1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
|
/* sane - Scanner Access Now Easy.
Copyright (C) 2019 Povilas Kanapickas <povilas@radix.lt>
This file is part of the SANE package.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#ifndef BACKEND_GENESYS_SENSOR_H
#define BACKEND_GENESYS_SENSOR_H
#include "enums.h"
#include "register.h"
#include "serialize.h"
#include "value_filter.h"
#include <array>
#include <functional>
namespace genesys {
template<class T, size_t Size>
struct AssignableArray : public std::array<T, Size> {
AssignableArray() = default;
AssignableArray(const AssignableArray&) = default;
AssignableArray& operator=(const AssignableArray&) = default;
AssignableArray& operator=(std::initializer_list<T> init)
{
if (init.size() != std::array<T, Size>::size())
throw std::runtime_error("An array of incorrect size assigned");
std::copy(init.begin(), init.end(), std::array<T, Size>::begin());
return *this;
}
};
class StaggerConfig
{
public:
StaggerConfig() = default;
explicit StaggerConfig(std::initializer_list<std::size_t> shifts) :
shifts_{shifts}
{
}
std::size_t max_shift() const
{
if (shifts_.empty()) {
return 0;
}
return *std::max_element(shifts_.begin(), shifts_.end());
}
bool empty() const { return shifts_.empty(); }
std::size_t size() const { return shifts_.size(); }
const std::vector<std::size_t>& shifts() const { return shifts_; }
bool operator==(const StaggerConfig& other) const
{
return shifts_ == other.shifts_;
}
private:
std::vector<std::size_t> shifts_;
template<class Stream>
friend void serialize(Stream& str, StaggerConfig& x);
};
template<class Stream>
void serialize(Stream& str, StaggerConfig& x)
{
serialize(str, x.shifts_);
}
std::ostream& operator<<(std::ostream& out, const StaggerConfig& config);
enum class FrontendType : unsigned
{
UNKNOWN = 0,
WOLFSON,
ANALOG_DEVICES,
CANON_LIDE_80,
WOLFSON_GL841, // old code path, likely wrong calculation
WOLFSON_GL846, // old code path, likely wrong calculation
ANALOG_DEVICES_GL847, // old code path, likely wrong calculation
WOLFSON_GL124, // old code path, likely wrong calculation
};
inline void serialize(std::istream& str, FrontendType& x)
{
unsigned value;
serialize(str, value);
x = static_cast<FrontendType>(value);
}
inline void serialize(std::ostream& str, FrontendType& x)
{
unsigned value = static_cast<unsigned>(x);
serialize(str, value);
}
std::ostream& operator<<(std::ostream& out, const FrontendType& type);
struct GenesysFrontendLayout
{
FrontendType type = FrontendType::UNKNOWN;
std::array<std::uint16_t, 3> offset_addr = {};
std::array<std::uint16_t, 3> gain_addr = {};
bool operator==(const GenesysFrontendLayout& other) const
{
return type == other.type &&
offset_addr == other.offset_addr &&
gain_addr == other.gain_addr;
}
};
template<class Stream>
void serialize(Stream& str, GenesysFrontendLayout& x)
{
serialize(str, x.type);
serialize_newline(str);
serialize(str, x.offset_addr);
serialize_newline(str);
serialize(str, x.gain_addr);
}
std::ostream& operator<<(std::ostream& out, const GenesysFrontendLayout& layout);
/** @brief Data structure to set up analog frontend.
The analog frontend converts analog value from image sensor to digital value. It has its own
control registers which are set up with this structure. The values are written using
fe_write_data.
