s, 0x07, 0x02);
}
}
return 0;
}
#define HP4200_CHECK_INTERVAL 1000 /* usecs between status checks */
static int
hp4200_wait_homed (HP4200_Scanner * s)
{
unsigned char cmd_reg;
cmd_reg = getreg (s, 0x07);
while (cmd_reg != 0)
{
usleep (HP4200_CHECK_INTERVAL);
cmd_reg = getreg (s, 0x07);
}
return 0;
}
static int
compute_fastfeed_step_size (unsigned long crystal_freq, int mclk,
float max_speed, int steps_per_inch,
int color_mode)
{
int aux;
int r;
if (color_mode == 0)
r = 24;
else
r = 8;
aux = floor (crystal_freq / ((double) mclk * max_speed * 4.0 *
steps_per_inch * r));
if (aux < 2)
aux = 2;
return aux;
}
static SANE_Status
read_available_data (HP4200_Scanner * s, SANE_Byte * buffer,
size_t * byte_count)
{
SANE_Status status;
unsigned char scankb1;
unsigned char scankb2;
size_t to_read;
size_t really_read;
size_t chunk;
assert (buffer != NULL);
*byte_count = 0;
do
{
scankb1 = getreg (s, 0x01);
scankb2 = getreg (s, 0x01);
if (s->aborted_by_user)
return SANE_STATUS_CANCELLED;
}
while ((scankb1 != scankb2) || (scankb1 < 12));
to_read = scankb1 * 1024;
while (to_read)
{
if (s->aborted_by_user)
return SANE_STATUS_CANCELLED;
chunk = (to_read > 0xffff) ? 0xffff : to_read;
sanei_pv8630_write_byte (s->fd, PV8630_REPPADDRESS, 0x00);
sanei_pv8630_prep_bulkread (s->fd, chunk);
really_read = chunk;
if ((status = sanei_usb_read_bulk (s->fd, buffer, &really_read)) !=
SANE_STATUS_GOOD)
{
DBG (DBG_error, "sanei_usb_read_bulk failed (%s)\n",
sane_strstatus (status));
return status;
}
if (really_read > to_read)
{
DBG (DBG_error, "USB stack read more bytes than requested!\n");
return SANE_STATUS_IO_ERROR;
}
*byte_count += really_read;
buffer += really_read;
to_read -= really_read;
#ifdef DEBUG
fprintf (stderr, "read %d bytes\n", really_read);
#endif
}
return SANE_STATUS_GOOD;
}
#ifdef unused
static int
compute_datalink_bandwidth (HP4200_Scanner * s)
{
int line_size;
int pause_limit;
unsigned int color_mode;
/*
* Line size for 8 bpp, the entire scan area width (plus the
* status byte) at optical resolution.
*/
if (s->user_parms.color)
{
line_size = 3 * s->hw_parms.scan_area_width + 1;
color_mode = 0;
setreg (s, 0x26, color_mode); /* 3 channel pixel rate color */
}
else
{
line_size = s->hw_parms.scan_area_width + 1;
color_mode = 4;
setreg (s, 0x26, 0x08 | color_mode); /* 1 channel mode A (green) */
}
setreg (s, 0x09, (3 << 3)); /* h-divider = 1, 8 bpp */
{
int first_white_pixel;
unsigned int line_end;
first_white_pixel = s->hw_parms.sensor_pixel_end - 10;
line_end = first_white_pixel + s->hw_parms.scan_area_width;
if (line_end > (s->hw_parms.sensor_num_pixels - 20))
line_end = s->hw_parms.sensor_num_pixels - 20;
setreg (s, 0x1c, HIBYTE (s->hw_parms.sensor_pixel_start));
setreg (s, 0x1d, LOBYTE (s->hw_parms.sensor_pixel_end));
setreg (s, 0x1e, HIBYTE (first_white_pixel));
setreg (s, 0x1f, LOBYTE (first_white_pixel));
setreg (s, 0x20, HIBYTE (s->hw_parms.sensor_num_pixels));
setreg (s, 0x21, LOBYTE (s->hw_parms.sensor_num_pixels));
setreg (s, 0x22, getreg (s, 0x1e));
setreg (s, 0x23, getreg (s, 0x1f));
setreg (s, 0x24, HIBYTE (line_end));
setreg (s, 0x25, LOBYTE (line_end));
}
/*
* During transfer rate calculation don't forward scanner sensor.
* Stay in the calibration region.
*/
setreg (s, 0x4f, 0);
clearbits (s, 0x45, 0x10);
/*
* Pause the scan when memory is full.
*/
pause_limit = s->hw_parms.SRAM_size - (line_size / 1024) - 1;
setreg (s, 0x4e, pause_limit & 0xff);
s->mclk = compute_min_mclk (s->hw_parms.SRAM_bandwidth,
s->hw_parms.crystal_frequency);
/*
* Set step size to fast speed.
*/
{
int step_size;
step_size =
compute_fastfeed_step_size (s->hw_parms.crystal_frequency,
s->mclk,
s->hw_parms.scan_bar_max_speed,
s->hw_parms.motor_full_steps_per_inch,
color_mode);
setreg (s, 0x46, HIBYTE (step_size));
setreg (s, 0x47, LOBYTE (step_size));
setreg (s, 0x48, HIBYTE (step_size));
setreg (s, 0x49, LOBYTE (step_size));
}
cache_write (s);
/* dump_register_cache (s); */
/*
* scan during 1 sec. aprox.
*/
setreg (s, 0x07, 0x08);
setreg (s, 0x07, 0x03);
{
struct timeval tv_before;
struct timeval tv_after;
int elapsed_time_ms = 0;
long bytes_read_total;
SANE_Byte *buffer;
buffer = malloc (2 * 98304); /* check this */
if (!buffer)
{
DBG (DBG_error, "compute_datalink_bandwidth: malloc failed\n");
return 0;
}
bytes_read_total = 0;
gettimeofday (&tv_before, NULL);
do
{
size_t bytes_read;
SANE_Status status;
status = read_available_data (s, buffer, &bytes_read);
if (status != SANE_STATUS_GOOD)
{
DBG (DBG_error, "read_available_data failed (%s)\n",
sane_strstatus (status));
return 0;
}
bytes_read_total += bytes_read;
gettimeofday (&tv_after, NULL);
elapsed_time_ms = (tv_after.tv_sec - tv_before.tv_sec) * 1000;
elapsed_time_ms += (tv_after.tv_usec - tv_before.tv_usec) / 1000;
}
while (elapsed_time_ms < 1000);
setreg (s, 0x07, 0x00);
free (buffer);
s->msrd_parms.datalink_bandwidth = bytes_read_total /
(elapsed_time_ms / 1000);
#ifdef DEBUG
fprintf (stderr, "PC Transfer rate = %d bytes/sec. (%ld/%d)\n",
s->msrd_parms.datalink_bandwidth, bytes_read_total,
elapsed_time_ms);
#endif
}
return 0;
}
#endif
static void
compute_first_gain_offset (int target, int max, int min, int *gain,
int *offset, int *max_gain, int *min_offset)
{
*gain = (int) 15.0 *(target / (max - min) - 0.933);
*offset = (int) (-1.0 * min / (512.0 * 0.0195));
if (*gain >= 32)
{
*gain = (int) 15.0 *(target / 3.0 / (max - min) - 0.933);
*offset = (int) -3.0 * min / (512.0 * 0.0195);
}
if (*gain < 0)
*gain = 0;
else if (*gain > 63)
*gain = 63;
if (*offset < -31)
*offset = -31;
else if (*offset > 31)
*offset = 31;
*max_gain = 63;
*min_offset = -31;
}
#define DATA_PORT_READ (1 << 5)
#define DATA_PORT_WRITE 0
static int
write_gamma (HP4200_Scanner * s)
{
int color;
int i;
unsigned char gamma[1024];
unsigned char read_gamma[1024];
int retval;
size_t to_read;
size_t to_write;
for (color = 0; color < 3; color++)
{
for (i = 0; i < 1024; i++)
gamma[i] = s->user_parms.gamma[color][i];
setreg (s, 0x03, color << 1);
setreg (s, 0x04, DATA_PORT_WRITE);
setreg (s, 0x05, 0x00);
sanei_pv8630_write_byte (s->fd, PV8630_REPPADDRESS, 0x06);
sanei_pv8630_prep_bulkwrite (s->fd, sizeof (gamma));
to_write = sizeof (gamma);
sanei_usb_write_bulk (s->fd, gamma, &to_write);
/* check if gamma vector was correctly written */
setreg (s, 0x03, color << 1);
setreg (s, 0x04, DATA_PORT_READ);
setreg (s, 0x05, 0x00);
sanei_pv8630_write_byte (s->fd, PV8630_REPPADDRESS, 0x06);
sanei_pv8630_prep_bulkread (s->fd, sizeof (read_gamma));
to_read = sizeof (read_gamma);
sanei_usb_read_bulk (s->fd, read_gamma, &to_read);
retval = memcmp (read_gamma, gamma, sizeof (read_gamma));
if (retval != 0)
{
DBG (DBG_error, "error: color %d has bad gamma table\n", color);
}
#ifdef DEBUG
else
fprintf (stderr, "color %d gamma table is good\n", color);
#endif
}
return 0;
}
static int
write_default_offset_gain (HP4200_Scanner * s, SANE_Byte * gain_offset,
int size, int color)
{
SANE_Byte *check_data;
int retval;
size_t to_read;
size_t to_write;
setreg (s, 0x03, (color << 1) | 1);
setreg (s, 0x04, DATA_PORT_WRITE);
setreg (s, 0x05, 0x00);
sanei_pv8630_write_byte (s->fd, PV8630_REPPADDRESS, 0x06);
sanei_pv8630_prep_bulkwrite (s->fd, size);
to_write = size;
sanei_usb_write_bulk (s->fd, gain_offset, &to_write);
check_data = malloc (size);
setreg (s, 0x03, (color << 1) | 1);
setreg (s, 0x04, DATA_PORT_READ);
setreg (s, 0x05, 0x00);
sanei_pv8630_write_byte (s->fd, PV8630_REPPADDRESS, 0x06);
sanei_pv8630_prep_bulkread (s->fd, size);
to_read = size;
sanei_usb_read_bulk (s->fd, check_data, &to_read);
retval = memcmp (gain_offset, check_data, size);
free (check_data);
if (retval != 0)
{
DBG (DBG_error, "error: color %d has bad gain/offset table\n", color);
}
#ifdef DEBUG
else
fprintf (stderr, "color %d gain/offset table is good\n", color);
#endif
return 0;
}
static int
compute_gain_offset (int target, int max, int min, int *gain,
int *offset, int *max_gain, int *min_offset)
{
int gain_stable;
int is_unstable;
gain_stable = 1; /* unless the opposite is said */
is_unstable = 0;
if (max > target)
{
if (*gain > 0)
{
(*gain)--;
*max_gain = *gain;
gain_stable = 0;
is_unstable |= 1;
}
else
{
DBG (DBG_error, "error: integration time too long.\n");
return -1;
}
}
else
{
if (*gain < *max_gain)
{
(*gain)++;
gain_stable = 0;
is_unstable |= 1;
}
}
if (min == 0)
{
if (*offset < 31)
{
(*offset)++;
if (gain_stable)
*min_offset = *offset;
is_unstable |= 1;
}
else
{
DBG (DBG_error, "error: max static has pixel value == 0\n");
return -1;
}
}
else
{
if (*offset > *min_offset)
{
(*offset)--;
is_unstable |= 1;
}
}
return is_unstable;
}
static int
compute_bytes_per_line (int width_in_pixels, unsigned char hdpi_code,
unsigned char pixel_packing,
unsigned char data_mode,
unsigned char AFE_operation, int m)
{
const int dpi_qot_mul[] = { 1, 2, 1, 1, 1, 1, 1, 1 };
const int dpi_qot_div[] = { 1, 3, 2, 3, 4, 6, 8, 12 };
int pixels_per_line;
int bytes_per_line;
int pixels_per_byte;
int status_bytes;
const int pixels_per_byte_mapping[] = { 8, 4, 2, 1 };
assert (hdpi_code <= 7);
pixels_per_line = (width_in_pixels * dpi_qot_mul[hdpi_code]) /
dpi_qot_div[hdpi_code];
if ((width_in_pixels * dpi_qot_mul[hdpi_code]) % dpi_qot_div[hdpi_code])
pixels_per_line++;
status_bytes = (m == 0) ? 1 : m;
if (data_mode == 1)
pixels_per_byte = 1; /* should be 0.5 but later
bytes_per_line will be multiplied
by 2, and also the number of status
bytes, that in this case should be
2.
