1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
|
/* sane - Scanner Access Now Easy.
Copyright (C) 2019 Povilas Kanapickas <povilas@radix.lt>
This file is part of the SANE package.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
As a special exception, the authors of SANE give permission for
additional uses of the libraries contained in this release of SANE.
The exception is that, if you link a SANE library with other files
to produce an executable, this does not by itself cause the
resulting executable to be covered by the GNU General Public
License. Your use of that executable is in no way restricted on
account of linking the SANE library code into it.
This exception does not, however, invalidate any other reasons why
the executable file might be covered by the GNU General Public
License.
If you submit changes to SANE to the maintainers to be included in
a subsequent release, you agree by submitting the changes that
those changes may be distributed with this exception intact.
If you write modifications of your own for SANE, it is your choice
whether to permit this exception to apply to your modifications.
If you do not wish that, delete this exception notice.
*/
#define DEBUG_DECLARE_ONLY
#include "image_pipeline.h"
#include "image.h"
#include "low.h"
#include <cmath>
#include <numeric>
namespace genesys {
ImagePipelineNode::~ImagePipelineNode() {}
bool ImagePipelineNodeCallableSource::get_next_row_data(std::uint8_t* out_data)
{
bool got_data = producer_(get_row_bytes(), out_data);
if (!got_data)
eof_ = true;
return got_data;
}
ImagePipelineNodeBufferedCallableSource::ImagePipelineNodeBufferedCallableSource(
std::size_t width, std::size_t height, PixelFormat format, std::size_t input_batch_size,
ProducerCallback producer) :
width_{width},
height_{height},
format_{format},
buffer_{input_batch_size, producer}
{
buffer_.set_remaining_size(height_ * get_row_bytes());
}
bool ImagePipelineNodeBufferedCallableSource::get_next_row_data(std::uint8_t* out_data)
{
if (curr_row_ >= get_height()) {
DBG(DBG_warn, "%s: reading out of bounds. Row %zu, height: %zu\n", __func__,
curr_row_, get_height());
eof_ = true;
return false;
}
bool got_data = true;
got_data &= buffer_.get_data(get_row_bytes(), out_data);
curr_row_++;
if (!got_data) {
eof_ = true;
}
return got_data;
}
ImagePipelineNodeArraySource::ImagePipelineNodeArraySource(std::size_t width, std::size_t height,
PixelFormat format,
std::vector<std::uint8_t> data) :
width_{width},
height_{height},
format_{format},
data_{std::move(data)},
next_row_{0}
{
auto size = get_row_bytes() * height_;
if (data_.size() < size) {
throw SaneException("The given array is too small (%zu bytes). Need at least %zu",
data_.size(), size);
}
}
bool ImagePipelineNodeArraySource::get_next_row_data(std::uint8_t* out_data)
{
if (next_row_ >= height_) {
eof_ = true;
return false;
}
auto row_bytes = get_row_bytes();
std::memcpy(out_data, data_.data() + row_bytes * next_row_, row_bytes);
next_row_++;
return true;
}
ImagePipelineNodeImageSource::ImagePipelineNodeImageSource(const Image& source) :
source_{source}
{}
bool ImagePipelineNodeImageSource::get_next_row_data(std::uint8_t* out_data)
{
if (next_row_ >= get_height()) {
return false;
}
std::memcpy(out_data, source_.get_row_ptr(next_row_), get_row_bytes());
next_row_++;
return true;
}
bool ImagePipelineNodeFormatConvert::get_next_row_data(std::uint8_t* out_data)