*/
struct Genesys_Frontend
{
Genesys_Frontend() = default;
// id of the frontend description
AdcId id = AdcId::UNKNOWN;
// all registers of the frontend. Note that the registers can hold 9-bit values
RegisterSettingSet<std::uint16_t> regs;
// extra control registers
std::array<std::uint16_t, 3> reg2 = {};
GenesysFrontendLayout layout;
void set_offset(unsigned which, std::uint16_t value)
{
regs.set_value(layout.offset_addr[which], value);
}
void set_gain(unsigned which, std::uint16_t value)
{
regs.set_value(layout.gain_addr[which], value);
}
std::uint16_t get_offset(unsigned which) const
{
return regs.get_value(layout.offset_addr[which]);
}
std::uint16_t get_gain(unsigned which) const
{
return regs.get_value(layout.gain_addr[which]);
}
bool operator==(const Genesys_Frontend& other) const
{
return id == other.id &&
regs == other.regs &&
reg2 == other.reg2 &&
layout == other.layout;
}
};
std::ostream& operator<<(std::ostream& out, const Genesys_Frontend& frontend);
template<class Stream>
void serialize(Stream& str, Genesys_Frontend& x)
{
serialize(str, x.id);
serialize_newline(str);
serialize(str, x.regs);
serialize_newline(str);
serialize(str, x.reg2);
serialize_newline(str);
serialize(str, x.layout);
}
struct SensorExposure {
std::uint16_t red = 0;
std::uint16_t green = 0;
std::uint16_t blue = 0;
SensorExposure() = default;
SensorExposure(std::uint16_t r, std::uint16_t g, std::uint16_t b) :
red{r}, green{g}, blue{b}
{}
bool operator==(const SensorExposure& other) const
{
return red == other.red && green == other.green && blue == other.blue;
}
};
std::ostream& operator<<(std::ostream& out, const SensorExposure& exposure);
struct Genesys_Sensor {
Genesys_Sensor() = default;
~Genesys_Sensor() = default;
// id of the sensor description
SensorId sensor_id = SensorId::UNKNOWN;
// sensor resolution in CCD pixels. Note that we may read more than one CCD pixel per logical
// pixel, see ccd_pixels_per_system_pixel()
unsigned full_resolution = 0;
// sensor resolution in pixel values that are read by the chip. Many scanners make low
// resolutions faster by configuring the timings in such a way that 1/2 or 1/4 of pixel values
// that are read. If zero, then it is equal to `full_resolution`.
unsigned optical_resolution = 0;
// the resolution list that the sensor is usable at.
ValueFilterAny<unsigned> resolutions = VALUE_FILTER_ANY;
// the channel list that the sensor is usable at
std::vector<unsigned> channels = { 1, 3 };
// the scan method used with the sensor
ScanMethod method = ScanMethod::FLATBED;
// The scanner may be setup to use a custom dpihw that does not correspond to any actual
// resolution. The value zero does not set the override.
unsigned register_dpihw = 0;
// The scanner may be setup to use a custom dpiset value that does not correspond to any actual
// resolution. The value zero does not set the override.
unsigned register_dpiset = 0;
// The resolution to use for shading calibration
unsigned shading_resolution = 0;
// How many real pixels correspond to one shading pixel that is sent to the scanner
unsigned shading_factor = 1;
// How many pixels the shading data is offset to the right from the acquired data. Calculated
// in shading resolution.
int shading_pixel_offset = 0;
// This defines the ratio between logical pixel coordinates and the pixel coordinates sent to
// the scanner.
Ratio pixel_count_ratio = Ratio{1, 1};
// The offset in pixels in terms of scan resolution that needs to be applied to scan position.
int output_pixel_offset = 0;
int black_pixels = 0;
// value of the dummy register
int dummy_pixel = 0;
// TA CCD target code (reference gain)
int fau_gain_white_ref = 0;
// CCD target code (reference gain)
int gain_white_ref = 0;
// red, green and blue initial exposure values
SensorExposure exposure;
int exposure_lperiod = -1;
// the number of pixels in a single segment. This is counted in output resolution.
unsigned segment_size = 0;
// the order of the segments, if any, for the sensor. If the sensor is not segmented or uses
// only single segment, this array can be empty
// only on gl843
std::vector<unsigned> segment_order;
// some CCDs use multiple arrays of pixels for double or quadruple resolution. This can result
// in the following effects on the output:
// - every n-th column may be shifted in a vertical direction.