umm.. maybe this should be done in
the cleaner way.
*/
else
{
assert (pixel_packing <= 3);
pixels_per_byte = pixels_per_byte_mapping[pixel_packing];
}
switch (AFE_operation)
{
case PIXEL_RATE_3_CHANNELS:
bytes_per_line = ((pixels_per_line * 3) / pixels_per_byte) +
status_bytes;
break;
case MODEA_1_CHANNEL:
bytes_per_line = (pixels_per_line / pixels_per_byte) + status_bytes;
break;
default:
/* Not implemented! (yet?) and not used.
* This case should not happen. */
assert (0);
}
if (data_mode == 1) /* see big note above */
bytes_per_line *= 2;
return bytes_per_line;
}
static int
compute_pause_limit (hardware_parameters_t * hw_parms, int bytes_per_line)
{
int coef_size;
const int coef_mapping[] = { 16, 32 };
int pause_limit;
coef_size = coef_mapping[hw_parms->sensor_resolution & 0x01];
pause_limit = hw_parms->SRAM_size - coef_size - (bytes_per_line / 1024) - 1;
if (pause_limit > 2)
pause_limit -= 2;
return pause_limit;
}
static int
compute_dpd (HP4200_Scanner * s, int step_size, int line_end)
{
int tr, dpd;
tr = 1 /* color mode */ *
(line_end + ((s->hw_parms.num_tr_pulses + 1) *
(2 * s->hw_parms.guard_band_duration +
s->hw_parms.pulse_duration + 1) +
3 - s->hw_parms.num_tr_pulses));
if (tr == 0)
return 0;
dpd = (((s->hw_parms.fsteps_25_speed * 4) +
(s->hw_parms.fsteps_50_speed * 2) +
s->hw_parms.steps_to_reverse) * 4 * step_size) % tr;
dpd = tr - dpd;
return dpd;
}
static SANE_Status
read_required_bytes (HP4200_Scanner * s, int required, SANE_Byte * buffer)
{
int read_count = 0;
unsigned char scankb1;
unsigned char scankb2;
size_t to_read;
size_t really_read;
size_t chunk;
SANE_Status status;
assert (buffer != NULL);
while (required)
{
do
{
scankb1 = getreg (s, 0x01);
scankb2 = getreg (s, 0x01);
if (s->aborted_by_user)
return SANE_STATUS_CANCELLED;
}
while ((scankb1 != scankb2) || (scankb1 < 12));
to_read = min (required, (scankb1 * 1024));
while (to_read)
{
if (s->aborted_by_user)
return SANE_STATUS_CANCELLED;
chunk = (to_read > 0xffff) ? 0xffff : to_read;
sanei_pv8630_write_byte (s->fd, PV8630_REPPADDRESS, 0x00);
sanei_pv8630_prep_bulkread (s->fd, chunk);
really_read = chunk;
if ((status = sanei_usb_read_bulk (s->fd, buffer, &really_read)) !=
SANE_STATUS_GOOD)
{
DBG (DBG_error, "sanei_usb_read_bulk failed (%s)\n",
sane_strstatus (status));
return status;
}
if (really_read > chunk)
{
DBG (DBG_error, "USB stack read more bytes than requested!\n");
return SANE_STATUS_IO_ERROR;
}
buffer += really_read;
required -= really_read;
to_read -= really_read;
read_count += really_read;
}
}
return SANE_STATUS_GOOD;
}
static SANE_Status
scanner_buffer_init (scanner_buffer_t * sb, int size_in_kb)
{
sb->size = size_in_kb * 1024 + 3;
sb->buffer = malloc (sb->size);
if (!sb->buffer)
return SANE_STATUS_NO_MEM;
sb->num_bytes = 0;
sb->data_ptr = sb->buffer;
return SANE_STATUS_GOOD;
}
static SANE_Status
scanner_buffer_read (HP4200_Scanner * s)
{
SANE_Status status;
size_t num_bytes_read_now;
assert (s->scanner_buffer.num_bytes <= 3);
memcpy (s->scanner_buffer.buffer, s->scanner_buffer.data_ptr, 3);
status = read_available_data (s, s->scanner_buffer.buffer +
s->scanner_buffer.num_bytes,
&num_bytes_read_now);
s->scanner_buffer.data_ptr = s->scanner_buffer.buffer;
s->scanner_buffer.num_bytes += num_bytes_read_now;
return status;
}
#define OFFSET_CODE_SIGN(off) (((off) < 0) ? (-(off) & 0x1f) | 0x20 : (off))
#define OFFSET_DECODE_SIGN(off) (((off) & 0x20) ? -(off & 0x1f) : (off))
static SANE_Status
do_coarse_calibration (HP4200_Scanner * s, struct coarse_t *coarse)
{
SANE_Status status;
unsigned char *cal_line = NULL;
unsigned char *cal_line_ptr;
int cal_line_size;
/* local scanning params */
int active_pixels_start;
int line_end;
int data_pixels_start;
int data_pixels_end;
int dpd;
int step_size;
int ff_step_size;
char steps_to_reverse;
char line_rate_color;
int vdpi; /* vertical dots per inch */
int hdpi_code;
int calibrated;
int first_time;
int red_offset = 0;
int green_offset = 0;
int blue_offset = 0;
int red_gain = 1;
int green_gain = 1;
int blue_gain = 1;
int min_red_offset = -31;
int min_green_offset = -31;
int min_blue_offset = -31;
int max_red_gain = 63;
int max_green_gain = 63;
int max_blue_gain = 63;
int max_red;
int min_red;
int max_green;
int min_green;
int max_blue;
int min_blue;
static char me[] = "do_coarse_calibration";
DBG (DBG_proc, "%s\n", me);
setreg (s, 0x07, 0x00);
usleep (10 * 1000);
vdpi = 150;
hdpi_code = 0;
active_pixels_start = 0x40;
line_end = 0x2ee0;
s->mclk_div = 2;
data_pixels_start = 0x40;
data_pixels_end = (int) (data_pixels_start + s->hw_parms.scan_area_width);
data_pixels_end = min (data_pixels_end, line_end - 20);
cal_line_size = s->hw_parms.scan_area_width * 3 * 2 + 2;
setreg (s, 0x1e, HIBYTE (active_pixels_start));
setreg (s, 0x1f, LOBYTE (active_pixels_start));
setreg (s, 0x20, HIBYTE (line_end));
setreg (s, 0x21, LOBYTE (line_end));
setreg (s, 0x22, HIBYTE (data_pixels_start));
setreg (s, 0x23, LOBYTE (data_pixels_start));
setreg (s, 0x24, HIBYTE (data_pixels_end));
setreg (s, 0x25, LOBYTE (data_pixels_end));
setreg (s, 0x26,
PIXEL_RATE_3_CHANNELS |
GRAY_CHANNEL_RED | TR_RED (0) | TR_GREEN (0) | TR_BLUE (0));
setreg (s, 0x08, (s->mclk_div - 1) * 2);
setreg (s, 0x09, hdpi_code | PIXEL_PACKING (3) | DATAMODE (1));
setreg (s, 0x0a, 0); /* reserved and strange register */
setreg (s, 0x38, red_offset);
setreg (s, 0x39, green_offset);
setreg (s, 0x3a, blue_offset);
setreg (s, 0x3b, red_gain);
setreg (s, 0x3c, green_gain);
setreg (s, 0x3d, blue_gain);
setreg (s, 0x5e, 0x80);
setreg (s, 0x3e, 0x00); /* 1.5:1, 6/10 bits, 2*fixed */
setreg (s, 0x3f, 0x00);
setreg (s, 0x40, 0x00);
setreg (s, 0x41, 0x00);
setreg (s, 0x4e, 0x5b - 0x3c); /* max Kb to pause */
setreg (s, 0x4f, 0x02); /* min Kb to resume */
line_rate_color = 1;
step_size = (vdpi * line_end * line_rate_color) /
(4 * s->hw_parms.motor_full_steps_per_inch);
dpd = compute_dpd (s, step_size, line_end); /* 0x0ada; */
#ifdef DEBUG
fprintf (stderr, "dpd = %d\n", dpd);
#endif
setreg (s, 0x52, HIBYTE (dpd));
setreg (s, 0x53, LOBYTE (dpd));
setreg (s, 0x46, HIBYTE (step_size));
setreg (s, 0x47, LOBYTE (step_size));
ff_step_size = compute_fastfeed_step_size (s->hw_parms.crystal_frequency, s->mclk_div, s->hw_parms.motor_max_speed, s->hw_parms.motor_full_steps_per_inch, 0); /* 0x0190; */
setreg (s, 0x48, HIBYTE (ff_step_size));
setreg (s, 0x49, LOBYTE (ff_step_size));
setreg (s, 0x4b, 0x15);
steps_to_reverse = 0x3f;
setreg (s, 0x50, steps_to_reverse);
setreg (s, 0x51, 0x15); /* accel profile */
/* this is to stay the motor stopped */
clearbits (s, 0x45, (1 << 4));
cache_write (s);
calibrated = 0;
first_time = 1;
cal_line = malloc (cal_line_size + 1024);
do
{
unsigned char cmd_reg;
/* resets the lm9830 before start scanning */
setreg (s, 0x07, 0x08);
do
{
setreg (s, 0x07, 0x03);
cmd_reg = getreg (s, 0x07);
}
while (cmd_reg != 0x03);
cal_line_ptr = cal_line;
status = read_required_bytes (s, cal_line_size, cal_line_ptr);
if (status != SANE_STATUS_GOOD)
goto done;
setreg (s, 0x07, 0x00);
{
unsigned int i;