{
auto src_format = source_.get_format();
if (src_format == dst_format_) {
return source_.get_next_row_data(out_data);
}
buffer_.clear();
buffer_.resize(source_.get_row_bytes());
bool got_data = source_.get_next_row_data(buffer_.data());
convert_pixel_row_format(buffer_.data(), src_format, out_data, dst_format_, get_width());
return got_data;
}
ImagePipelineNodeDesegment::ImagePipelineNodeDesegment(ImagePipelineNode& source,
std::size_t output_width,
const std::vector<unsigned>& segment_order,
std::size_t segment_pixels,
std::size_t interleaved_lines,
std::size_t pixels_per_chunk) :
source_(source),
output_width_{output_width},
segment_order_{segment_order},
segment_pixels_{segment_pixels},
interleaved_lines_{interleaved_lines},
pixels_per_chunk_{pixels_per_chunk},
buffer_{source_.get_row_bytes()}
{
DBG_HELPER_ARGS(dbg, "segment_count=%zu, segment_size=%zu, interleaved_lines=%zu, "
"pixels_per_shunk=%zu", segment_order.size(), segment_pixels,
interleaved_lines, pixels_per_chunk);
if (source_.get_height() % interleaved_lines_ > 0) {
throw SaneException("Height is not a multiple of the number of lines to interelave %zu/%zu",
source_.get_height(), interleaved_lines_);
}
}
ImagePipelineNodeDesegment::ImagePipelineNodeDesegment(ImagePipelineNode& source,
std::size_t output_width,
std::size_t segment_count,
std::size_t segment_pixels,
std::size_t interleaved_lines,
std::size_t pixels_per_chunk) :
source_(source),
output_width_{output_width},
segment_pixels_{segment_pixels},
interleaved_lines_{interleaved_lines},
pixels_per_chunk_{pixels_per_chunk},
buffer_{source_.get_row_bytes()}
{
DBG_HELPER_ARGS(dbg, "segment_count=%zu, segment_size=%zu, interleaved_lines=%zu, "
"pixels_per_shunk=%zu", segment_count, segment_pixels, interleaved_lines,
pixels_per_chunk);
segment_order_.resize(segment_count);
std::iota(segment_order_.begin(), segment_order_.end(), 0);
}
bool ImagePipelineNodeDesegment::get_next_row_data(uint8_t* out_data)
{
bool got_data = true;
buffer_.clear();
for (std::size_t i = 0; i < interleaved_lines_; ++i) {
buffer_.push_back();
got_data &= source_.get_next_row_data(buffer_.get_row_ptr(i));
}
if (!buffer_.is_linear()) {
throw SaneException("Buffer is not linear");
}
auto format = get_format();
auto segment_count = segment_order_.size();
const std::uint8_t* in_data = buffer_.get_row_ptr(0);
std::size_t groups_count = output_width_ / (segment_order_.size() * pixels_per_chunk_);
for (std::size_t igroup = 0; igroup < groups_count; ++igroup) {
for (std::size_t isegment = 0; isegment < segment_count; ++isegment) {
auto input_offset = igroup * pixels_per_chunk_;
input_offset += segment_pixels_ * segment_order_[isegment];
auto output_offset = (igroup * segment_count + isegment) * pixels_per_chunk_;
for (std::size_t ipixel = 0; ipixel < pixels_per_chunk_; ++ipixel) {
auto pixel = get_raw_pixel_from_row(in_data, input_offset + ipixel, format);
set_raw_pixel_to_row(out_data, output_offset + ipixel, pixel, format);
}
}
}
return got_data;
}
ImagePipelineNodeDeinterleaveLines::ImagePipelineNodeDeinterleaveLines(
ImagePipelineNode& source, std::size_t interleaved_lines, std::size_t pixels_per_chunk) :
ImagePipelineNodeDesegment(source, source.get_width() * interleaved_lines,
interleaved_lines, source.get_width(),
interleaved_lines, pixels_per_chunk)
{}
ImagePipelineNodeSwap16BitEndian::ImagePipelineNodeSwap16BitEndian(ImagePipelineNode& source) :
