diff options
author | Jörg Frings-Fürst <debian@jff-webhosting.net> | 2014-07-23 15:25:44 +0200 |
---|---|---|
committer | Jörg Frings-Fürst <debian@jff-webhosting.net> | 2014-07-23 15:25:44 +0200 |
commit | 8286ac511144e4f17d34eac9affb97e50646344a (patch) | |
tree | f1af7320d7b6be6be059216d0ad08ac7b4f73fd0 /xsd/doc/cxx/tree/guide | |
parent | a15cf65c44d5c224169c32ef5495b68c758134b7 (diff) |
Imported Upstream version 4.0.0upstream/4.0.0
Diffstat (limited to 'xsd/doc/cxx/tree/guide')
-rw-r--r-- | xsd/doc/cxx/tree/guide/cxx-tree-guide.pdf | bin | 0 -> 95081 bytes | |||
-rw-r--r-- | xsd/doc/cxx/tree/guide/cxx-tree-guide.ps | 3509 | ||||
-rw-r--r-- | xsd/doc/cxx/tree/guide/guide.html2ps | 65 | ||||
-rw-r--r-- | xsd/doc/cxx/tree/guide/index.xhtml | 2732 | ||||
-rw-r--r-- | xsd/doc/cxx/tree/guide/makefile | 54 |
5 files changed, 6360 insertions, 0 deletions
diff --git a/xsd/doc/cxx/tree/guide/cxx-tree-guide.pdf b/xsd/doc/cxx/tree/guide/cxx-tree-guide.pdf Binary files differnew file mode 100644 index 0000000..3e19f3e --- /dev/null +++ b/xsd/doc/cxx/tree/guide/cxx-tree-guide.pdf diff --git a/xsd/doc/cxx/tree/guide/cxx-tree-guide.ps b/xsd/doc/cxx/tree/guide/cxx-tree-guide.ps new file mode 100644 index 0000000..a6c4a2b --- /dev/null +++ b/xsd/doc/cxx/tree/guide/cxx-tree-guide.ps @@ -0,0 +1,3509 @@ +%!PS +%%Title: C++/Tree Mapping Getting Started Guide +%%Creator: html2ps version 1.0 beta7 +%%EndComments +save +2000 dict begin +/d {bind def} bind def +/D {def} d +/t true D +/f false D +/FL [/Times-Roman +/Times-Italic +/Times-Bold +/Times-BoldItalic +/Courier +/Courier-Oblique +/Courier-Bold +/Courier-BoldOblique +/Helvetica +/Helvetica-Oblique +/Helvetica-Bold +/Helvetica-BoldOblique] D +/WF t D +/WI 0 D +/F 1 D +/IW 471 F div D +/IL 621 F div D +/PS 791 D +/EF [0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 2 2] D +/EZ [12 10 19 17 15 13 12 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 8 8] D +/Ey [0 0 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] D +/EG [-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1] D +/Tm [1 1 0.8 0.8 0.8 0.8 0.8 0.8 0 0 0 0 0 0 0.5 1 1 1 1 0 0 1.3 0 0] D +/Bm [1 1 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0.5 1 1 1 1 0 0 1 0 0] D +/Lm [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 0 0 2 0 0 0] D +/Rm [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0] D +/EU [-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0] D +/NO f D +/YY [[{()}{ h }][{ h }{()}][{()}{()}]] D +/ZZ [[{ (July 2014) }{ Pn }][{ Pn }{ (July 2014) }][{ Ti }{ Ti }]] D +/Ts EZ 0 get D +/TU f D +/Xp t D +/AU f D +/SN 0 D +/Cf t D +/Tp t D +/Fe f D +/TI 2 Ts mul D +/Fm 14 D +/xL 71 D +/xR 71 D +/yL 706 D +/yR 706 D +/Wl 471 F div D +/Wr 471 F div D +/hL 621 F div D +/hR 621 F div D +/FE {newpath Fm neg Fm M CP BB IW Fm add Fm L IW Fm add IL Fm add neg L CP BB + Fm neg IL Fm add neg L closepath} D +/LA {PM 0 eq{/IW Wl D /IL hL D}{/IW Wr D /IL hR D}ie /W IW D /LL W D /LS W D + TU PM 0 eq and{IW 56 F div