min_red = max_red = (cal_line[0] * 256 + cal_line[1]) >> 2;
min_green = max_green = (cal_line[2] * 256 + cal_line[3]) >> 2;
min_blue = max_blue = (cal_line[4] * 256 + cal_line[5]) >> 2;
for (i = 6; i < (s->hw_parms.scan_area_width * 3 * 2); i += 6)
{
int value;
value = cal_line[i] * 256 + cal_line[i + 1];
value >>= 2;
if (value > max_red)
max_red = value;
value = cal_line[i + 2] * 256 + cal_line[i + 3];
value >>= 2;
if (value > max_green)
max_green = value;
value = cal_line[i + 4] * 256 + cal_line[i + 5];
value >>= 2;
if (value > max_blue)
max_blue = value;
value = cal_line[i] * 256 + cal_line[i + 1];
value >>= 2;
if (value < min_red)
min_red = value;
value = cal_line[i + 2] * 256 + cal_line[i + 3];
value >>= 2;
if (value < min_green)
min_green = value;
value = cal_line[i + 4] * 256 + cal_line[i + 5];
value >>= 2;
if (value < min_blue)
min_blue = value;
}
#ifdef DEBUG
fprintf (stderr, "max_red:%d max_green:%d max_blue:%d\n",
max_red, max_green, max_blue);
fprintf (stderr, "min_red:%d min_green:%d min_blue:%d\n",
min_red, min_green, min_blue);
#endif
if (first_time)
{
first_time = 0;
compute_first_gain_offset (s->hw_parms.target_value.red,
max_red, min_red,
&red_gain, &red_offset,
&max_red_gain, &min_red_offset);
compute_first_gain_offset (s->hw_parms.target_value.green,
max_green, min_green,
&green_gain, &green_offset,
&max_green_gain, &min_green_offset);
compute_first_gain_offset (s->hw_parms.target_value.blue,
max_blue, min_blue, &blue_gain,
&blue_offset, &max_blue_gain,
&min_blue_offset);
}
else
{
int retval;
/* this code should check return value -1 for error */
retval = compute_gain_offset (s->hw_parms.target_value.red,
max_red, min_red,
&red_gain, &red_offset,
&max_red_gain, &min_red_offset);
if (retval < 0)
break;
retval |= compute_gain_offset (s->hw_parms.target_value.green,
max_green, min_green,
&green_gain, &green_offset,
&max_green_gain,
&min_green_offset);
if (retval < 0)
break;
retval |= compute_gain_offset (s->hw_parms.target_value.blue,
max_blue, min_blue,
&blue_gain, &blue_offset,
&max_blue_gain, &min_blue_offset);
if (retval < 0)
break;
calibrated = !retval;
}
setreg (s, 0x3b, red_gain);
setreg (s, 0x3c, green_gain);
setreg (s, 0x3d, blue_gain);
setreg (s, 0x38, OFFSET_CODE_SIGN (red_offset));
setreg (s, 0x39, OFFSET_CODE_SIGN (green_offset));
setreg (s, 0x3a, OFFSET_CODE_SIGN (blue_offset));
#ifdef DEBUG
fprintf (stderr, "%d, %d, %d %d, %d, %d\n", red_gain,
green_gain, blue_gain, red_offset, green_offset,
blue_offset);
#endif
cache_write (s);
}
}
while (!calibrated);
coarse->min_red = min_red;
coarse->min_green = min_green;
coarse->min_blue = min_blue;
coarse->max_red = max_red;
coarse->max_green = max_green;
coarse->max_blue = max_blue;
coarse->red_gain = red_gain;
coarse->green_gain = green_gain;
coarse->blue_gain = blue_gain;
coarse->red_offset = red_offset;
coarse->green_offset = green_offset;
coarse->blue_offset = blue_offset;
status = SANE_STATUS_GOOD;
done:
if (cal_line)
free (cal_line);
return status;
}
static int
compute_corr_code (int average, int min_color, int range, int target)
{
int value;
int corr_code;
value = average - min_color;
if (value > 0)
corr_code =
(int) (range * ((double) target / (double) value - 1.0) + 0.5);
else
corr_code = 0;
if (corr_code < 0)
corr_code = 0;
else if (corr_code > 2048)
corr_code = 0;
else if (corr_code > 1023)
corr_code = 1023;
return corr_code;
}
static int
compute_hdpi_code (int hres)
{
int hdpi_code;
/* Calculate the horizontal DPI code based on the requested
horizontal resolution. Defaults to 150dpi. */
switch (hres)
{
case 600:
hdpi_code = 0;
break;
case 400:
hdpi_code = 1;
break;
case 300:
hdpi_code = 2;
break;
case 200:
hdpi_code = 3;
break;
case 150:
hdpi_code = 4;
break;
case 100:
hdpi_code = 5;
break;
case 75:
hdpi_code = 6;
break;
case 50:
hdpi_code = 7;
break;
default:
hdpi_code = 4;
}
return hdpi_code;
}
static SANE_Status
do_fine_calibration (HP4200_Scanner * s, struct coarse_t *coarse)
{
SANE_Status status;
unsigned char *cal_line;
unsigned char *cal_line_ptr;
int *average;
SANE_Byte red_gain_offset[5460 * 2];
SANE_Byte green_gain_offset[5460 * 2];
SANE_Byte blue_gain_offset[5460 * 2];
int *corr_red = NULL;
int *corr_green = NULL;
int *corr_blue = NULL;
int registro[30][5460 * 3];
int cal_line_size;
/* local scanning params */
int active_pixels_start;
int line_end;
int line_length;
int data_pixels_start;
int data_pixels_end;
int dpd;
int step_size;
int ff_step_size;
char steps_to_reverse;
char hdpi_div;
char line_rate_color;
int vdpi; /* vertical dots per inch */
int hdpi_code;
int calibrated;
int lines_to_process;
static char me[] = "do_fine_calibration";
DBG (DBG_proc, "%s\n", me);
setreg (s, 0x07, 0x00);
usleep (10 * 1000);
vdpi = 150;
hdpi_code = compute_hdpi_code (s->user_parms.horizontal_resolution);
/* figure out which horizontal divider to use based on the
calculated horizontal dpi code */
hdpi_div = hdpi_mapping[hdpi_code];
active_pixels_start = 0x40;
line_end = 0x2ee0;
line_length = s->user_parms.image_width * hdpi_div;
s->mclk_div = 2;
data_pixels_start = 0x72 + s->runtime_parms.first_pixel * hdpi_div;
data_pixels_end =
(int) (data_pixels_start + s->user_parms.image_width * hdpi_div);
data_pixels_end = min (data_pixels_end, line_end - 20);
cal_line_size = line_length * 3 * 2 + 2;
setreg (s, 0x1e, HIBYTE (active_pixels_start));
setreg (s, 0x1f, LOBYTE (active_pixels_start));
setreg (s, 0x20, HIBYTE (line_end));
setreg (s, 0x21, LOBYTE (line_end));
setreg (s, 0x22, HIBYTE (data_pixels_start));
setreg (s, 0x23, LOBYTE (data_pixels_start));
setreg (s, 0x24, HIBYTE (data_pixels_end));
setreg (s, 0x25, LOBYTE (data_pixels_end));
setreg (s, 0x26,
PIXEL_RATE_3_CHANNELS |
GRAY_CHANNEL_RED | TR_RED (0) | TR_GREEN (0) | TR_BLUE (0));
setreg (s, 0x08, (s->mclk_div - 1) * 2);
setreg (s, 0x09, 0 | PIXEL_PACKING (3) | DATAMODE (1));
setreg (s, 0x0a, 0); /* reserved and strange register */
setreg (s, 0x38, 1);
setreg (s, 0x39, 1);
setreg (s, 0x3a, 1);
setreg (s, 0x3b, coarse->red_gain);
setreg (s, 0x3c, coarse->green_gain);
setreg (s, 0x3d, coarse->blue_gain);
setreg (s, 0x5e, 0x80);
setreg (s, 0x3e, 0x00); /* 1.5:1, 6/10 bits, 2*fixed */
setreg (s, 0x3f, 0x00);
setreg (s, 0x40, 0x00);
setreg (s, 0x41, 0x00);
setreg (s, 0x4e, 0x5b - 0x3c); /* max Kb to pause */
setreg (s, 0x4f, 0x02); /* min Kb to resume */
line_rate_color = 1;
step_size = (vdpi * line_end * line_rate_color) /
(4 * s->hw_parms.motor_full_steps_per_inch);
dpd = compute_dpd (s, step_size, line_end); /* 0x0ada; */
#ifdef DEBUG
fprintf (stderr, "dpd = %d\n", dpd);
#endif
setreg (s, 0x52, HIBYTE (dpd));
setreg (s, 0x53, LOBYTE (dpd));
setreg (s, 0x46, HIBYTE (step_size));
setreg (s, 0x47, LOBYTE (step_size));
ff_step_size = compute_fastfeed_step_size (s->hw_parms.crystal_frequency, s->mclk_div, s->hw_parms.motor_max_speed, s->hw_parms.motor_full_steps_per_inch, 0); /* 0x0190; */
setreg (s, 0x48, HIBYTE (ff_step_size));
setreg (s, 0x49, LOBYTE (ff_step_size));
setreg (s, 0x4b, 0x15);
steps_to_reverse = 0x3f;