source_(source),
needs_swapping_{false}
{
if (get_pixel_format_depth(source_.get_format()) == 16) {
needs_swapping_ = true;
} else {
DBG(DBG_info, "%s: this pipeline node does nothing for non 16-bit formats", __func__);
}
}
bool ImagePipelineNodeSwap16BitEndian::get_next_row_data(std::uint8_t* out_data)
{
bool got_data = source_.get_next_row_data(out_data);
if (needs_swapping_) {
std::size_t pixels = get_row_bytes() / 2;
for (std::size_t i = 0; i < pixels; ++i) {
std::swap(*out_data, *(out_data + 1));
out_data += 2;
}
}
return got_data;
}
ImagePipelineNodeInvert::ImagePipelineNodeInvert(ImagePipelineNode& source) :
source_(source)
{
}
bool ImagePipelineNodeInvert::get_next_row_data(std::uint8_t* out_data)
{
bool got_data = source_.get_next_row_data(out_data);
auto num_values = get_width() * get_pixel_channels(source_.get_format());
auto depth = get_pixel_format_depth(source_.get_format());
switch (depth) {
case 16: {
auto* data = reinterpret_cast<std::uint16_t*>(out_data);
for (std::size_t i = 0; i < num_values; ++i) {
*data = 0xffff - *data;
data++;
}
break;
}
case 8: {
auto* data = out_data;
for (std::size_t i = 0; i < num_values; ++i) {
*data = 0xff - *data;
data++;
}
break;
}
case 1: {
auto* data = out_data;
auto num_bytes = (num_values + 7) / 8;
for (std::size_t i = 0; i < num_bytes; ++i) {
*data = ~*data;
data++;
}
break;
}
default:
throw SaneException("Unsupported pixel depth");
}
return got_data;
}
ImagePipelineNodeMergeMonoLines::ImagePipelineNodeMergeMonoLines(ImagePipelineNode& source,
ColorOrder color_order) :
source_(source),
buffer_(source_.get_row_bytes())
{
DBG_HELPER_ARGS(dbg, "color_order %d", static_cast<unsigned>(color_order));
output_format_ = get_output_format(source_.get_format(), color_order);
}
bool ImagePipelineNodeMergeMonoLines::get_next_row_data(std::uint8_t* out_data)
{
bool got_data = true;
buffer_.clear();
for (unsigned i = 0; i < 3; ++i) {
buffer_.push_back();
got_data &= source_.get_next_row_data(buffer_.get_row_ptr(i));
}
const auto* row0 = buffer_.get_row_ptr(0);
const auto* row1 = buffer_.get_row_ptr(1);
const auto* row2 = buffer_.get_row_ptr(2);
auto format = source_.get_format();
for (std::size_t x = 0, width = get_width(); x < width; ++x) {
std::uint16_t ch0 = get_raw_channel_from_row(row0, x, 0, format);
std::uint16_t ch1 = get_raw_channel_from_row(row1, x, 0, format);
std::uint16_t ch2 = get_raw_channel_from_row(row2, x, 0, format);
set_raw_channel_to_row(out_data, x, 0, ch0, output_format_);
set_raw_channel_to_row(out_data, x, 1, ch1, output_format_);
set_raw_channel_to_row(out_data, x, 2, ch2, output_format_);
}
return got_data;
}
PixelFormat ImagePipelineNodeMergeMonoLines::get_output_format(PixelFormat input_format,
ColorOrder order)
{
switch (input_format) {
case PixelFormat::I1: {
if (order == ColorOrder::RGB) {
return PixelFormat::RGB111;
}
break;
}
case PixelFormat::I8: {
if (order == ColorOrder::RGB) {
return PixelFormat::RGB888;
}
if (order == ColorOrder::BGR) {
return PixelFormat::BGR888;
}
break;
}
case PixelFormat::I16: {
if (order == ColorOrder::RGB) {
return PixelFormat::RGB161616;
}
if (order == ColorOrder::BGR) {
return PixelFormat::BGR161616;
}
break;
}
default: break;
}
throw SaneException("Unsupported format combidation %d %d",
static_cast<unsigned>(input_format),
static_cast<unsigned>(order));
}
ImagePipelineNodeSplitMonoLines::ImagePipelineNodeSplitMonoLines(ImagePipelineNode& source) :
