diff options
author | Jörg Frings-Fürst <debian@jff.email> | 2023-06-14 20:36:37 +0200 |
---|---|---|
committer | Jörg Frings-Fürst <debian@jff.email> | 2023-06-14 20:36:37 +0200 |
commit | bb80d3feebdc9acc52e3f4ad24084d8425f043a2 (patch) | |
tree | 2084a84c39f159c6aea254775dc0880d52579d45 /subprojects/shotwell-facedetect/facedetect-opencv.cpp | |
parent | b26ff0798252a1a8072dd2c7a67f6205de9fde11 (diff) | |
parent | 31804433d72460cbe0a39f9f8ea5e76058d84cda (diff) |
Merge branch 'feature/upstream' into develop
Diffstat (limited to 'subprojects/shotwell-facedetect/facedetect-opencv.cpp')
-rw-r--r-- | subprojects/shotwell-facedetect/facedetect-opencv.cpp | 281 |
1 files changed, 281 insertions, 0 deletions
diff --git a/subprojects/shotwell-facedetect/facedetect-opencv.cpp b/subprojects/shotwell-facedetect/facedetect-opencv.cpp new file mode 100644 index 0000000..8b0ad10 --- /dev/null +++ b/subprojects/shotwell-facedetect/facedetect-opencv.cpp @@ -0,0 +1,281 @@ +// SPDX-License-Identifier: LGPL-2.1-or-later + +#include "shotwell-facedetect.hpp" + +#include <opencv2/imgcodecs.hpp> +#include <opencv2/imgproc/imgproc.hpp> +#include <opencv2/objdetect/objdetect.hpp> + +#ifdef HAS_OPENCV_DNN + #include <opencv2/dnn.hpp> +#endif + +#include <iostream> +#include <string> +#include <filesystem> + +// Global variable for DNN to generate vector out of face +#ifdef HAS_OPENCV_DNN +static cv::dnn::Net faceRecogNet; +static cv::dnn::Net faceDetectNet; +#endif + +static cv::CascadeClassifier cascade; +static cv::CascadeClassifier cascade_profile; +static bool disableDnn{ true }; + +constexpr std::string_view PROTOTEXT_FILE{ "deploy.prototxt" }; +constexpr std::string_view OPENFACE_RECOG_TORCH_NET{ "openface.nn4.small2.v1.t7" }; +constexpr std::string_view RESNET_DETECT_CAFFE_NET{ "res10_300x300_ssd_iter_140000_fp16.caffemodel" }; +constexpr std::string_view HAARCASCADE{ "haarcascade_frontalface_alt.xml" }; +constexpr std::string_view HAARCASCADE_PROFILE{ "haarcascade_profileface.xml" }; + +std::vector<cv::Rect> detectFacesMat(const cv::Mat &img); +std::vector<double> faceToVecMat(const cv::Mat& img); + +// Detect faces in a photo +std::vector<FaceRect> detectFaces(const cv::String &inputName, double scale, bool infer = false) { + if(cascade.empty()) { + g_warning("No cascade file loaded. Did you call loadNet()?"); + return {}; + } + + if (inputName.empty()) { + g_warning("No file to process. aborting"); + return {}; + } + + cv::Mat const img = cv::imread(inputName, 1); + if (img.empty()) { + g_warning("Failed to load the image file: %s", inputName.c_str()); + return {}; + } + + std::vector<cv::Rect> faces; + cv::Size smallImgSize; + +#ifdef HAS_OPENCV_DNN + disableDnn = faceDetectNet.empty(); +#else + disableDnn = true; +#endif + try { + if (disableDnn) { + // Classical face detection + cv::Mat gray; + cvtColor(img, gray, cv::COLOR_BGR2GRAY); + + scale = 1.0; + cv::Mat smallImg(cvRound(img.rows / scale), cvRound(img.cols / scale), CV_8UC1); + smallImgSize = smallImg.size(); + + cv::resize(gray, smallImg, smallImgSize, 0, 0, cv::INTER_LINEAR); + cv::equalizeHist(smallImg, smallImg); + constexpr double SCALE_FACTOR_FRONTAL{ 1.1 }; + constexpr double SCALE_FACTOR_PROFILE{ 1.05 }; + constexpr int MIN_NEIGHBOURS{ 2 }; + constexpr int MIN_SIZE{ 30 }; + cascade.detectMultiScale (smallImg, + faces, + SCALE_FACTOR_FRONTAL, + MIN_NEIGHBOURS, + cv::CASCADE_SCALE_IMAGE, + cv::Size (MIN_SIZE, MIN_SIZE)); + + // Run the cascade for profile faces, if available + if(not cascade_profile.empty()) { + g_debug("Running haarcascade detection for profile faces"); + std::vector<cv::Rect> profiles; + cascade_profile.detectMultiScale (smallImg, + profiles, + SCALE_FACTOR_PROFILE, + MIN_NEIGHBOURS, + cv::CASCADE_SCALE_IMAGE, + cv::Size (MIN_SIZE, MIN_SIZE)); + if(not profiles.empty()) { + faces.insert(faces.end(), profiles.begin(), profiles.end()); + } + + // Duplicate all rectangles so we can safely run groupRectangles with minimum 1 on it - otherwise + // OpenCV does weird things + faces.insert(faces.end(), faces.begin(), faces.end()); + + // Try to merge all overlapping rectangles + cv::groupRectangles(faces, 1); + } + } else { + #ifdef HAS_OPENCV_DNN + // DNN based face detection + faces = detectFacesMat(img); + smallImgSize = img.size(); // Not using the small image here + #endif + } + } catch (cv::Exception& ex) { + g_warning("Face detection failed: %s", ex.what()); + return {}; + } + + std::vector<FaceRect> scaled; + for (std::vector<cv::Rect>::const_iterator r = faces.begin(); r != faces.end(); r++) { + FaceRect i; + i.x = (float) r->x / smallImgSize.width; + i.y = (float) r->y / smallImgSize.height; + i.width = (float) r->width / smallImgSize.width; + i.height = (float) r->height / smallImgSize.height; + +#ifdef HAS_OPENCV_DNN + try { + if (infer && !faceRecogNet.empty()) { + // Get colour image for vector generation + cv::Mat colourImg; + cv::resize(img, colourImg, smallImgSize, 0, 0, cv::INTER_LINEAR); + i.vec = faceToVecMat(colourImg(*r)); // Run vector conversion on the face + } + } catch (cv::Exception& ex) { + g_warning("Face recognition failed: %s", ex.what()); + i.vec = {}; + } +#endif + scaled.push_back(i); + } + + return scaled; +} + +// Load network into global var +bool loadNet(const cv::String &baseDir) +{ + // Split baseDir into multiple search paths + std::stringstream iss{ baseDir }; + std::string path; + while(std::getline(iss, path, ':')) { + g_debug("Looking for face detection data files in %s", path.c_str()); + + std::filesystem::path const base_path{ path }; + + auto haarcascade = base_path / HAARCASCADE; + if(cascade.empty()) { + cascade.load(haarcascade); + } + + if(cascade.empty()) { + g_info("%s not found", haarcascade.c_str()); + } + + auto haarcascade_profile = base_path / HAARCASCADE_PROFILE; + if(cascade_profile.empty()) { + cascade_profile.load(haarcascade_profile); + } + + if(cascade_profile.empty()) { + g_info("%s not found", haarcascade_profile.c_str()); + } + +#if HAS_OPENCV_DNN + + if(faceDetectNet.empty()) { + try { + faceDetectNet = + cv::dnn::readNetFromCaffe(base_path / PROTOTEXT_FILE, base_path / RESNET_DETECT_CAFFE_NET); + } catch(cv::Exception &e) { + g_info("Failed to load face detect net: %s", e.what()); + } + } + + if(faceRecogNet.empty()) { + try { + faceRecogNet = cv::dnn::readNetFromTorch(base_path / OPENFACE_RECOG_TORCH_NET); + } catch(cv::Exception &e) { + g_info("Failed to load face recognition net: %s", e.what()); + } + } +#endif + } + + if(cascade.empty() && cascade_profile.empty() && faceDetectNet.empty()) { + g_warning("No face detection method detected. Face detection fill not work."); + return false; + } + +#if HAS_OPENCV_DNN + // If there is no detection model, disable advanced face detection + disableDnn = faceDetectNet.empty(); + + if(faceRecogNet.empty()) { + g_warning("Face recognition net not available, disabling recognition"); + } + + return true; +#else + return not cascade.empty() && not cascade_profile.empty(); +#endif +} + +// Face detector +// Adapted from OpenCV example: +// https://github.com/opencv/opencv/blob/master/samples/dnn/js_face_recognition.html +std::vector<cv::Rect> detectFacesMat(const cv::Mat& img) { + std::vector<cv::Rect> faces; +#ifdef HAS_OPENCV_DNN + const cv::Mat blob = cv::dnn::blobFromImage(img, 1.0, cv::Size(128*8, 96*8), + cv::Scalar(104, 177, 123, 0), false, false); + faceDetectNet.setInput(blob); + cv::Mat out = faceDetectNet.forward(); + // out is a 4D matrix [1 x 1 x n x 7] + // n - number of results + assert(out.dims == 4); + int outIdx[4] = { 0, 0, 0, 0 }; + auto result_size = out.size[2]; + for (auto i = 0; i < result_size; i++) { + outIdx[2] = i; outIdx[3] = 2; + const auto confidence = out.at<float>(outIdx); + outIdx[3]++; + auto left = out.at<float>(outIdx) * (double)img.cols; + outIdx[3]++; + auto top = out.at<float>(outIdx) * (double)img.rows; + outIdx[3]++; + auto right = out.at<float>(outIdx) * (double)img.cols; + outIdx[3]++; + auto bottom = out.at<float> (outIdx) * (double)img.rows; + left = std::clamp (left, 0.0, (double) img.cols - 1); + right = std::clamp (right, 0.0, (double) img.cols - 1); + bottom = std::clamp (bottom, 0.0, (double) img.rows - 1); + top = std::clamp (top, 0.0, (double) img.rows - 1); + + constexpr double CONFIDENCE_THRESHOLD{ 0.98 }; + if (confidence > CONFIDENCE_THRESHOLD && left < right && top < bottom) { + const cv::Rect rect (static_cast<int> (left), + static_cast<int> (top), + static_cast<int> (right - left), + static_cast<int> (bottom - top)); + faces.push_back(rect); + } + } +#endif // HAS_OPENCV_DNN + return faces; +} + +// Face to vector converter +// Adapted from OpenCV example: +// https://github.com/opencv/opencv/blob/master/samples/dnn/js_face_recognition.html +#ifdef HAS_OPENCV_DNN +std::vector<double> faceToVecMat(const cv::Mat &img) { + std::vector<double> ret; + constexpr int SMALL_IMAGE_SIZE{ 96 }; + cv::Mat smallImg(SMALL_IMAGE_SIZE, SMALL_IMAGE_SIZE, CV_8UC1); + const cv::Size smallImgSize = smallImg.size(); + + cv::resize(img, smallImg, smallImgSize, 0, 0, cv::INTER_LINEAR); + // Generate 128 element face vector using DNN + constexpr double SCALE_FACTOR{ 1.0 / 255.0 }; + const cv::Mat blob = cv::dnn::blobFromImage (smallImg, SCALE_FACTOR, smallImgSize, cv::Scalar (), true, false); + + faceRecogNet.setInput(blob); + cv::Mat vec = faceRecogNet.forward(); + // Return vector + for (int i = 0; i < vec.rows; ++i) { + ret.insert(ret.end(), vec.ptr<float>(i), vec.ptr<float>(i) + vec.cols); + } + return ret; +} +#endif |