setreg (s, 0x50, steps_to_reverse);
setreg (s, 0x51, 0x15); /* accel profile */
/* this is to activate the motor */
setbits (s, 0x45, (1 << 4));
lines_to_process = 8 * step_size * 4 / line_end;
if (lines_to_process < 1)
lines_to_process = 1;
#ifdef DEBUG
fprintf (stderr, "lines to process = %d\n", lines_to_process);
#endif
setreg (s, 0x58, 0);
cache_write (s);
calibrated = 0;
cal_line = malloc (cal_line_size + 1024);
average = malloc (sizeof (int) * line_length * 3);
memset (average, 0, sizeof (int) * line_length * 3);
{
int i;
for (i = 0; i < 12; i++)
{
memset (registro[i], 0, 5460 * 3 * sizeof(int));
}
}
/* resets the lm9830 before start scanning */
setreg (s, 0x07, 0x08);
setreg (s, 0x07, 0x03);
usleep (100);
do
{
cal_line_ptr = cal_line;
status = read_required_bytes (s, cal_line_size, cal_line_ptr);
if (status != SANE_STATUS_GOOD)
goto done;
{
int i, j;
if (calibrated == 0)
for (j = 0, i = 0; i < (line_length * 3); i++, j += 2)
{
average[i] = (cal_line[j] * 256 + cal_line[j + 1]) >> 2;
registro[calibrated][i] = average[i];
}
else
for (j = 0, i = 0; i < (line_length * 3); i++, j += 2)
{
int value;
value = (cal_line[j] * 256 + cal_line[j + 1]) >> 2;
average[i] += value;
average[i] /= 2;
registro[calibrated][i] = value;
}
}
calibrated++;
}
while (calibrated < lines_to_process);
lm9830_write_register (s->fd, 0x07, 0x00);
usleep (10 * 1000);
#if 0
{
int i;
int j = 0;
do
{
for (i = 3; (i + 6) < (line_length * 3); i += 3)
{
average[i] =
(2 * average[i - 3] + average[i] + 2 * average[i + 3]) / 5;
average[i + 1] =
(2 * average[i - 2] + average[i + 1] + 2 * average[i + 4]) / 5;
average[i + 2] =
(2 * average[i - 1] + average[i + 2] + 2 * average[i + 5]) / 5;
}
j++;
}
while (j < 3);
}
#endif
{
int i;
int max_red;
int min_red;
int max_green;
int min_green;
int max_blue;
int min_blue;
min_red = max_red = average[0];
min_green = max_green = average[1];
min_blue = max_blue = average[2];
for (i = 3; i < (line_length * 3); i += 3)
{
int value;
value = average[i];
if (value > max_red)
max_red = value;
value = average[i + 1];
if (value > max_green)
max_green = value;
value = average[i + 2];
if (value > max_blue)
max_blue = value;
value = average[i];
if (value < min_red)
min_red = value;
value = average[i + 1];
if (value < min_green)
min_green = value;
value = average[i + 2];
if (value < min_blue)
min_blue = value;
}
#ifdef DEBUG
fprintf (stderr, "max_red:%d max_green:%d max_blue:%d\n",
max_red, max_green, max_blue);
fprintf (stderr, "min_red:%d min_green:%d min_blue:%d\n",
min_red, min_green, min_blue);
#endif
/* do fine calibration */
{
int min_white_red;
int min_white_green;
int min_white_blue;
double ratio;
int range;
double aux;
int min_white_err;
int j;
min_white_red = min_white_green = min_white_blue = 0x3ff;
for (i = 0; i < (line_length * 3); i += 3)
{
int value;
value = average[i] - coarse->min_red;
if ((value > 0) && (value < min_white_red))
min_white_red = value;
value = average[i + 1] - coarse->min_green;
if ((value > 0) && (value < min_white_green))
min_white_green = value;
value = average[i + 2] - coarse->min_blue;
if ((value > 0) && (value < min_white_blue))
min_white_blue = value;
}
ratio = 0;
min_white_err = 0x3ff;
aux = (double) s->hw_parms.target_value.red / min_white_red;
if (aux > ratio)
ratio = aux;
if (min_white_err > min_white_red)
min_white_err = min_white_red;
aux = (double) s->hw_parms.target_value.green / min_white_green;
if (aux > ratio)
ratio = aux;
if (min_white_err > min_white_green)
min_white_err = min_white_green;
aux = (double) s->hw_parms.target_value.blue / min_white_blue;
if (aux > ratio)
ratio = aux;
if (min_white_err > min_white_blue)
min_white_err = min_white_blue;
#ifdef DEBUG
fprintf (stderr, "min_white_err = %d, ratio = %f\n",
min_white_err, ratio);
#endif
if (ratio <= 1.5)
range = 2048;
else if (ratio <= 2.0)
range = 1024;
else
range = 512;
corr_red = malloc (sizeof (int) * line_length);
corr_green = malloc (sizeof (int) * line_length);
corr_blue = malloc (sizeof (int) * line_length);
for (i = 0, j = 0; i < (line_length * 3); i += 3, j++)
{
corr_red[j] = compute_corr_code (average[i],
coarse->min_red,
range,
s->hw_parms.target_value.red);
corr_green[j] =
compute_corr_code (average[i + 1], coarse->min_green,
range, s->hw_parms.target_value.green);
corr_blue[j] =
compute_corr_code (average[i + 2], coarse->min_blue,
range, s->hw_parms.target_value.blue);
}
#ifdef DEBUG
{
FILE *kaka;
int i;
kaka = fopen ("corr.raw", "w");
for (i = 0; i < line_length; i++)
{
fprintf (kaka, "%d %d %d %d %d %d ",
corr_red[i], corr_green[i], corr_blue[i],
average[3 * i], average[3 * i + 1], average[3 * i + 2]);
fprintf (kaka, "%d %d %d %d %d %d %d %d %d ",
registro[0][3 * i], registro[0][3 * i + 1],
registro[0][3 * i + 2], registro[1][3 * i],
registro[1][3 * i + 1], registro[1][3 * i + 2],
registro[2][3 * i], registro[2][3 * i + 1],
registro[2][3 * i + 2]);
fprintf (kaka, "%d %d %d %d %d %d %d %d %d\n",
registro[3][3 * i], registro[3][3 * i + 1],
registro[3][3 * i + 2], registro[4][3 * i],
registro[4][3 * i + 1], registro[4][3 * i + 2],
registro[5][3 * i], registro[5][3 * i + 1],
registro[5][3 * i + 2]);
}
fclose (kaka);
}
#endif
{
int max_black;
int use_six_eight_bits;
max_black = max (coarse->min_red, coarse->min_green);
max_black = max (max_black, coarse->min_blue);
use_six_eight_bits = (max_black < 64);
if (use_six_eight_bits)
{
setreg (s, 0x3e, (1 << 4) | (1 << 3) | (1024 / range));
}
else
{
setreg (s, 0x3e, (1 << 4) | (1 << 3) | (1 << 2) | (1024 / range));
}
memset (red_gain_offset, 0, sizeof (red_gain_offset));
memset (green_gain_offset, 0, sizeof (green_gain_offset));
memset (blue_gain_offset, 0, sizeof (blue_gain_offset));
for (i = 0, j = (data_pixels_start - active_pixels_start) * 2;
i < line_length; i++, j += 2)
{
if (use_six_eight_bits)
{
red_gain_offset[j] = (coarse->min_red << 2) |
((corr_red[i] >> 8) & 0x03);
red_gain_offset[j + 1] = corr_red[i] & 0xff;
green_gain_offset[j] = (coarse->min_green << 2) |
((corr_green[i] >> 8) & 0x03);
green_gain_offset[j + 1] = corr_green[i] & 0xff;
blue_gain_offset[j] = (coarse->min_blue << 2) |
((corr_blue[i] >> 8) & 0x03);
blue_gain_offset[j + 1] = corr_blue[i] & 0xff;
}
else
{
red_gain_offset[j] = coarse->min_red;
red_gain_offset[j + 1] = corr_red[j] >> 2;
green_gain_offset[j] = coarse->min_green;
green_gain_offset[j + 1] = corr_green[j] >> 2;
blue_gain_offset[j] = coarse->min_blue;
blue_gain_offset[j + 1] = corr_blue[j] >> 2;
}
}
write_default_offset_gain (s, red_gain_offset, 5460 * 2, 0);
write_default_offset_gain (s, green_gain_offset, 5460 * 2, 1);
write_default_offset_gain (s, blue_gain_offset, 5460 * 2, 2);
}
}
}
status = SANE_STATUS_GOOD;
done:
if (corr_red)
free (corr_red);
if (corr_green)
free (corr_green);
if (corr_blue)
free (corr_blue);
if (cal_line)
free (cal_line);
if (average)
free (average);
return status;
}
static void
ciclic_buffer_init_offset_correction (ciclic_buffer_t * cb, int vres)
{
cb->blue_idx = 0;
switch (vres)
{
case 600:
cb->green_idx = 4;
cb->red_idx = 8;
cb->first_good_line = 8;