source_(source),
next_channel_{0}
{
output_format_ = get_output_format(source_.get_format());
}
bool ImagePipelineNodeSplitMonoLines::get_next_row_data(std::uint8_t* out_data)
{
bool got_data = true;
if (next_channel_ == 0) {
buffer_.resize(source_.get_row_bytes());
got_data &= source_.get_next_row_data(buffer_.data());
}
const auto* row = buffer_.data();
auto format = source_.get_format();
for (std::size_t x = 0, width = get_width(); x < width; ++x) {
std::uint16_t ch = get_raw_channel_from_row(row, x, next_channel_, format);
set_raw_channel_to_row(out_data, x, 0, ch, output_format_);
}
next_channel_ = (next_channel_ + 1) % 3;
return got_data;
}
PixelFormat ImagePipelineNodeSplitMonoLines::get_output_format(PixelFormat input_format)
{
switch (input_format) {
case PixelFormat::RGB111: return PixelFormat::I1;
case PixelFormat::RGB888:
case PixelFormat::BGR888: return PixelFormat::I8;
case PixelFormat::RGB161616:
case PixelFormat::BGR161616: return PixelFormat::I16;
default: break;
}
throw SaneException("Unsupported input format %d", static_cast<unsigned>(input_format));
}
ImagePipelineNodeComponentShiftLines::ImagePipelineNodeComponentShiftLines(
ImagePipelineNode& source, unsigned shift_r, unsigned shift_g, unsigned shift_b) :
source_(source),
buffer_{source.get_row_bytes()}
{
DBG_HELPER_ARGS(dbg, "shifts={%d, %d, %d}", shift_r, shift_g, shift_b);
switch (source.get_format()) {
case PixelFormat::RGB111:
case PixelFormat::RGB888:
case PixelFormat::RGB161616: {
channel_shifts_ = { shift_r, shift_g, shift_b };
break;
}
case PixelFormat::BGR888:
case PixelFormat::BGR161616: {
channel_shifts_ = { shift_b, shift_g, shift_r };
break;
}
default:
throw SaneException("Unsupported input format %d",
static_cast<unsigned>(source.get_format()));
}
extra_height_ = *std::max_element(channel_shifts_.begin(), channel_shifts_.end());
height_ = source_.get_height();
if (extra_height_ > height_) {
height_ = 0;
} else {
height_ -= extra_height_;
}
}
bool ImagePipelineNodeComponentShiftLines::get_next_row_data(std::uint8_t* out_data)
{
bool got_data = true;
if (!buffer_.empty()) {
buffer_.pop_front();
}
while (buffer_.height() < extra_height_ + 1) {
buffer_.push_back();
got_data &= source_.get_next_row_data(buffer_.get_back_row_ptr());
}
auto format = get_format();
const auto* row0 = buffer_.get_row_ptr(channel_shifts_[0]);
const auto* row1 = buffer_.get_row_ptr(channel_shifts_[1]);
const auto* row2 = buffer_.get_row_ptr(channel_shifts_[2]);
for (std::size_t x = 0, width = get_width(); x < width; ++x) {
std::uint16_t ch0 = get_raw_channel_from_row(row0, x, 0, format);
std::uint16_t ch1 = get_raw_channel_from_row(row1, x, 1, format);
std::uint16_t ch2 = get_raw_channel_from_row(row2, x, 2, format);
set_raw_channel_to_row(out_data, x, 0, ch0, format);
set_raw_channel_to_row(out_data, x, 1, ch1, format);
set_raw_channel_to_row(out_data, x, 2, ch2, format);
}
return got_data;
}
ImagePipelineNodePixelShiftLines::ImagePipelineNodePixelShiftLines(
ImagePipelineNode& source, const std::vector<std::size_t>& shifts) :
source_(source),
pixel_shifts_{shifts},
buffer_{get_row_bytes()}
{
extra_height_ = *std::max_element(pixel_shifts_.begin(), pixel_shifts_.end());
height_ = source_.get_height();
if (extra_height_ > height_) {
height_ = 0;
} else {
height_ -= extra_height_;
}
}
bool ImagePipelineNodePixelShiftLines::get_next_row_data(std::uint8_t* out_data)