add SA{Sf div}if 0 translate} + {PM 0 eq{xL yL}{xR yR}ie translate F SA{Sf mul}if dup scale + CS CF FS Cf{CA CL get VC}if /Bb f D}ie 0 0 M + TF not Tc or {Cf{gsave SA{1 Sf div dup scale}if Cb VC FE fill grestore}if}if}D +/Pi 0 Ts mul D +/SG [0.8 1 1] D +/Ab 15 D +/J 0 D +/Tc t D +/NH 6 D +/Nf f D +/Pa f D +/LH 1.2 D +/XR f D +/Xr {/pN E D ( [p ) WB pN WB (] )WB} D +/Db [16#FF 16#FF 16#FF] D +/Dt [16#00 16#00 16#00] D +/eA f D +/Fi f D +/bT f D +/Lc t D +/Dl [16#00 16#00 16#00] D +/LX f D +/Br 0.25 D +/IA ([IMAGE]) D +/DS {/PF f D()WB NL NP()pop RC ZF} D +/Gb f D +/Mb t D +/Hc [16#00 16#00 16#00] D +/Bl 3 D +/MI -15.6 D +/DX (DRAFT) D +/Di 0 D +/Tt 113.385826771654 D +/Th { ( +) 2 Al()BR ( + ) 0 1 -1 H()4 FZ (C++/Tree Mapping) ES()EH ( + ) 0 1 -1 H()4 FZ (Getting Started Guide) ES()EH ( + ) 0 1 -1 H ( ) EH ( + ) 0 1 -1 H ( ) EH ( + ) 0 1 -1 H ( ) EH ( + ) 0 1 -1 H ( ) EH ( + ) 0 1 -1 H ( ) EH ( + ) 0 1 -1 H ( ) EH ( +) Ea()BR ( + ) 0 P (Copyright © 2005-2014 CODE SYNTHESIS TOOLS CC) EP ( + + ) 0 P (Permission is granted to copy, distribute and/or modify this + document under the terms of the + ) R0 2 A (GNU Free + Documentation License, version 1.2) EA (; with no Invariant Sections, + no Front-Cover Texts and no Back-Cover Texts. + ) EP ( + + ) 0 P (This document is available in the following formats: + ) R1 2 A (XHTML) EA (, + ) R2 2 A (PDF) EA (, and + ) R3 2 A (PostScript) EA (.) EP()} D +/tH {()0 1 -1 H (Table of Contents) EH()} D +/FD 2 D +/Dy 2 D +/cD [16#F0 16#F0 16#F0] D +/FW 0.6 D +/FU [16#00 16#00 16#00] D +/ET {/RM f D /A0 3 D /PN SN D /OU t D /Ou t D /W IW D /LL W D D1 + Ms not TP and{Ip}if /TF f D} D + +%-- End of variable part -- +/MySymbol 10 dict dup begin + /FontType 3 D /FontMatrix [.001 0 0 .001 0 0 ] D /FontBBox [25 -10 600 600] D + /Encoding 256 array D 0 1 255{Encoding exch /.notdef put}for + Encoding (e) 0 get /euro put + /Metrics 2 dict D Metrics begin + /.notdef 0 D + /euro 651 D + end + /BBox 2 dict D BBox begin + /.notdef [0 0 0 0] D + /euro [25 -10 600 600] D + end + /CharacterDefs 2 dict D CharacterDefs begin + /.notdef {} D + /euro{newpath 114 600 moveto 631 600 lineto 464 200 lineto 573 200 lineto + 573 0 lineto -94 0 lineto 31 300 lineto -10 300 lineto closepath clip + 50 setlinewidth newpath 656 300 moveto 381 300 275 0 360 arc stroke + -19 350 moveto 600 0 rlineto -19 250 moveto 600 0 rlineto stroke}d + end + /BuildChar{0 begin + /char E D /fontdict E D /charname fontdict /Encoding get char get D + fontdict begin + Metrics charname get 0 BBox charname get aload pop setcachedevice + CharacterDefs charname get exec + end + end}D + /BuildChar load 0 3 dict put /UniqueID 1 D +end +definefont pop + +/Cd {aload length 2 idiv dup dict begin {D} repeat currentdict end} D +/EX {EC cvx exec} D +/DU {} d +/BB {pop pop}d +/ie {ifelse} d +/E {exch} d +/M {moveto} d +/R {rmoveto} d +/L {lineto} d +/RL {rlineto} d +/CP {currentpoint} d +/SW {stringwidth} d +/GI {getinterval} d +/PI {putinterval} d +/Sg {setgray} d +/LW {setlinewidth} d +/S {dup () ne OU and{0 Co R AT 3 eq LB and HF not and A1 0 ne A2 0 ne or and + {A2 0 32 A1 0 6 -1 roll awidthshow}{show}ie 0 Co neg R}{pop}ie + OU PH 3 eq or{/Ms t D}if} D +/U {OU{gsave CP currentfont /FontInfo get /UnderlinePosition get + 0 E currentfont /FontMatrix get dtransform E pop add newpath M dup SW pop + CJ 0 RL stroke grestore}if} D +/B {OU Br 0 gt and{CP Ts neg Ts .33 mul R gsave 0 Sg + CP newpath Ts Br mul 0 360 arc closepath UI 2 mod 0 eq{stroke}{fill}ie + grestore M CP E Ts Br 1 add mul sub E BB /Ms t D}if}D +/NP {Ms TP not or PA and OU and{TP{OR}if f1{mF k2 /mF E D /YC 0 D}if + TP TU not PM 0 eq or and{showpage}if DU Ip TE not{LA}if 0.6 LW + /CI 0 D /TP t D /Hs f D /hl 6 D /Hv 6 D /HI hi D /Ms f D}if Bs XO BO M} D +/Np {LE sub CP E pop gt PL 0 eq and{NP}if}D +/Ip {/PN PN 1 add D /Pn RM{1}{4}ie PN Ns D /PM PN SN sub 2 mod D} D +/GP {E dup 3 -1 roll get PN 1 add 2 mod get dup type /integertype eq + {get 0 get}{E pop}ie}d +/Fc {dup 2 GP exec SW pop /S1 E D dup 1 GP exec SW pop /S2 E D 0 GP exec SW + pop /S3 E D S1 0 gt{S2 2 mul S1 add S3 2 mul S1 add 2 copy lt{E}if pop}{0}ie + S2 S3 add 2 copy lt{E}if pop IW .9 mul div dup 1 gt{1 E div}{pop 1}ie}D +/OR {Df{Sd}if tp not{gsave SA{1 Sf div dup scale}if Fe{Cf{FU VC}if FW LW + 1 setlinejoin FE stroke}if /YO {60 F div dup 40 gt{pop 40}if}D /cs CS D + /cf CF D /CF 0 D /pf PF D /PF f D /Fn FN D /At AT D /AT 0 D /FN EF Hf 1 add + get D Fz Fs FS ZZ Fc Fz mul Fs FS EU Hf 1 add get dup type /arraytype eq + Cf and{VC}{pop 0 Sg}ie IW IL neg YO sub M ZZ 1 GP exec dup SW pop neg 0 R Sh + 0 IL neg YO sub M ZZ 0 GP exec Sh ZZ 2 GP exec dup SW pop IW E sub 2 div + IL neg YO sub M Sh Fz Fs FS NO{/AW IW Pn SW pop sub D AW 2 div IL neg YO sub + S1 0 gt S2 AW .45 mul gt or S3 AW .45 mul gt or{Fz 2 mul sub}if M Pn Sh}if + EU Hf get dup type /arraytype eq Cf and{VC}{pop 0 Sg}ie YY Fc /FN EF Hf get D + Hz mul HS FS IW YO M YY 1 GP exec dup SW pop neg 0 R Sh 0 YO M YY 0 GP exec Sh + YY 2 GP exec dup SW pop IW E sub 2 div YO M Sh /FN Fn D /AT At D t Pb XO SZ + SL get neg R /PF pf D grestore /CF 0 D cs cf FS}if}D +/Sh {dup () ne{CP Hz 4 div sub BB show CP CS add BB}{pop}ie}D +/Pb {/OU E D /Ou OU D /PB t D 0 0 M Ba{/Sa save D /BP t D /Fl t D RC /PL 0 D + /PH 0 D /W IW D /LE IL .7 mul D /EO 0 D SI ZF /YA 0 D /BO 0 D /C1 () D + BA 0 Ts neg R Bb{Xl Yl Xh Yh}if Bb CP Sa restore M + {/Yh E D /Xh E D /Yl E D /Xl E D}if /Fl t D}if + BL /OU t D /HM f D /Ou t D /PB f D} D +/Bs {/BP Ba not D}D +/reencodeISO { + dup dup findfont dup length dict begin{1 index /FID ne{D}{pop pop}ie}forall + /Encoding ISOLatin1Encoding D currentdict end definefont} D +/ISOLatin1Encoding [ +/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef +/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef +/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef +/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef +/space/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright +/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash +/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon +/less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N +/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright +/asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m +/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde +/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef +/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef +/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef +/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef +/.notdef/space/exclamdown/cent/sterling/currency/yen/brokenbar +/section/dieresis/copyright/ordfeminine/guillemotleft/logicalnot +/hyphen/registered/macron/degree/plusminus/twosuperior/threesuperior +/acute/mu/paragraph/periodcentered/cedilla/onesuperior/ordmasculine +/guillemotright/onequarter/onehalf/threequarters/questiondown +/Agrave/Aacute/Acircumflex/Atilde/Adieresis/Aring/AE/Ccedilla +/Egrave/Eacute/Ecircumflex/Edieresis/Igrave/Iacute/Icircumflex +/Idieresis/Eth/Ntilde/Ograve/Oacute/Ocircumflex/Otilde/Odieresis +/multiply/Oslash/Ugrave/Uacute/Ucircumflex/Udieresis/Yacute +/Thorn/germandbls/agrave/aacute/acircumflex/atilde/adieresis +/aring/ae/ccedilla/egrave/eacute/ecircumflex/edieresis/igrave +/iacute/icircumflex/idieresis/eth/ntilde/ograve/oacute/ocircumflex +/otilde/odieresis/divide/oslash/ugrave/uacute/ucircumflex/udieresis +/yacute/thorn/ydieresis +] D +[128/backslash 129/parenleft 130/parenright 141/circumflex 142/tilde +143/perthousand 144/dagger 145/daggerdbl 146/Ydieresis 147/scaron 148/Scaron +149/oe 150/OE 151/guilsinglleft 152/guilsinglright 153/quotesinglbase +154/quotedblbase 155/quotedblleft 156/quotedblright 157/endash 158/emdash +159/trademark] +aload length 2 idiv 1 1 3 -1 roll{pop ISOLatin1Encoding 3 1 roll put}for +/colorimage where{pop}{ + /colorimage { + pop pop /Pr E D {/Cv Pr D /Gr Cv length 3 idiv string D 0 1 Gr length 1 sub + {Gr E dup /i E 3 mul D Cv i get 0.299 mul Cv i 1 add get 0.587 mul add + Cv i 2 add get 0.114 mul add cvi put}for Gr} image} D +}ie +/pdfmark where{pop}{userdict /pdfmark /cleartomark load put}ie +WF{FL{reencodeISO D}forall}{4 1 FL length 1 sub{FL E get reencodeISO D}for}ie +/Symbol dup dup findfont dup length dict begin + {1 index /FID ne{D}{pop pop}ie}forall /Encoding [Encoding aload pop] + dup 128 /therefore put D currentdict end definefont D + +/SF {/CS E D SZ SL CS put FO SL FN put /YI CS LH neg mul D dup ST cvs ( ) join + CS ST cvs join C1 E join ( NF ) join /C1 E D CS NF /Wf WF FN 0 gt or D + /BW Wf{( ) SW pop}{0}ie D}D +/NF {/cS E D /cF E D cF 0 ge{FL cF get}{cF -1 eq{/Symbol}{/MySymbol}ie}ie + findfont cS scalefont setfont} D +/FS {CF or /CF E D FR SL CF put CF CF 0 ge{FN 4 mul add}if E SF} D +/PC {SH /BP f D fin not GL not and{NL}if /HM t D /LL LS D} D +/BS {/TX E D Wf{/fin f D /CW 0 D /LK 0 D /SC 0 D + /RT TX D {RT ( ) search{/NW E D pop /RT E D /WH NW SW pop D CW WH add LL gt + {TX SC LK SC sub 1 sub NN GI GL{SH cF cS OC + 