break;
case 400:
cb->green_idx = 3;
cb->red_idx = 6;
cb->first_good_line = 6;
break;
case 300:
cb->green_idx = 2;
cb->red_idx = 4;
cb->first_good_line = 4;
break;
case 200:
cb->blue_idx = 0;
cb->green_idx = 1;
cb->red_idx = 2;
cb->first_good_line = 4;
break;
case 150:
cb->green_idx = 1;
cb->red_idx = 2;
cb->first_good_line = 2;
break;
case 75:
cb->green_idx = 1;
cb->red_idx = 2;
cb->first_good_line = 2;
break;
default:
cb->green_idx = 0;
cb->red_idx = 0;
cb->first_good_line = 0;
break;
}
cb->buffer_position = cb->buffer_ptrs[cb->first_good_line];
}
static SANE_Status
ciclic_buffer_init (ciclic_buffer_t * cb, SANE_Int bytes_per_line,
int vres, int status_bytes)
{
cb->good_bytes = 0;
cb->num_lines = 12;
cb->size = bytes_per_line * cb->num_lines;
cb->can_consume = cb->size + cb->num_lines * status_bytes;
cb->buffer = malloc (cb->size);
if (!cb->buffer)
return SANE_STATUS_NO_MEM;
{
int i;
unsigned char *buffer;
unsigned char **ptrs;
ptrs = cb->buffer_ptrs = (unsigned char **)
malloc (sizeof (unsigned char *) * cb->num_lines);
if (!cb->buffer_ptrs)
return SANE_STATUS_NO_MEM;
buffer = cb->buffer;
for (i = 0; i < cb->num_lines; i++)
{
ptrs[i] = buffer;
buffer += bytes_per_line;
}
}
cb->current_line = 0;
cb->pixel_position = 0;
ciclic_buffer_init_offset_correction (cb, vres);
return SANE_STATUS_GOOD;
}
static int
prepare_for_a_scan (HP4200_Scanner * s)
{
/* local scanning params */
int active_pixels_start;
int line_end;
int data_pixels_start;
int data_pixels_end;
int ff_step_size;
int dpd;
int step_size;
char steps_to_reverse;
char hdpi_div;
char line_rate_color;
int hdpi_code;
unsigned char pixel_packing;
unsigned char data_mode;
unsigned char AFE_operation;
int pause_limit;
int n = 0, m = 0;
setreg (s, 0x07, 0x00);
usleep (10 * 1000);
hdpi_code = compute_hdpi_code (s->user_parms.horizontal_resolution);
/* figure out which horizontal divider to use based on the
calculated horizontal dpi code */
hdpi_div = hdpi_mapping[hdpi_code];
/* image_width is set to the correct number of pixels by calling
fxn. This might be the reason we can't do high res full width
scans though...not sure. */
/*s->user_parms.image_width /= 4; */
active_pixels_start = 0x40;
line_end = 0x2ee0; /* 2ee0 */
s->mclk_div = 2;
data_pixels_start = 0x72 + s->runtime_parms.first_pixel * hdpi_div;
data_pixels_end =
(int) (data_pixels_start + s->user_parms.image_width * hdpi_div);
data_pixels_end = min (data_pixels_end, line_end - 20);
setreg (s, 0x1e, HIBYTE (active_pixels_start));
setreg (s, 0x1f, LOBYTE (active_pixels_start));
setreg (s, 0x20, HIBYTE (line_end));
setreg (s, 0x21, LOBYTE (line_end));
setreg (s, 0x22, HIBYTE (data_pixels_start));
setreg (s, 0x23, LOBYTE (data_pixels_start));
setreg (s, 0x24, HIBYTE (data_pixels_end));
setreg (s, 0x25, LOBYTE (data_pixels_end));
AFE_operation = PIXEL_RATE_3_CHANNELS;
setreg (s, 0x26,
AFE_operation |
GRAY_CHANNEL_RED | TR_RED (0) | TR_GREEN (0) | TR_BLUE (0));
setreg (s, 0x08, (s->mclk_div - 1) * 2);
pixel_packing = 3;
data_mode = 0;
setreg (s, 0x09, hdpi_code | PIXEL_PACKING (pixel_packing) |
DATAMODE (data_mode));
setreg (s, 0x0a, 0); /* reserved and strange register */
setreg (s, 0x5c, 0x00);
setreg (s, 0x5d, 0x00);
setreg (s, 0x5e, 0x00);
if (s->user_parms.vertical_resolution == 1200)
{
/* 1 out of 2 */
n = 1;
m = 2;
}
setreg (s, 0x44, (256 - n) & 0xff);
setreg (s, 0x5a, m);
s->runtime_parms.status_bytes = (m == 0) ? 1 : m;
if (data_mode == 1)
s->runtime_parms.status_bytes *= 2;
s->runtime_parms.scanner_line_size =
compute_bytes_per_line (data_pixels_end - data_pixels_start,
hdpi_code, pixel_packing, data_mode,
AFE_operation, m);
pause_limit = compute_pause_limit (&(s->hw_parms),
s->runtime_parms.scanner_line_size);
#ifdef DEBUG
fprintf (stderr, "scanner_line_size = %d\npause_limit = %d\n",
s->runtime_parms.scanner_line_size, pause_limit);
#endif
setreg (s, 0x4e, pause_limit); /* max Kb to pause */
setreg (s, 0x4f, 0x02); /* min Kb to resume */
line_rate_color = 1;
step_size =
(s->user_parms.vertical_resolution * line_end * line_rate_color) /
(4 * s->hw_parms.motor_full_steps_per_inch);
if (s->val[OPT_BACKTRACK].b)
{
steps_to_reverse = 0x3f;
setreg (s, 0x50, steps_to_reverse);
setreg (s, 0x51, 0x15); /* accel profile */
}
else
{
s->hw_parms.steps_to_reverse = 0;
setreg (s, 0x50, s->hw_parms.steps_to_reverse);
setreg (s, 0x51, 0); /* accel profile */
s->hw_parms.fsteps_25_speed = 0;
s->hw_parms.fsteps_50_speed = 0;
}
dpd = compute_dpd (s, step_size, line_end); /* 0x0ada; */
#ifdef DEBUG
fprintf (stderr, "dpd = %d\n", dpd);
#endif
setreg (s, 0x52, HIBYTE (dpd));
setreg (s, 0x53, LOBYTE (dpd));
setreg (s, 0x46, HIBYTE (step_size));
setreg (s, 0x47, LOBYTE (step_size));
ff_step_size = compute_fastfeed_step_size (s->hw_parms.crystal_frequency,
s->mclk_div,
s->hw_parms.motor_max_speed,
s->hw_parms.
motor_full_steps_per_inch, 0);
setreg (s, 0x48, HIBYTE (ff_step_size));
setreg (s, 0x49, LOBYTE (ff_step_size));
setreg (s, 0x4b, 0x15);
/* this is to stay the motor running */
setbits (s, 0x45, (1 << 4));
setreg (s, 0x4a, HIBYTE (47 + s->runtime_parms.steps_to_skip));
setreg (s, 0x4b, LOBYTE (47 + s->runtime_parms.steps_to_skip));
setreg (s, 0x58, 0);
ciclic_buffer_init (&(s->ciclic_buffer),
s->runtime_parms.image_line_size,
s->user_parms.vertical_resolution,
s->runtime_parms.status_bytes);
s->runtime_parms.num_bytes_left_to_scan =
s->user_parms.lines_to_scan * s->runtime_parms.image_line_size;
#ifdef DEBUG
fprintf (stderr, "bytes to scan = %ld\n",
s->runtime_parms.num_bytes_left_to_scan);
#endif
cache_write (s);
#ifdef DEBUG
lm9830_dump_registers (s->fd);
#endif
lm9830_reset (s->fd);
setreg (s, 0x07, 0x03);
usleep (100);
return SANE_STATUS_GOOD;
}
static SANE_Status
end_scan (HP4200_Scanner * s)
{
s->scanning = SANE_FALSE;
setreg (s, 0x07, 0x00);
lm9830_reset (s->fd);
setbits (s, 0x58, PAPER_SENSOR_2_STOP_SCAN);
cache_write (s);
setreg (s, 0x07, 0x02);
/* Free some buffers */
if (s->ciclic_buffer.buffer)
{
free (s->ciclic_buffer.buffer);
s->ciclic_buffer.buffer = NULL;
}
if (s->ciclic_buffer.buffer_ptrs)
{
free (s->ciclic_buffer.buffer_ptrs);
s->ciclic_buffer.buffer_ptrs = NULL;
}
if (s->scanner_buffer.buffer)
{
free (s->scanner_buffer.buffer);
s->scanner_buffer.buffer = NULL;
}
return SANE_STATUS_GOOD;
}
static int
hp4200_init_scanner (HP4200_Scanner * s)
{
int ff_step_size;
int mclk_div;
lm9830_ini_scanner (s->fd, NULL);
hp4200_init_registers (s);
scanner_buffer_init (&(s->scanner_buffer), s->hw_parms.SRAM_size);
setreg (s, 0x07, 0x08);
usleep (10 * 1000);
setreg (s, 0x07, 0x00);
usleep (10 * 1000);
mclk_div = 2;
setreg (s, 0x08, (mclk_div - 1) * 2);
ff_step_size =
compute_fastfeed_step_size (s->hw_parms.crystal_frequency,
mclk_div,
s->hw_parms.motor_max_speed,
s->hw_parms.motor_full_steps_per_inch, 0);
setreg (s, 0x48, HIBYTE (ff_step_size));
setreg (s, 0x49, LOBYTE (ff_step_size));
setbits (s, 0x45, (1 << 4));
cache_write (s);
return 0;
}
static void
ciclic_buffer_copy (ciclic_buffer_t * cb, SANE_Byte * buf,
SANE_Int num_bytes, int image_line_size, int status_bytes)