{
bool got_data = true;
if (!buffer_.empty()) {
buffer_.pop_front();
}
while (buffer_.height() < extra_height_ + 1) {
buffer_.push_back();
got_data &= source_.get_next_row_data(buffer_.get_back_row_ptr());
}
auto format = get_format();
auto shift_count = pixel_shifts_.size();
std::vector<std::uint8_t*> rows;
rows.resize(shift_count, nullptr);
for (std::size_t irow = 0; irow < shift_count; ++irow) {
rows[irow] = buffer_.get_row_ptr(pixel_shifts_[irow]);
}
for (std::size_t x = 0, width = get_width(); x < width;) {
for (std::size_t irow = 0; irow < shift_count && x < width; irow++, x++) {
RawPixel pixel = get_raw_pixel_from_row(rows[irow], x, format);
set_raw_pixel_to_row(out_data, x, pixel, format);
}
}
return got_data;
}
ImagePipelineNodePixelShiftColumns::ImagePipelineNodePixelShiftColumns(
ImagePipelineNode& source, const std::vector<std::size_t>& shifts) :
source_(source),
pixel_shifts_{shifts}
{
width_ = source_.get_width();
extra_width_ = compute_pixel_shift_extra_width(width_, pixel_shifts_);
if (extra_width_ > width_) {
width_ = 0;
} else {
width_ -= extra_width_;
}
temp_buffer_.resize(source_.get_row_bytes());
}
bool ImagePipelineNodePixelShiftColumns::get_next_row_data(std::uint8_t* out_data)
{
if (width_ == 0) {
throw SaneException("Attempt to read zero-width line");
}
bool got_data = source_.get_next_row_data(temp_buffer_.data());
auto format = get_format();
auto shift_count = pixel_shifts_.size();
for (std::size_t x = 0, width = get_width(); x < width; x += shift_count) {
for (std::size_t ishift = 0; ishift < shift_count && x + ishift < width; ishift++) {
RawPixel pixel = get_raw_pixel_from_row(temp_buffer_.data(), x + pixel_shifts_[ishift],
format);
set_raw_pixel_to_row(out_data, x + ishift, pixel, format);
}
}
return got_data;
}
std::size_t compute_pixel_shift_extra_width(std::size_t source_width,
const std::vector<std::size_t>& shifts)
{
// we iterate across pixel shifts and find the pixel that needs the maximum shift according to
// source_width.
int group_size = shifts.size();
int non_filled_group = source_width % shifts.size();
int extra_width = 0;
for (int i = 0; i < group_size; ++i) {
int shift_groups = shifts[i] / group_size;
int shift_rem = shifts[i] % group_size;
if (shift_rem < non_filled_group) {
shift_groups--;
}
extra_width = std::max(extra_width, shift_groups * group_size + non_filled_group - i);
}
return extra_width;
}
ImagePipelineNodeExtract::ImagePipelineNodeExtract(ImagePipelineNode& source,
std::size_t offset_x, std::size_t offset_y,
std::size_t width, std::size_t height) :
source_(source),
offset_x_{offset_x},
offset_y_{offset_y},
width_{width},
height_{height}
{
cached_line_.resize(source_.get_row_bytes());
}
ImagePipelineNodeExtract::~ImagePipelineNodeExtract() {}
ImagePipelineNodeScaleRows::ImagePipelineNodeScaleRows(ImagePipelineNode& source,
std::size_t width) :
source_(source),
width_{width}
{
cached_line_.resize(source_.get_row_bytes());
}
bool ImagePipelineNodeScaleRows::get_next_row_data(std::uint8_t* out_data)
{
auto src_width = source_.get_width();
auto dst_width = width_;
bool got_data = source_.get_next_row_data(cached_line_.data());
const auto* src_data = cached_line_.data();
auto format = get_format();
auto channels = get_pixel_channels(format);
if (src_width > dst_width) {
// average
std::uint32_t counter = src_width / 2;
unsigned src_x = 0;
