1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
|
// SPDX-License-Identifier: LGPL-2.1-or-later
#include "shotwell-facedetect.hpp"
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/objdetect/objdetect.hpp>
#ifdef HAS_OPENCV_DNN
#include <opencv2/dnn.hpp>
#endif
#include <iostream>
#include <string>
#include <filesystem>
// Global variable for DNN to generate vector out of face
#ifdef HAS_OPENCV_DNN
static cv::dnn::Net faceRecogNet;
static cv::dnn::Net faceDetectNet;
#endif
static cv::CascadeClassifier cascade;
static cv::CascadeClassifier cascade_profile;
static bool disableDnn{ true };
constexpr std::string_view PROTOTEXT_FILE{ "deploy.prototxt" };
constexpr std::string_view OPENFACE_RECOG_TORCH_NET{ "openface.nn4.small2.v1.t7" };
constexpr std::string_view RESNET_DETECT_CAFFE_NET{ "res10_300x300_ssd_iter_140000_fp16.caffemodel" };
constexpr std::string_view HAARCASCADE{ "haarcascade_frontalface_alt.xml" };
constexpr std::string_view HAARCASCADE_PROFILE{ "haarcascade_profileface.xml" };
std::vector<cv::Rect> detectFacesMat(const cv::Mat &img);
std::vector<double> faceToVecMat(const cv::Mat& img);
// Detect faces in a photo
std::vector<FaceRect> detectFaces(const cv::String &inputName, double scale, bool infer = false) {
if(cascade.empty()) {
g_warning("No cascade file loaded. Did you call loadNet()?");
return {};
}
if (inputName.empty()) {
g_warning("No file to process. aborting");
return {};
}
cv::Mat const img = cv::imread(inputName, 1);
if (img.empty()) {
g_warning("Failed to load the image file: %s", inputName.c_str());
return {};
}
std::vector<cv::Rect> faces;
cv::Size smallImgSize;
#ifdef HAS_OPENCV_DNN
disableDnn = faceDetectNet.empty();
#else
disableDnn = true;
#endif
try {
if (disableDnn) {
// Classical face detection
cv::Mat gray;
cvtColor(img, gray, cv::COLOR_BGR2GRAY);
scale = 1.0;
cv::Mat smallImg(cvRound(img.rows / scale), cvRound(img.cols / scale), CV_8UC1);
smallImgSize = smallImg.size();
cv::resize(gray, smallImg, smallImgSize, 0, 0, cv::INTER_LINEAR);
cv::equalizeHist(smallImg, smallImg);
constexpr double SCALE_FACTOR_FRONTAL{ 1.1 };
constexpr double SCALE_FACTOR_PROFILE{ 1.05 };
constexpr int MIN_NEIGHBOURS{ 2 };
constexpr int MIN_SIZE{ 30 };
cascade.detectMultiScale (smallImg,
faces,
SCALE_FACTOR_FRONTAL,
MIN_NEIGHBOURS,
cv::CASCADE_SCALE_IMAGE,
cv::Size (MIN_SIZE, MIN_SIZE));
// Run the cascade for profile faces, if available
if(not cascade_profile.empty()) {
g_debug("Running haarcascade detection for profile faces");
std::vector<cv::Rect> profiles;
cascade_profile.detectMultiScale (smallImg,
profiles,
SCALE_FACTOR_PROFILE,
MIN_NEIGHBOURS,
cv::CASCADE_SCALE_IMAGE,
cv::Size (MIN_SIZE, MIN_SIZE));
if(not profiles.empty()) {
faces.insert(faces.end(), profiles.begin(), profiles.end());
}
// Duplicate all rectangles so we can safely run groupRectangles with minimum 1 on it - otherwise
// OpenCV does weird things
faces.insert(faces.end(), faces.begin(), faces.end());
// Try to merge all overlapping rectangles
cv::groupRectangles(faces, 1);
}
} else {
#ifdef HAS_OPENCV_DNN
// DNN based face detection
faces = detectFacesMat(img);
smallImgSize = img.size(); // Not using the small image here
#endif
}
} catch (cv::Exception& ex) {
g_warning("Face detection failed: %s", ex.what());
return {};
}
std::vector<FaceRect> scaled;
for (std::vector<cv::Rect>::const_iterator r = faces.begin(); r != faces.end(); r++) {
FaceRect i;
i.x = (float) r->x / smallImgSize.width;
i.y = (float) r->y / smallImgSize.height;
i.width = (float) r->width / smallImgSize.width;
i.height = (float) r->height / smallImgSize.height;
#ifdef HAS_OPENCV_DNN
try {
if (infer && !faceRecogNet.empty()) {
// Get colour image for vector generation
cv::Mat colourImg;
cv::resize(img, colourImg, smallImgSize, 0, 0, cv::INTER_LINEAR);
i.vec = faceToVecMat(colourImg(*r)); // Run vector conversion on the face
}
} catch (cv::Exception& ex) {
g_warning("Face recognition failed: %s", ex.what());
i.vec = {};
}
#endif
scaled.push_back(i);
}
return scaled;
}
// Load network into global var