{
int biggest_upper_block_size;
int upper_block_size;
int lower_block_size;
int bytes_to_be_a_entire_line;
/* copy the upper block */
biggest_upper_block_size = cb->size - (cb->buffer_position - cb->buffer);
upper_block_size = min (biggest_upper_block_size, num_bytes);
memcpy (buf, cb->buffer_position, upper_block_size);
cb->good_bytes -= upper_block_size;
bytes_to_be_a_entire_line = (cb->buffer_position - cb->buffer) %
image_line_size;
cb->can_consume += upper_block_size +
status_bytes * (((bytes_to_be_a_entire_line + upper_block_size) /
image_line_size) - 1);
if (num_bytes < biggest_upper_block_size)
{
cb->buffer_position += num_bytes;
return;
}
/* copy the lower block */
lower_block_size = num_bytes - biggest_upper_block_size;
if (lower_block_size > 0)
{
memcpy (buf + biggest_upper_block_size, cb->buffer, lower_block_size);
cb->good_bytes -= lower_block_size;
cb->can_consume += lower_block_size + status_bytes *
(lower_block_size / image_line_size);
cb->buffer_position = cb->buffer + lower_block_size;
}
else
{
cb->buffer_position = cb->buffer;
}
assert (cb->good_bytes >= 0);
assert (lower_block_size >= 0);
}
static void
ciclic_buffer_consume (ciclic_buffer_t * cb,
scanner_buffer_t * scanner_buffer,
int image_width, int status_bytes)
{
int to_consume;
int to_consume_now;
int i;
int processed;
to_consume = min (cb->can_consume, scanner_buffer->num_bytes);
while (to_consume)
{
if (cb->pixel_position == image_width)
{
if (scanner_buffer->num_bytes >= status_bytes)
{
/* forget status bytes */
scanner_buffer->data_ptr += status_bytes;
scanner_buffer->num_bytes -= status_bytes;
cb->can_consume -= status_bytes;
to_consume -= status_bytes;
cb->pixel_position = 0; /* back to the start pixel */
cb->red_idx = (cb->red_idx + 1) % cb->num_lines;
cb->green_idx = (cb->green_idx + 1) % cb->num_lines;
cb->blue_idx = (cb->blue_idx + 1) % cb->num_lines;
cb->current_line++;
}
else
break;
}
to_consume_now = min ((image_width - cb->pixel_position) * 3,
to_consume);
if (to_consume_now < 3)
break;
for (i = cb->pixel_position * 3; to_consume_now >= 3;
i += 3, to_consume_now -= 3)
{
cb->buffer_ptrs[cb->red_idx][i] = scanner_buffer->data_ptr[0];
cb->buffer_ptrs[cb->green_idx][i + 1] = scanner_buffer->data_ptr[1];
cb->buffer_ptrs[cb->blue_idx][i + 2] = scanner_buffer->data_ptr[2];
scanner_buffer->data_ptr += 3;
}
processed = i - (cb->pixel_position * 3);
cb->pixel_position = i / 3;
to_consume -= processed;
cb->can_consume -= processed;
scanner_buffer->num_bytes -= processed;
if (cb->current_line > cb->first_good_line)
cb->good_bytes += processed;
}
}
SANE_Status
sane_read (SANE_Handle h, SANE_Byte * buf, SANE_Int maxlen, SANE_Int * len)
{
SANE_Status status;
int to_copy_now;
int bytes_to_copy_to_frontend;
HP4200_Scanner *s = h;
static char me[] = "sane_read";
DBG (DBG_proc, "%s\n", me);
if (!(s->scanning))
{
/* OOPS, not scanning */
return SANE_STATUS_CANCELLED;
}
if (!buf || !len)
return SANE_STATUS_INVAL;
*len = 0;
if (s->runtime_parms.num_bytes_left_to_scan == 0)
{
end_scan (s);
return SANE_STATUS_EOF;
}
bytes_to_copy_to_frontend = min (s->runtime_parms.num_bytes_left_to_scan,
maxlen);
/* first copy available data from the ciclic buffer */
to_copy_now = min (s->ciclic_buffer.good_bytes, bytes_to_copy_to_frontend);
if (to_copy_now > 0)
{
ciclic_buffer_copy (&(s->ciclic_buffer), buf, to_copy_now,
s->runtime_parms.image_line_size,
s->runtime_parms.status_bytes);
buf += to_copy_now;
bytes_to_copy_to_frontend -= to_copy_now;
*len += to_copy_now;
}
/* if not enough bytes, get data from the scanner */
while (bytes_to_copy_to_frontend)
{
if (s->scanner_buffer.num_bytes < 3)
{ /* cicl buf consumes modulo 3
bytes at least now for rgb
color 8 bpp fixme: but this
is ugly and not generic
*/
status = scanner_buffer_read (s);
if (status == SANE_STATUS_CANCELLED)
{
end_scan (s);
s->aborted_by_user = SANE_FALSE;
return status;
}
if (status != SANE_STATUS_GOOD)
return status;
}
while ((s->scanner_buffer.num_bytes > 3) && bytes_to_copy_to_frontend)
{
ciclic_buffer_consume (&(s->ciclic_buffer), &(s->scanner_buffer),
s->user_parms.image_width,
s->runtime_parms.status_bytes);
to_copy_now = min (s->ciclic_buffer.good_bytes,
bytes_to_copy_to_frontend);
if (to_copy_now > 0)
{
ciclic_buffer_copy (&(s->ciclic_buffer), buf, to_copy_now,
s->runtime_parms.image_line_size,
s->runtime_parms.status_bytes);
buf += to_copy_now;
bytes_to_copy_to_frontend -= to_copy_now;
*len += to_copy_now;
}
}
}
s->runtime_parms.num_bytes_left_to_scan -= *len;
if (s->runtime_parms.num_bytes_left_to_scan < 0)
*len += s->runtime_parms.num_bytes_left_to_scan;
return SANE_STATUS_GOOD;
}
static HP4200_Device *
find_device (SANE_String_Const name)
{
static char me[] = "find_device";
HP4200_Device *dev;
DBG (DBG_proc, "%s\n", me);
for (dev = first_device; dev; dev = dev->next)
{
if (strcmp (dev->dev.name, name) == 0)
{
return dev;
}
}
return NULL;
}
static SANE_Status
add_device (SANE_String_Const name, HP4200_Device ** argpd)
{
int fd;
HP4200_Device *pd;
static const char me[] = "add_device";
SANE_Status status;
DBG (DBG_proc, "%s(%s)\n", me, name);
/* Avoid adding the same device more than once */
if ((pd = find_device (name)))
{
if (argpd)
*argpd = pd;
return SANE_STATUS_GOOD;
}
/* open the device file, but read only or read/write to perform
ioctl's ? */
if ((status = sanei_usb_open (name, &fd)) != SANE_STATUS_GOOD)
{
DBG (DBG_error, "%s: open(%s) failed: %s\n", me, name,
sane_strstatus (status));
return SANE_STATUS_INVAL;
}
/* put here some code to probe that the device attached to the
device file is a supported scanner. Maybe some ioctl */
sanei_usb_close (fd);
pd = (HP4200_Device *) calloc (1, sizeof (HP4200_Device));
if (!pd)
{
DBG (DBG_error, "%s: out of memory allocating device.\n", me);
return SANE_STATUS_NO_MEM;
}
pd->dev.name = strdup (name);
pd->dev.vendor = "Hewlett-Packard";
pd->dev.model = "HP-4200";
pd->dev.type = "flatbed scanner";
if (!pd->dev.name || !pd->dev.vendor || !pd->dev.model || !pd->dev.type)
{
DBG (DBG_error,
"%s: out of memory allocating device descriptor strings.\n", me);
free (pd);
return SANE_STATUS_NO_MEM;
}
pd->handle = NULL;
pd->next = first_device;
first_device = pd;
n_devices++;
if (argpd)
*argpd = pd;
return SANE_STATUS_GOOD;
}
static SANE_Status
attach (SANE_String_Const name)
{
static char me[] = "attach";
DBG (DBG_proc, "%s\n", me);
return add_device (name, NULL);
}
SANE_Status
sane_init (SANE_Int * version_code, SANE_Auth_Callback authorize)
{
static const char me[] = "sane_hp4200_init";
char dev_name[PATH_MAX];
FILE *fp;
authorize = authorize; /* keep gcc quiet */
DBG_INIT ();
DBG (DBG_proc, "%s\n", me);
DBG (DBG_error, "SANE hp4200 backend version %d.%d build %d from %s\n",
SANE_CURRENT_MAJOR, SANE_CURRENT_MINOR, BUILD, PACKAGE_STRING);
/* put some version_code checks here */
if (NULL != version_code)
{
*version_code = SANE_VERSION_CODE (SANE_CURRENT_MAJOR, SANE_CURRENT_MINOR, 0);
}
sanei_usb_init ();
sanei_pv8630_init ();
fp = sanei_config_open (HP4200_CONFIG_FILE);