for (unsigned dst_x = 0; dst_x < dst_width; dst_x++) {
unsigned avg[3] = {0, 0, 0};
unsigned count = 0;
while (counter < src_width && src_x < src_width) {
counter += dst_width;
for (unsigned c = 0; c < channels; c++) {
avg[c] += get_raw_channel_from_row(src_data, src_x, c, format);
}
src_x++;
count++;
}
counter -= src_width;
for (unsigned c = 0; c < channels; c++) {
set_raw_channel_to_row(out_data, dst_x, c, avg[c] / count, format);
}
}
} else {
// interpolate and copy pixels
std::uint32_t counter = dst_width / 2;
unsigned dst_x = 0;
for (unsigned src_x = 0; src_x < src_width; src_x++) {
unsigned avg[3] = {0, 0, 0};
for (unsigned c = 0; c < channels; c++) {
avg[c] += get_raw_channel_from_row(src_data, src_x, c, format);
}
while ((counter < dst_width || src_x + 1 == src_width) && dst_x < dst_width) {
counter += src_width;
for (unsigned c = 0; c < channels; c++) {
set_raw_channel_to_row(out_data, dst_x, c, avg[c], format);
}
dst_x++;
}
counter -= dst_width;
}
}
return got_data;
}
bool ImagePipelineNodeExtract::get_next_row_data(std::uint8_t* out_data)
{
bool got_data = true;
while (current_line_ < offset_y_) {
got_data &= source_.get_next_row_data(cached_line_.data());
current_line_++;
}
if (current_line_ >= offset_y_ + source_.get_height()) {
std::fill(out_data, out_data + get_row_bytes(), 0);
current_line_++;
return got_data;
}
// now we're sure that the following holds:
// offset_y_ <= current_line_ < offset_y_ + source_.get_height())
got_data &= source_.get_next_row_data(cached_line_.data());
auto format = get_format();
auto x_src_width = source_.get_width() > offset_x_ ? source_.get_width() - offset_x_ : 0;
x_src_width = std::min(x_src_width, width_);
auto x_pad_after = width_ > x_src_width ? width_ - x_src_width : 0;
if (get_pixel_format_depth(format) < 8) {
// we need to copy pixels one-by-one as there's no per-bit addressing
for (std::size_t i = 0; i < x_src_width; ++i) {
auto pixel = get_raw_pixel_from_row(cached_line_.data(), i + offset_x_, format);
set_raw_pixel_to_row(out_data, i, pixel, format);
}
for (std::size_t i = 0; i < x_pad_after; ++i) {
set_raw_pixel_to_row(out_data, i + x_src_width, RawPixel{}, format);
}
} else {
std::size_t bpp = get_pixel_format_depth(format) / 8;
if (x_src_width > 0) {
std::memcpy(out_data, cached_line_.data() + offset_x_ * bpp,
x_src_width * bpp);
}
if (x_pad_after > 0) {
std::fill(out_data + x_src_width * bpp,
out_data + (x_src_width + x_pad_after) * bpp, 0);
}
}
current_line_++;
return got_data;
}
ImagePipelineNodeCalibrate::ImagePipelineNodeCalibrate(ImagePipelineNode& source,
const std::vector<std::uint16_t>& bottom,
const std::vector<std::uint16_t>& top,
std::size_t x_start) :
source_{source}
{
std::size_t size = 0;
if (bottom.size() >= x_start && top.size() >= x_start) {
size = std::min(bottom.size() - x_start, top.size() - x_start);
}
offset_.reserve(size);
multiplier_.reserve(size);
for (std::size_t i = 0; i < size; ++i) {
offset_.push_back(bottom[i + x_start] / 65535.0f);
multiplier_.push_back(65535.0f / (top[i + x_start] - bottom[i + x_start]));
}
}
bool ImagePipelineNodeCalibrate::get_next_row_data(std::uint8_t* out_data)
{
bool ret = source_.get_next_row_data(out_data);
auto format = get_format();
auto depth = get_pixel_format_depth(format);
std::size_t max_value = 1;
switch (depth) {
case 8: max_value = 255; break;
case 16: max_value = 65535; break;
default:
throw SaneException("Unsupported depth for calibration %d", depth);
}
unsigned channels = get_pixel_channels(format);
std::size_t max_calib_i = offset_.size();
std::size_t curr_calib_i = 0;
for (std::size_t x = 0, width = get_width(); x < width && curr_calib_i < max_calib_i; ++x) {
for (unsigned ch = 0; ch < channels && curr_calib_i < max_calib_i; ++ch) {
std::int32_t value = get_raw_channel_from_row(out_data, x, ch, format);
float value_f = static_cast<float>(value) / max_value;
value_f = (value_f - offset_[curr_calib_i]) * multiplier_[curr_calib_i];
value_f = std::round(value_f * max_value);
value = clamp<std::int32_t>(static_cast<std::int32_t>(value_f), 0, max_value);
set_raw_channel_to_row(out_data, x, ch, value, format);
curr_calib_i++;
}
}
return ret;
}
ImagePipelineNodeDebug::ImagePipelineNodeDebug(ImagePipelineNode& source,
const std::string& path) :
source_(source),
path_{path},
buffer_{source_.get_row_bytes()}
{}
ImagePipelineNodeDebug::~ImagePipelineNodeDebug()
{
catch_all_exceptions(__func__, [&]()
{
if (buffer_.empty())
return;
auto format = get_format();
buffer_.linearize();
write_tiff_file(path_, buffer_.get_front_row_ptr(), get_pixel_format_depth(format),
get_pixel_channels(format), get_width(), buffer_.height());
});
}
bool ImagePipelineNodeDebug::get_next_row_data(std::uint8_t* out_data)
{
buffer_.push_back();
bool got_data = source_.get_next_row_data(out_data);
std::memcpy(buffer_.get_back_row_ptr(), out_data, get_row_bytes());
return got_data;
}
std::size_t ImagePipelineStack::get_input_width() const
{
ensure_node_exists();
return nodes_.front()->get_width();
}
std::size_t ImagePipelineStack::get_input_height() const
{
ensure_node_exists();
return nodes_.front()->get_height();
}
PixelFormat ImagePipelineStack::get_input_format() const
{
ensure_node_exists();
return nodes_.front()->get_format();
}
std::size_t ImagePipelineStack::get_input_row_bytes() const
{
ensure_node_exists();
return nodes_.front()->get_row_bytes();
}
std::size_t ImagePipelineStack::get_output_width() const
{
ensure_node_exists();
return nodes_.back()->get_width();
}
std::size_t ImagePipelineStack::get_output_height() const
{
ensure_node_exists();
return nodes_.back()->get_height();
}
PixelFormat ImagePipelineStack::get_output_format() const
{
ensure_node_exists();
return nodes_.back()->get_format();
}
std::size_t ImagePipelineStack::get_output_row_bytes() const
{
ensure_node_exists();
return nodes_.back()->get_row_bytes();
}
void ImagePipelineStack::ensure_node_exists() const
{
if (nodes_.empty()) {
throw SaneException("The pipeline does not contain any nodes");
}
}
void ImagePipelineStack::clear()
{
// we need to destroy the nodes back to front, so that the destructors still have valid
// references to sources
for (auto it = nodes_.rbegin(); it != nodes_.rend(); ++it) {
it->reset();
}
nodes_.clear();
}
std::vector<std::uint8_t> ImagePipelineStack::get_all_data()
{
auto row_bytes = get_output_row_bytes();
auto height = get_output_height();
std::vector<std::uint8_t> ret;
ret.resize(row_bytes * height);
for (std::size_t i = 0; i < height; ++i) {
get_next_row_data(ret.data() + row_bytes * i);
}
return ret;
}
Image ImagePipelineStack::get_image()
{
auto height = get_output_height();
Image ret;
ret.resize(get_output_width(), height, get_output_format());
for (std::size_t i = 0; i < height; ++i) {
get_next_row_data(ret.get_row_ptr(i));
}
return ret;
}
} // namespace genesys
|