2 copy cS ne E cF ne or{NF}{pop pop}ie}{PC /CW WH BW add D}ie + /SC LK D} + {GL{JC}if + /CW CW WH add BW add D /HM t D}ie /GL f D /Ph f D + /LK LK NW length 1 add add D}{pop exit}ie}loop + /fin t D TX SC LK SC sub GI SH RT () ne{GL not{CC}if}if + /LC TX length D /WH RT SW pop D CW WH add Hy{HC SW pop add}if LL gt + {RT GL{SH cF cS OC 2 copy cS ne E cF ne or{NF}{pop pop}ie + Hy{/Ph t D}if /LL LS D}{NL /LL LS D SH}ie} + {RT PC Hy{CC}if /Ph Ph Hy or D}ie RT () ne{/GL t D /HM t D}if} + {TX SW pop LL le{TX SH}{/NW () D 0 2 TX length 1 sub + {/CW E D TX 0 CW GI dup SW pop LL gt{pop NW SH /HM t D NL/LL W XO sub MR sub D + /CW CW 2 sub NN D /TX TX CW TX length CW sub GI D TX BS exit} + {/NW E D}ie}for}ie}ie /HM t D}D +/CC {C0 length 0 gt{JC}if /C0 [C1 L1 YA YB Mf NS NB TB AF Bw] D + /C1 () D /L0 L1 D /YA 0 D /YB 0 D /Mf 0 D /NS 0 D /NB 0 D}D +/JC {C0 aload length 0 gt{pop pop pop NB add /NB E D NS add /NS E D + dup Mf gt{/Mf E D}{pop}ie dup YB gt{/YB E D}{pop}ie + dup YA gt{/YA E D}{pop}ie pop C1 join /C1 E D /C0 [] D}if}D +/OC {C0 length 0 gt{C1 L1 L0 sub YA YB Mf NS NB TB AF Bw GL C0 aload pop + /Bw E D /AF E D /TB E D /NB E D /NS E D /Mf E D /YB E D /YA E D /C0 [] D + /L1 E D /C1 E D Ph{HC SH}if NL /GL E D /Bw E D /AF E D /TB E D /NB E D /NS E D + /Mf E D /YB E D /YA E D /L1 E D /LL W L1 sub XO sub MR sub WH sub D /CW 0 D + C1 E join /C1 E D}if}D +/BT {/LB t D dup length string copy RS dup dup () ne E ( ) ne and + {/CI 0 D /LS LL D /LL W L1 sub XO sub MR sub D BS} + {dup ( ) eq{/GL f D}if dup () eq L1 0 eq or{pop}{SH /BP f D /Ph f D}ie}ie + /LB f D} D +/BL {CP E pop XO E M} D +/NL {JC /GL f D /SK W XO sub MR sub L1 sub TB{Bw add}if D + /YA LF{Mf HM Fl not and PF or{LH mul}if}{0 /LF t D}ie YA 2 copy lt{E}if pop D + C1 () ne{/FB YB Mf SA{Sf mul}if 4 div 2 copy lt{E}if pop D}if Fl{/Ya YA D}if + CP E pop YA sub YB sub LE neg lt Fl not and PB not and{NP}if NT TL BL + OU PF not and PB or{/RE L1 TB{Bw sub}if + W XO sub MR sub div YA YB add LE BO add div 2 copy lt{E}if pop D + RE 1 gt{BL 1 RE div dup scale}if}if + AT 2 le{SK AT mul 2 div YA neg R}if + AT 3 eq{0 YA neg R TB{/NB NB 1 sub D /NS NS 1 sub D}if /NB NB 1 sub NN D + /A3 NS 6 mul NB add D NS NB add 0 eq + {/A1 0 D /A2 0 D} + {NS 0 eq{/A1 SK NB div dup J gt{pop 0}if D /A2 0 D}{J A3 mul SK lt + {/A1 J D /A2 SK J NB mul sub NS div dup Ab gt{/A1 0 D pop 0}if D} + {/A1 SK A3 div D /A2 A1 6 mul D}ie}ie}ie /A1 A1 NN D /A2 A2 NN D}if + AT 4 eq{0 YA neg R PH 2 le{PD 0 lt{/PD L1 D}if PD M1 gt{/M1 PD D}if + L1 PD sub M2 gt{/M2 L1 PD sub D}if}{DV ID 1 sub get 0 ge{Lo 0 R}if}ie}if + F0 cF ne Cs cS ne or{F0 Cs NF}if + /ms Ms D /Ms f D CP FB sub + C1 cvx exec XO EO sub L1 add TB{BW sub}if dup LM gt{/LM E D}{pop}ie + PH 0 eq PH 4 eq or Ms and{HF not{/PO t D /AH t D}if + BB CP YA add E AT 3 eq LB and{A1 sub}if TB{BW sub}if E BB} + {pop pop}ie Ms HM PH 3 eq and or{/BP f D /Fl f D}if + /Lo 0 D /L1 0 D /F0 cF D /Cs cS D BP not{0 YB NN neg R}if + OU f1 and mF not and{k2 /f1 f D}if + OU PF not and PB or{RE 1 gt{RE