if (!fp)
{
DBG (DBG_error, "%s: configuration file not found!\n", me);
return SANE_STATUS_INVAL;
}
else
{
while (sanei_config_read (dev_name, sizeof (dev_name), fp))
{
if (dev_name[0] == '#') /* ignore line comments */
continue;
if (strlen (dev_name) == 0)
continue; /* ignore empty lines */
DBG (DBG_info, "%s: looking for devices matching %s\n",
me, dev_name);
sanei_usb_attach_matching_devices (dev_name, attach);
}
fclose (fp);
}
return SANE_STATUS_GOOD;
}
void
sane_exit (void)
{
HP4200_Device *device, *next;
DBG (DBG_proc, "sane_hp4200_exit\n");
for (device = first_device; device; device = next)
{
next = device->next;
if (device->handle)
{
sane_close (device->handle);
}
if (device->dev.name)
{
free ((void *) device->dev.name);
}
free (device);
}
first_device = NULL;
if (devlist)
{
free (devlist);
devlist = NULL;
}
n_devices = 0;
DBG (DBG_proc, "sane_exit: exit\n");
}
SANE_Status
sane_get_devices (const SANE_Device *** device_list, SANE_Bool local_only)
{
int i;
HP4200_Device *pdev;
DBG (DBG_proc, "sane_get_devices (%p, %d)\n", (void *) device_list,
local_only);
/* Waste the last list returned from this function */
if (devlist)
free (devlist);
devlist = (const SANE_Device **)
malloc ((n_devices + 1) * sizeof (SANE_Device *));
if (!devlist)
{
DBG (DBG_error, "sane_get_devices: out of memory\n");
return SANE_STATUS_NO_MEM;
}
for (i = 0, pdev = first_device; pdev; i++, pdev = pdev->next)
{
devlist[i] = &(pdev->dev);
}
devlist[i] = NULL;
*device_list = devlist;
DBG (DBG_proc, "sane_get_devices: exit\n");
return SANE_STATUS_GOOD;
}
static void
init_options (HP4200_Scanner * s)
{
s->opt[OPT_NUM_OPTS].name = "";
s->opt[OPT_NUM_OPTS].title = SANE_TITLE_NUM_OPTIONS;
s->opt[OPT_NUM_OPTS].desc = SANE_DESC_NUM_OPTIONS;
s->opt[OPT_NUM_OPTS].cap = SANE_CAP_SOFT_DETECT;
s->opt[OPT_NUM_OPTS].type = SANE_TYPE_INT;
s->opt[OPT_NUM_OPTS].unit = SANE_UNIT_NONE;
s->opt[OPT_NUM_OPTS].size = sizeof (SANE_Word);
s->opt[OPT_NUM_OPTS].constraint_type = SANE_CONSTRAINT_NONE;
s->val[OPT_NUM_OPTS].w = NUM_OPTIONS;
s->opt[OPT_RES].name = SANE_NAME_SCAN_RESOLUTION;
s->opt[OPT_RES].title = SANE_TITLE_SCAN_RESOLUTION;
s->opt[OPT_RES].desc = SANE_DESC_SCAN_RESOLUTION;
s->opt[OPT_RES].cap = SANE_CAP_SOFT_SELECT | SANE_CAP_SOFT_DETECT;
s->opt[OPT_RES].type = SANE_TYPE_INT;
s->opt[OPT_RES].size = sizeof (SANE_Word);
s->opt[OPT_RES].unit = SANE_UNIT_DPI;
s->opt[OPT_RES].constraint_type = SANE_CONSTRAINT_WORD_LIST;
s->opt[OPT_RES].constraint.word_list = dpi_list;
s->val[OPT_RES].w = 150;
s->opt[OPT_TL_X].name = SANE_NAME_SCAN_TL_X;
s->opt[OPT_TL_X].title = SANE_TITLE_SCAN_TL_X;
s->opt[OPT_TL_X].desc = SANE_DESC_SCAN_TL_X;
s->opt[OPT_TL_X].cap = SANE_CAP_SOFT_SELECT | SANE_CAP_SOFT_DETECT;
s->opt[OPT_TL_X].type = SANE_TYPE_FIXED;
s->opt[OPT_TL_X].size = sizeof (SANE_Fixed);
s->opt[OPT_TL_X].unit = SANE_UNIT_MM;
s->opt[OPT_TL_X].constraint_type = SANE_CONSTRAINT_RANGE;
s->opt[OPT_TL_X].constraint.range = &x_range;
s->val[OPT_TL_X].w = x_range.min;
s->opt[OPT_TL_Y].name = SANE_NAME_SCAN_TL_Y;
s->opt[OPT_TL_Y].title = SANE_TITLE_SCAN_TL_Y;
s->opt[OPT_TL_Y].desc = SANE_DESC_SCAN_TL_Y;
s->opt[OPT_TL_Y].cap = SANE_CAP_SOFT_SELECT | SANE_CAP_SOFT_DETECT;
s->opt[OPT_TL_Y].type = SANE_TYPE_FIXED;
s->opt[OPT_TL_Y].size = sizeof (SANE_Fixed);
s->opt[OPT_TL_Y].unit = SANE_UNIT_MM;
s->opt[OPT_TL_Y].constraint_type = SANE_CONSTRAINT_RANGE;
s->opt[OPT_TL_Y].constraint.range = &y_range;
s->val[OPT_TL_Y].w = y_range.min;
s->opt[OPT_BR_X].name = SANE_NAME_SCAN_BR_X;
s->opt[OPT_BR_X].title = SANE_TITLE_SCAN_BR_X;
s->opt[OPT_BR_X].desc = SANE_DESC_SCAN_BR_X;
s->opt[OPT_BR_X].cap = SANE_CAP_SOFT_SELECT | SANE_CAP_SOFT_DETECT;
s->opt[OPT_BR_X].type = SANE_TYPE_FIXED;
s->opt[OPT_BR_X].size = sizeof (SANE_Fixed);
s->opt[OPT_BR_X].unit = SANE_UNIT_MM;
s->opt[OPT_BR_X].constraint_type = SANE_CONSTRAINT_RANGE;
s->opt[OPT_BR_X].constraint.range = &x_range;
s->val[OPT_BR_X].w = x_range.max;
s->opt[OPT_BR_Y].name = SANE_NAME_SCAN_BR_Y;
s->opt[OPT_BR_Y].title = SANE_TITLE_SCAN_BR_Y;
s->opt[OPT_BR_Y].desc = SANE_DESC_SCAN_BR_Y;
s->opt[OPT_BR_Y].cap = SANE_CAP_SOFT_SELECT | SANE_CAP_SOFT_DETECT;
s->opt[OPT_BR_Y].type = SANE_TYPE_FIXED;
s->opt[OPT_BR_Y].size = sizeof (SANE_Fixed);
s->opt[OPT_BR_Y].unit = SANE_UNIT_MM;
s->opt[OPT_BR_Y].constraint_type = SANE_CONSTRAINT_RANGE;
s->opt[OPT_BR_Y].constraint.range = &y_range;
s->val[OPT_BR_Y].w = y_range.max;
s->opt[OPT_BACKTRACK].name = SANE_NAME_BACKTRACK;
s->opt[OPT_BACKTRACK].title = SANE_TITLE_BACKTRACK;
s->opt[OPT_BACKTRACK].desc = SANE_DESC_BACKTRACK;
s->opt[OPT_BACKTRACK].cap = SANE_CAP_SOFT_SELECT | SANE_CAP_SOFT_DETECT;
s->opt[OPT_BACKTRACK].type = SANE_TYPE_BOOL;
s->opt[OPT_BACKTRACK].size = sizeof (SANE_Bool);
s->opt[OPT_BACKTRACK].unit = SANE_UNIT_NONE;
s->opt[OPT_BACKTRACK].constraint_type = SANE_CONSTRAINT_NONE;
s->val[OPT_BACKTRACK].b = SANE_TRUE;
s->opt[OPT_GAMMA_VECTOR_R].name = SANE_NAME_GAMMA_VECTOR_R;
s->opt[OPT_GAMMA_VECTOR_R].title = SANE_TITLE_GAMMA_VECTOR_R;
s->opt[OPT_GAMMA_VECTOR_R].desc = SANE_DESC_GAMMA_VECTOR_R;
s->opt[OPT_GAMMA_VECTOR_R].cap =
SANE_CAP_SOFT_SELECT | SANE_CAP_SOFT_DETECT;
s->opt[OPT_GAMMA_VECTOR_R].type = SANE_TYPE_INT;
s->opt[OPT_GAMMA_VECTOR_R].size = 1024 * sizeof (SANE_Word);
s->opt[OPT_GAMMA_VECTOR_R].unit = SANE_UNIT_NONE;
s->opt[OPT_GAMMA_VECTOR_R].constraint_type = SANE_CONSTRAINT_RANGE;
s->opt[OPT_GAMMA_VECTOR_R].constraint.range = &u8_range;
s->val[OPT_GAMMA_VECTOR_R].wa = s->user_parms.gamma[0];
s->opt[OPT_GAMMA_VECTOR_G].name = SANE_NAME_GAMMA_VECTOR_G;
s->opt[OPT_GAMMA_VECTOR_G].title = SANE_TITLE_GAMMA_VECTOR_G;
s->opt[OPT_GAMMA_VECTOR_G].desc = SANE_DESC_GAMMA_VECTOR_G;
s->opt[OPT_GAMMA_VECTOR_G].cap =
SANE_CAP_SOFT_SELECT | SANE_CAP_SOFT_DETECT;
s->opt[OPT_GAMMA_VECTOR_G].type = SANE_TYPE_INT;
s->opt[OPT_GAMMA_VECTOR_G].size = 1024 * sizeof (SANE_Word);
s->opt[OPT_GAMMA_VECTOR_G].unit = SANE_UNIT_NONE;
s->opt[OPT_GAMMA_VECTOR_G].constraint_type = SANE_CONSTRAINT_RANGE;
s->opt[OPT_GAMMA_VECTOR_G].constraint.range = &u8_range;
s->val[OPT_GAMMA_VECTOR_G].wa = s->user_parms.gamma[1];
s->opt[OPT_GAMMA_VECTOR_B].name = SANE_NAME_GAMMA_VECTOR_B;
s->opt[OPT_GAMMA_VECTOR_B].title = SANE_TITLE_GAMMA_VECTOR_B;
s->opt[OPT_GAMMA_VECTOR_B].desc = SANE_DESC_GAMMA_VECTOR_B;
s->opt[OPT_GAMMA_VECTOR_B].cap =
SANE_CAP_SOFT_SELECT | SANE_CAP_SOFT_DETECT;
s->opt[OPT_GAMMA_VECTOR_B].type = SANE_TYPE_INT;
s->opt[OPT_GAMMA_VECTOR_B].size = 1024 * sizeof (SANE_Word);
s->opt[OPT_GAMMA_VECTOR_B].unit = SANE_UNIT_NONE;
s->opt[OPT_GAMMA_VECTOR_B].constraint_type = SANE_CONSTRAINT_RANGE;
s->opt[OPT_GAMMA_VECTOR_B].constraint.range = &u8_range;
s->val[OPT_GAMMA_VECTOR_B].wa = s->user_parms.gamma[2];
{
int i;
double gamma = 2.0;
for (i = 0; i < 1024; i++)
{
s->user_parms.gamma[0][i] =
255 * pow (((double) i + 1) / 1024, 1.0 / gamma);
s->user_parms.gamma[1][i] = s->user_parms.gamma[0][i];
s->user_parms.gamma[2][i] = s->user_parms.gamma[0][i];
#ifdef DEBUG
printf ("%d %d\n", i, s->user_parms.gamma[0][i]);
#endif
}
}
/* preview */