// - the columns themselves may be reordered in arbitrary order and may require shifting
// in X direction.
StaggerConfig stagger_x;
StaggerConfig stagger_y;
// True if calibration should be performed on host-side
bool use_host_side_calib = false;
GenesysRegisterSettingSet custom_regs;
GenesysRegisterSettingSet custom_fe_regs;
// red, green and blue gamma coefficient for default gamma tables
AssignableArray<float, 3> gamma;
unsigned get_optical_resolution() const
{
if (optical_resolution != 0)
return optical_resolution;
return full_resolution;
}
// how many CCD pixels are processed per system pixel time. This corresponds to CKSEL + 1
unsigned ccd_pixels_per_system_pixel() const
{
// same on GL646, GL841, GL843, GL846, GL847, GL124
constexpr unsigned REG_CKSEL = 0x03;
return (custom_regs.get_value(0x18) & REG_CKSEL) + 1;
}
bool matches_channel_count(unsigned count) const
{
return std::find(channels.begin(), channels.end(), count) != channels.end();
}
unsigned get_segment_count() const
{
if (segment_order.size() < 2)
return 1;
return segment_order.size();
}
bool operator==(const Genesys_Sensor& other) const
{
return sensor_id == other.sensor_id &&
full_resolution == other.full_resolution &&
optical_resolution == other.optical_resolution &&
resolutions == other.resolutions &&
method == other.method &&
shading_resolution == other.shading_resolution &&
shading_factor == other.shading_factor &&
shading_pixel_offset == other.shading_pixel_offset &&
pixel_count_ratio == other.pixel_count_ratio &&
output_pixel_offset == other.output_pixel_offset &&
black_pixels == other.black_pixels &&
dummy_pixel == other.dummy_pixel &&
fau_gain_white_ref == other.fau_gain_white_ref &&
gain_white_ref == other.gain_white_ref &&
exposure == other.exposure &&
exposure_lperiod == other.exposure_lperiod &&
segment_size == other.segment_size &&
segment_order == other.segment_order &&
stagger_x == other.stagger_x &&
stagger_y == other.stagger_y &&
use_host_side_calib == other.use_host_side_calib &&
custom_regs == other.custom_regs &&
custom_fe_regs == other.custom_fe_regs &&
gamma == other.gamma;
}
};
template<class Stream>
void serialize(Stream& str, Genesys_Sensor& x)
{
serialize(str, x.sensor_id);
serialize(str, x.full_resolution);
serialize(str, x.resolutions);
serialize(str, x.method);
serialize(str, x.shading_resolution);
serialize(str, x.shading_factor);
serialize(str, x.shading_pixel_offset);
serialize(str, x.output_pixel_offset);
serialize(str, x.pixel_count_ratio);
serialize(str, x.black_pixels);
serialize(str, x.dummy_pixel);
serialize(str, x.fau_gain_white_ref);
serialize(str, x.gain_white_ref);
serialize_newline(str);
serialize(str, x.exposure.blue);
serialize(str, x.exposure.green);
serialize(str, x.exposure.red);
serialize(str, x.exposure_lperiod);
serialize_newline(str);
serialize(str, x.segment_size);
serialize_newline(str);
serialize(str, x.segment_order);
serialize_newline(str);
serialize(str, x.stagger_x);
serialize_newline(str);
serialize(str, x.stagger_y);
serialize_newline(str);
serialize(str, x.use_host_side_calib);
serialize_newline(str);
serialize(str, x.custom_regs);
serialize_newline(str);
serialize(str, x.custom_fe_regs);
serialize_newline(str);
serialize(str, x.gamma);
serialize_newline(str);
}
std::ostream& operator<<(std::ostream& out, const Genesys_Sensor& sensor);
} // namespace genesys
#endif // BACKEND_GENESYS_SENSOR_H
|