dup scale}if}if /Ms ms Ms or D + /C1 AF{(Cp )}{()}ie D /YA 0 D /YB 0 D BL + AT 4 eq LB not and PH 3 ge and + {ID DV length lt{DV ID get dup 0 ge{DO E sub /Lo E D /L1 Lo D}{pop}ie + /ID ID 1 add D}if}if /T t D CD{/LN LN 1 add D PD}if + /PD -1 D /NS 0 D /NB 0 D /TB f D /Ph f D /Mf 0 D /HM f D} D +/RS {/TM E D /CN 0 D TM{10 eq{TM CN ( ) PI}if /CN CN 1 add D}forall + /CN 0 D /BK HM EN and{0}{1}ie D TM + {dup 32 ne{TM CN 3 2 roll put /CN CN 1 add D /BK 0 D} + {pop BK 0 eq{TM CN 32 put /CN CN 1 add D}if /BK 1 D}ie}forall + TM 0 CN GI dup dup () ne E ( ) ne and + {dup CN 1 sub get 32 eq{/EN f D}{/EN t D}ie}if} D +/join {2 copy length E length add string dup 4 2 roll 2 index 0 3 index + PI E length E PI}d +/WR {(\n) search{dup () ne BP not or + {Li 4 le CP E pop YI Li mul add LE add 0 lt and PL 0 eq and{NP}if + SH NL pop /Li Li 1 sub D WR}{pop pop WR}ie}{SH}ie /CI 0 D /BP f D} D +/SH {dup dup () ne E ( ) ne and PF or CS Mf gt and{/Mf CS D}if + T not Wf and{( ) E join /T t D}if dup BP{/MF CS D}if + AT 3 eq{2 copy length dup 0 gt{/NB E NB add D + {( ) search{/NS NS 1 add D pop pop}{pop exit}ie}loop}{pop pop}ie}if + CD PD 0 lt and{dup DC search{SW pop /PD E L1 add D pop pop}{pop}ie}if + 0 Np dup SW pop L1 add /L1 E D dup () ne + {C1 (\() join E join (\)) join AU AF and UF or Wf and{( U ) join}if + sF{( s ) join}if ( S ) join + /C1 E D dup length 1 sub get 32 eq /TB E D /Bw BW D}{pop pop}ie} D +/BG {AI LG BC add add 0 eq} D +/ON {OU{Ty AR AI NN get dup 1 add Ln Ns Ty 2 mod 0 eq{(. )}{(\) )}ie join + dup SW pop neg 0 R CP E 0 lt{0 E M}{pop}ie CP BB show /Ms t D}if} D +/Ln {AR AI 3 -1 roll put}D +/SP {dup CI lt BP not and{dup CI sub 0 E R /CI E D}{pop}ie} D +/BN {PF{WR /HM f D}{BT NL}ie} D +/NN {dup 0 lt{pop 0}if} D +/h {(h) HI ST cvs join cvx exec dup 1 get E Nf{0 get E join}{pop}ie} D +/H {/fn FN D /Hi E 1 add D 1 sub /HL E D /H2 HL 2 add D /GS EZ H2 get D + E Tm H2 get GS mul BE dup 0 gt{1 sub}{pop EG H2 get dup 0 lt{pop AT}if}ie NA + WW Np /SL SL 1 add D /FN EF H2 get D GS Ey H2 get FS + EU H2 get Sc Hs not HL Hl lt and Hs HL hl lt and or Hi 0 eq or + {/HI Hi D /Hs t D /hl HL D /Hv HL D}if HL Hl lt{/hi Hi D}if + Nf HI 0 gt and{(h) Hi ST cvs join cvx exec 0 get WB}if + /HF t D /AH f D /PO f D} D +/EH {Bm H2 get GS mul BE OA /SL SL 1 sub NN D /CF 0 D /FN fn D + SZ SL get FR SL get FS /HF f D /GS Ts D ()Ec} D +/P {E PF{WR}{PO{EP}{BN}ie Ts 4 mul Np AE not{Tm 0 get Ts mul neg SP}if + dup 0 ge AH and{Pi Pd}if}ie 1 sub dup 0 lt{pop AV AL get}if /AT E D /PO t D} D +/EP {PF{WR}{BN Ts 4 mul Np}ie AE not{Bm 0 get Ts mul neg SP}if + /AT AV AL get D /PO f D} D +/BE {E PO{EP}{BN}ie Ts 4 mul Np neg SP} D +/HR {/Aw W EO sub D /RW E dup 0 gt{Aw mul}{neg}ie dup Aw gt{pop Aw}if D /RZ E D + E BN Ts neg SP 1 sub 2 div Aw RW sub mul EO add CP E pop M PF{0 Ps neg R}if + 0 Np OU{gsave RZ LW Cf{Hc VC}{0 Sg}ie CP BB RW 0 RL CP BB stroke grestore}if + /CI 0 D /BP f D PF not{Ts neg SP}if /Ms t D} D +/AD {I NL EG 14 get dup 0 lt{pop AT}if NA /AE t D Tm 14 get Ts mul neg SP + Cf{EU 14 get dup -1 eq{pop CA CL get}if Sc}if} D +/DA {BN ()ES OA /AE f D ()Ec Bm 14 get Ts mul neg SP} D +/PR {/MW E D /Li E D Tm 1 get Ps mul BE 0 NA /FN Fp D /PF t D SI /SL SL 1 add D + /CF 0 D Ps CS mul Ts div MW WC mul CS mul Ts div dup LL gt PL 0 eq and + {LL div div}{pop}ie Ey 1 get FS CP E pop LE add YI neg div cvi dup Li lt + AH and{4 lt YI Li mul 5 mul LE add 0 gt or PL 0 eq and{NP}if}{pop}ie + EU 1 get Sc /GS Ps D}D +/RP {WR NL () /PF f D SI /FN 0 D ES Bm 1 get Ps mul neg SP OA /GS Ts D} D +/SI {/XO Lm 15 get BC NN mul Lm 16 get AI UI sub NN mul add + Lm 17 get UI NN mul add Lm 20 get LG NN mul add Ts mul + PF{Lm 1 get Ps mul add}if EO add D + /MR Rm 15 get BC NN mul Rm 16 get AI UI sub NN mul add + Rm 17 get UI NN mul add Rm 20 get LG NN mul add Ts mul + PF{Rm 1 get Ps mul add}if D /LL W XO sub MR sub D} D +/DT {/cC E D BN /LG LG 1 sub D SI /LG LG 1 add D WW 2 div Np BL} D +/DD {WB Cc 0 eq cC 0 eq and L1 0 eq or Lm 20 get Ts mul L1 sub TB{BW add}if + Ts 2 div lt or NL /LF E D SI BL /cC 0 D} D +/DL {Dc LG Cc put /Cc E D BG{Tm 18 get Ts mul BE}{BN}ie /LG LG 1 add D BL} D +/LD {BN LG 0 gt{/LG LG 1 sub D}if /Cc Dc LG get D SI + BG{()Bm 18 get Ts mul BE}if BL} D +/UL {BG{Tm 17 get Ts mul BE}{BN}ie NR AI NN 0 put /UI UI 1 add D + /AI AI 1 add D SI BL} D +/LU {BN /UI UI 1 sub D /AI AI 1 sub D SI BG{()Bm 17 get Ts mul BE}if BL} D +/OL {E BG{Tm 16 get Ts mul BE}{BN}ie TR AI NN Ty put /Ty E D NR AI NN 1 put + /AI AI 1 add D SI BL 1 Ln} D +/LO {BN /AI AI 1 sub D /Ty TR AI get D SI BG{()Bm 16 get Ts mul BE}if BL} D +/LI {E BN -1 SP /BP f D /CI 0 D 0 Np NR AI 1 sub NN get 1 eq + {dup dup 0 gt E 4 le and{/Ty E D}{pop}ie + /L1 L1 Ty AR AI NN get Ns SW pop XO sub dup 0 lt{pop 0}if add D ( ON )} + {pop ( B )}ie C1 E join /C1 E D CS Mf gt{/Mf CS D}if BL} D +/BQ {Tm 15 get Ts mul BE /BC BC 1 add D SI BL} D +/QB {Bm 15 get Ts mul BE /BC BC 1 sub D SI BL} D +/Al {E EP 1 sub dup 0 lt{pop AV AL get}if NA} D +/Ea {EP OA} D +/WB {PF{WR}{BT}ie} D +/F1 {WB /FN 0 D CS 0 FS} D +/F2 {WB /FN WI D CS 0 FS} D +/HY {/Hy t D WB /Hy f D} D +/YH {WB} D +/A {/LT E D LT 1 eq{/RN E D}if /Lh E D WB /C1 C1 ( Cp ) join D + Lc AF not and{Cl Sc}if /AF t D} D +/EA {Lc AF and{Ec}{WB}ie TL Pa AF and Lh 0 ne and + {( \() Lh join (\)) join /AF f D WB}if /AF f D} D +/TL {C1 ( Tl ) apa /C1 E D} d +/apa {AF OU and Lh 0 ne LT 1 eq or and{LT 1 eq{RN ( /) E ST cvs join} + {(\() Lh join (\)) join}ie E join join}{pop}ie} d +/Cp {/Xc CP /Yc E D D} D +/SS {Cf{dup 0 ge{EU E get dup -1 eq{pop CA CL get}if}{pop CA CL get}ie Sc} + {pop}ie SZ SL get /SL SL 1 add D} D +/I {WB 8 SS 1 FS} D +/EM {WB 8 SS /CF CF 1 xor D 0 FS} D +/BD {WB 9 SS 2 FS} D +/TT {WB 10 SS /FN Fp D 0 FS} D +/KB {WB 11 SS /FN Fp D 2 FS} D +/CT {WB 12 SS 1 FS} D +/SM {WB 13 SS /FN Fp D 0 FS} D +/Q {/QL QL 1 add D QO QL 2 mod get La get join WB} D +/EQ {QC QL 2 mod get La get join WB /QL QL 1 sub D} D +/RO {WB -1 SS /CF 0 D 0 FS} D +/SY {WB -1 SS -1 FS} D +/MY {WB -1 SS -2 FS} D +/ES {WB /SL SL 1 sub NN D /CF 0 D /FN FO