s->opt[OPT_PREVIEW].name = SANE_NAME_PREVIEW;
s->opt[OPT_PREVIEW].title = SANE_TITLE_PREVIEW;
s->opt[OPT_PREVIEW].desc = SANE_DESC_PREVIEW;
s->opt[OPT_PREVIEW].type = SANE_TYPE_BOOL;
s->opt[OPT_PREVIEW].size = sizeof (SANE_Word);
s->opt[OPT_PREVIEW].cap = SANE_CAP_SOFT_DETECT | SANE_CAP_SOFT_SELECT;
s->val[OPT_PREVIEW].w = SANE_FALSE;
}
SANE_Status
sane_open (SANE_String_Const name, SANE_Handle * h)
{
static const char me[] = "sane_hp4200_open";
SANE_Status status;
HP4200_Device *dev;
HP4200_Scanner *s;
DBG (DBG_proc, "%s (%s, %p)\n", me, name, (void *) h);
if (name && name[0])
{
dev = find_device (name);
if (!dev)
{
status = add_device (name, &dev);
if (status != SANE_STATUS_GOOD)
return status;
}
}
else
{
dev = first_device;
}
if (!dev)
return SANE_STATUS_INVAL;
if (!h)
return SANE_STATUS_INVAL;
s = *h = (HP4200_Scanner *) calloc (1, sizeof (HP4200_Scanner));
if (!s)
{
DBG (DBG_error, "%s: out of memory creating scanner structure.\n", me);
return SANE_STATUS_NO_MEM;
}
dev->handle = s;
s->aborted_by_user = SANE_FALSE;
s->ciclic_buffer.buffer = NULL;
s->scanner_buffer.buffer = NULL;
s->dev = dev;
s->user_parms.image_width = 0;
s->user_parms.lines_to_scan = 0;
s->user_parms.vertical_resolution = 0;
s->scanning = SANE_FALSE;
s->fd = -1;
init_options (s);
if ((sanei_usb_open (dev->dev.name, &s->fd) != SANE_STATUS_GOOD))
{
DBG (DBG_error, "%s: Can't open %s.\n", me, dev->dev.name);
return SANE_STATUS_IO_ERROR; /* fixme: return busy when file is
being accessed already */
}
return SANE_STATUS_GOOD;
}
void
sane_close (SANE_Handle h)
{
HP4200_Scanner *s = (HP4200_Scanner *) h;
DBG (DBG_proc, "sane_hp4200_close (%p)\n", (void *) h);
if (s)
{
s->dev->handle = NULL;
if (s->fd != -1)
{
sanei_usb_close (s->fd);
}
free (s);
}
}
const SANE_Option_Descriptor *
sane_get_option_descriptor (SANE_Handle h, SANE_Int n)
{
static char me[] = "sane_get_option_descriptor";
HP4200_Scanner *s = (HP4200_Scanner *) h;
DBG (DBG_proc, "%s\n", me);
if ((n < 0) || (n >= NUM_OPTIONS))
return NULL;
return s->opt + n;
}
SANE_Status
sane_control_option (SANE_Handle handle, SANE_Int option,
SANE_Action action, void *val, SANE_Int * info)
{
HP4200_Scanner *s = (HP4200_Scanner *) handle;
SANE_Status status;
SANE_Int myinfo = 0;
SANE_Word cap;
DBG (DBG_proc, "sane_control_option\n");
if (info)
*info = 0;
if (s->scanning)
{
return SANE_STATUS_DEVICE_BUSY;
}
if (option < 0 || option >= NUM_OPTIONS)
{
return SANE_STATUS_INVAL;
}
cap = s->opt[option].cap;
if (!SANE_OPTION_IS_ACTIVE (cap))
{
return SANE_STATUS_INVAL;
}
if (action == SANE_ACTION_GET_VALUE)
{
switch (option)
{
case OPT_NUM_OPTS:
case OPT_RES:
case OPT_TL_X:
case OPT_TL_Y:
case OPT_BR_X:
case OPT_BR_Y:
case OPT_PREVIEW:
*(SANE_Word *) val = s->val[option].w;
break;
case OPT_BACKTRACK:
*(SANE_Bool *) val = s->val[option].b;
break;
case OPT_GAMMA_VECTOR_R:
case OPT_GAMMA_VECTOR_G:
case OPT_GAMMA_VECTOR_B:
memcpy (val, s->val[option].wa, s->opt[option].size);
break;
default:
return SANE_STATUS_UNSUPPORTED;
}
}
else if (action == SANE_ACTION_SET_VALUE)
{
if (!SANE_OPTION_IS_SETTABLE (cap))
{
DBG (DBG_error, "could not set option, not settable\n");
return SANE_STATUS_INVAL;
}
status = sanei_constrain_value (s->opt + option, val, &myinfo);
if (status != SANE_STATUS_GOOD)
return status;
switch (option)
{
/* Numeric side-effect free options */
case OPT_PREVIEW:
s->val[option].w = *(SANE_Word *) val;
return SANE_STATUS_GOOD;
/* Numeric side-effect options */
case OPT_RES:
case OPT_TL_X:
case OPT_TL_Y:
case OPT_BR_X:
case OPT_BR_Y:
myinfo |= SANE_INFO_RELOAD_PARAMS;
s->val[option].w = *(SANE_Word *) val;
break;
case OPT_BACKTRACK:
s->val[option].b = *(SANE_Bool *) val;
break;
case OPT_GAMMA_VECTOR_R:
case OPT_GAMMA_VECTOR_G:
case OPT_GAMMA_VECTOR_B:
memcpy (s->val[option].wa, val, s->opt[option].size);
break;
default:
return SANE_STATUS_UNSUPPORTED;
}
}
else
{
return SANE_STATUS_UNSUPPORTED;
}
if (info)
*info = myinfo;
return SANE_STATUS_GOOD;
}
static void
compute_parameters (HP4200_Scanner * s)
{
int resolution;
int opt_tl_x;
int opt_br_x;
int opt_tl_y;
int opt_br_y;
if (s->val[OPT_PREVIEW].w == SANE_TRUE)
{
resolution = 50;
opt_tl_x = SANE_UNFIX (x_range.min);
opt_tl_y = SANE_UNFIX (y_range.min);
opt_br_x = SANE_UNFIX (x_range.max);
opt_br_y = SANE_UNFIX (y_range.max);
}
else
{
resolution = s->val[OPT_RES].w;
opt_tl_x = SANE_UNFIX (s->val[OPT_TL_X].w);
opt_tl_y = SANE_UNFIX (s->val[OPT_TL_Y].w);
opt_br_x = SANE_UNFIX (s->val[OPT_BR_X].w);
opt_br_y = SANE_UNFIX (s->val[OPT_BR_Y].w);
}
s->user_parms.horizontal_resolution = resolution;
s->user_parms.vertical_resolution = resolution;
s->runtime_parms.steps_to_skip = floor (300.0 / MM_PER_INCH * opt_tl_y);
s->user_parms.lines_to_scan =
floor ((opt_br_y - opt_tl_y) / MM_PER_INCH * resolution);
s->user_parms.image_width =
floor ((opt_br_x - opt_tl_x) / MM_PER_INCH * resolution);
s->runtime_parms.first_pixel = floor (opt_tl_x / MM_PER_INCH * resolution);
/* fixme: add support for more depth's and bpp's. */
s->runtime_parms.image_line_size = s->user_parms.image_width * 3;
}
SANE_Status
sane_get_parameters (SANE_Handle h, SANE_Parameters * p)
{
static char me[] = "sane_get_parameters";
HP4200_Scanner *s = (HP4200_Scanner *) h;
DBG (DBG_proc, "%s\n", me);
if (!p)
return SANE_STATUS_INVAL;
p->format = SANE_FRAME_RGB;
p->last_frame = SANE_TRUE;
p->depth = 8;
if (!s->scanning)
{
compute_parameters (s);
}
p->lines = s->user_parms.lines_to_scan;
p->pixels_per_line = s->user_parms.image_width;
p->bytes_per_line = s->runtime_parms.image_line_size;
return SANE_STATUS_GOOD;
}
SANE_Status
sane_start (SANE_Handle h)
{
HP4200_Scanner *s = (HP4200_Scanner *) h;
struct coarse_t coarse;
static char me[] = "sane_start";
DBG (DBG_proc, "%s\n", me);
s->scanning = SANE_TRUE;
s->aborted_by_user = SANE_FALSE;
s->user_parms.color = SANE_TRUE;
compute_parameters (s);
hp4200_init_scanner (s);
hp4200_goto_home (s);
hp4200_wait_homed (s);
/* restore default register values here... */
write_gamma (s);
hp4200_init_registers (s);
lm9830_ini_scanner (s->fd, NULL);
/* um... do not call cache_write() here, don't know why :( */
do_coarse_calibration (s, &coarse);
do_fine_calibration (s, &coarse);
prepare_for_a_scan (s);
return SANE_STATUS_GOOD;
}
void
sane_cancel (SANE_Handle h)
{
static char me[] = "sane_cancel";
HP4200_Scanner *s = (HP4200_Scanner *) h;
DBG (DBG_proc, "%s\n", me);
s->aborted_by_user = SANE_TRUE;
end_scan (s);
}
SANE_Status
sane_set_io_mode (SANE_Handle handle, SANE_Bool non_blocking)
{
HP4200_Scanner *dev = handle;
SANE_Status status;
non_blocking = non_blocking; /* silence gcc */
if (dev->scanning == SANE_FALSE)
{
return SANE_STATUS_INVAL;
}
if (non_blocking == SANE_FALSE)
{
status = SANE_STATUS_GOOD;
}
else
{
status = SANE_STATUS_UNSUPPORTED;
}
DBG (DBG_proc, "sane_set_io_mode: exit\n");
return status;
}
SANE_Status
sane_get_select_fd (SANE_Handle h, SANE_Int * fd)
{
static char me[] = "sane_get_select_fd";
h = h; /* keep gcc quiet */
fd = fd; /* keep gcc quiet */
DBG (DBG_proc, "%s\n", me);
return SANE_STATUS_UNSUPPORTED;
}