bool loadNet(const cv::String &baseDir)
{
// Split baseDir into multiple search paths
std::stringstream iss{ baseDir };
std::string path;
while(std::getline(iss, path, ':')) {
g_debug("Looking for face detection data files in %s", path.c_str());
std::filesystem::path const base_path{ path };
auto haarcascade = base_path / HAARCASCADE;
if(cascade.empty()) {
cascade.load(haarcascade);
}
if(cascade.empty()) {
g_info("%s not found", haarcascade.c_str());
}
auto haarcascade_profile = base_path / HAARCASCADE_PROFILE;
if(cascade_profile.empty()) {
cascade_profile.load(haarcascade_profile);
}
if(cascade_profile.empty()) {
g_info("%s not found", haarcascade_profile.c_str());
}
#if HAS_OPENCV_DNN
if(faceDetectNet.empty()) {
try {
faceDetectNet =
cv::dnn::readNetFromCaffe(base_path / PROTOTEXT_FILE, base_path / RESNET_DETECT_CAFFE_NET);
} catch(cv::Exception &e) {
g_info("Failed to load face detect net: %s", e.what());
}
}
if(faceRecogNet.empty()) {
try {
faceRecogNet = cv::dnn::readNetFromTorch(base_path / OPENFACE_RECOG_TORCH_NET);
} catch(cv::Exception &e) {
g_info("Failed to load face recognition net: %s", e.what());
}
}
#endif
}
if(cascade.empty() && cascade_profile.empty() && faceDetectNet.empty()) {
g_warning("No face detection method detected. Face detection fill not work.");
return false;
}
#if HAS_OPENCV_DNN
// If there is no detection model, disable advanced face detection
disableDnn = faceDetectNet.empty();
if(faceRecogNet.empty()) {
g_warning("Face recognition net not available, disabling recognition");
}
return true;
#else
return not cascade.empty() && not cascade_profile.empty();
#endif
}
// Face detector
// Adapted from OpenCV example:
// https://github.com/opencv/opencv/blob/master/samples/dnn/js_face_recognition.html
std::vector<cv::Rect> detectFacesMat(const cv::Mat& img) {
std::vector<cv::Rect> faces;
#ifdef HAS_OPENCV_DNN
const cv::Mat blob = cv::dnn::blobFromImage(img, 1.0, cv::Size(128*8, 96*8),
cv::Scalar(104, 177, 123, 0), false, false);
faceDetectNet.setInput(blob);
cv::Mat out = faceDetectNet.forward();
// out is a 4D matrix [1 x 1 x n x 7]
// n - number of results
assert(out.dims == 4);
int outIdx[4] = { 0, 0, 0, 0 };
auto result_size = out.size[2];
for (auto i = 0; i < result_size; i++) {
outIdx[2] = i; outIdx[3] = 2;
const auto confidence = out.at<float>(outIdx);
outIdx[3]++;
auto left = out.at<float>(outIdx) * (double)img.cols;
outIdx[3]++;
auto top = out.at<float>(outIdx) * (double)img.rows;
outIdx[3]++;
auto right = out.at<float>(outIdx) * (double)img.cols;
outIdx[3]++;
auto bottom = out.at<float> (outIdx) * (double)img.rows;
left = std::clamp (left, 0.0, (double) img.cols - 1);
right = std::clamp (right, 0.0, (double) img.cols - 1);
bottom = std::clamp (bottom, 0.0, (double) img.rows - 1);
top = std::clamp (top, 0.0, (double) img.rows - 1);
constexpr double CONFIDENCE_THRESHOLD{ 0.98 };
if (confidence > CONFIDENCE_THRESHOLD && left < right && top < bottom) {
const cv::Rect rect (static_cast<int> (left),
static_cast<int> (top),
static_cast<int> (right - left),
static_cast<int> (bottom - top));
faces.push_back(rect);
}
}
#endif // HAS_OPENCV_DNN
return faces;
}
// Face to vector converter
// Adapted from OpenCV example:
// https://github.com/opencv/opencv/blob/master/samples/dnn/js_face_recognition.html
#ifdef HAS_OPENCV_DNN
std::vector<double> faceToVecMat(const cv::Mat &img) {
std::vector<double> ret;
constexpr int SMALL_IMAGE_SIZE{ 96 };
cv::Mat smallImg(SMALL_IMAGE_SIZE, SMALL_IMAGE_SIZE, CV_8UC1);
const cv::Size smallImgSize = smallImg.size();
cv::resize(img, smallImg, smallImgSize, 0, 0, cv::INTER_LINEAR);
// Generate 128 element face vector using DNN
constexpr double SCALE_FACTOR{ 1.0 / 255.0 };
const cv::Mat blob = cv::dnn::blobFromImage (smallImg, SCALE_FACTOR, smallImgSize, cv::Scalar (), true, false);
faceRecogNet.setInput(blob);
cv::Mat vec = faceRecogNet.forward();
// Return vector
for (int i = 0; i < vec.rows; ++i) {
ret.insert(ret.end(), vec.ptr<float>(i), vec.ptr<float>(i) + vec.cols);
}
return ret;
}
#endif
|