SL get D SZ SL get FR SL get FS ()Ec}D +/FZ {3 sub 1.2 E exp GS mul E WB TL /C1 C1 ( Cp ) join D /SL SL 1 add D 0 FS} D +/Ef {WB TL ()ES /C1 C1 ( Cp ) join D} D +/BZ {dup /Bf E D FZ}D +/Sc {dup -1 ne Cf and{/CL CL 1 add D dup 0 eq{pop [0 0 0]}if + dup CA E CL E put VS ( VC ) join C1 E join /C1 E D}{pop}ie} D +/Ec {WB Cf{/CL CL 1 sub NN D CA CL get VS ( VC ) join C1 E join /C1 E D}if} D +/VS {dup type /arraytype eq{([) E {ST cvs join ( ) join}forall (]) join}if} D +/VC {{255 div}forall setrgbcolor} D +/Sl {dup type /integertype ne{Ds}if /La E D WB}d +/UN {WB /UF t D} D +/NU {WB /UF f D} D +/SE {WB /sF t D} D +/XE {WB /sF f D} D +/sM {/C1 C1 ( k1 ) join D}d +/eM {/C1 C1 ( k2 ) join D}d +/k1 {/YC CP E pop Ts add D /mF t D /f1 t D}d +/k2 {gsave 3 LW -9 CP E pop Ts 0.2 mul sub M -9 YC L stroke grestore /mF f D}d +/Ac {/AC E D WB}d +/Ca {eA{( \()join AC join(\) )join}if WB}d +/s {OU{gsave 0 CS .25 mul R dup SW pop CJ 0 RL stroke grestore}if}D +/CJ {AT 3 eq LB and{E dup dup length 1 sub A1 mul E + {( ) search{pop pop E A2 add E}{pop exit}ie}loop 3 -1 roll add + W CP pop sub 2 copy gt{E}if pop}if}D +/So {/Co E D} D +/SO {C1 Yo ST cvs join ( So ) join /C1 E D (j) SW pop 2 div Pd} D +/Se {E WB CS E div Pd}D +/Pd {dup type /stringtype eq{SW pop}if dup /L1 E L1 add D + ST cvs ( 0 R ) join C1 E join /C1 E D} D +/Sp {0.35 CO} D +/Sb {-0.2 CO} D +/CO {OV Io Yo put /Yo E CS mul Yo add D /Io Io 1 add D -1.5 Io mul 3 add FZ SO + CS Yo add dup YA gt{/YA E D}{pop}ie + Yo neg dup YB gt{/YB E D}{pop}ie} D +/Es {ES /Io Io 1 sub NN D /Yo OV Io get D SO} D +/SB {/N2 0 D 0 1 NI{/N E D{IX N2 get 0 lt{/N2 N2 1 add D}{exit}ie}loop + /K WS N get FC N get mul D /NY AY N2 get D /BV NY array D + 0 1 NY 1 sub{/TM K string D currentfile TM readhexstring pop pop BV E TM put} + for BM N BV put /N2 N2 1 add D}for} D +/IC [{/MA E D /MB 0 D}{2 div /MA E D /MB MA D}{/MB E CS sub D /MA CS D} + {pop /MA YS AB mul D /MB 1 AB sub YS mul D}{pop /MA 0 D /MB 0 D}] D +/IP {BV N get /N N 1 add D} D +/II {/K E D IX K get 0 lt{/EC E D}if /TY E D + TY 4 eq{/Y E D /X E D}if TY 3 eq{/AB E D}if + /XW AX K get D /YW AY K get D /IS SG IT K get get D /XS XW IS mul D + /YS YW IS mul D YS IC TY get exec /MA MA Fl not{3 add}if D} D +/IM {II /ty TY D /xs XS D /ys YS D /ya YA D /yb YB D /ma MA D /mb MB D /k K D + /ec EC D /BP f D /CI 0 D WB TL L1 xs add dup XO add MR add W gt + {pop /ma ma Fl{3 add}if D NL /YA ma D /YB mb D /YS ys D /L1 xs D} + {/L1 E D ma YA gt{/YA ma D}if mb YB gt{/YB mb D}if}ie /TB f D + OU{CP E pop YS sub LE neg lt Fl not and PB not and{NP /YA ma D /YB mb D}if + /BP f D ty ST cvs ( ) join IX k get 0 lt{(\() join ec join (\) ) join}if + k ST cvs join ty 3 eq{AB ST cvs ( ) join E join}if + ty 4 eq{X ST cvs ( ) join Y ST cvs join ( ) join E join}if C1 E join + ( DI ) join FP 2 eq FP 1 eq AF and or{( FM ) join}if + ( Il Cp ) apa /C1 E D /EN f D}if /HM t D /T f D} D +/DI {II /Xc CP /Yc E D D /YN YW neg D /HM t D /CI 0 D /K2 IX K get D gsave + TY 4 eq{OX X IS mul add OY FY add YS sub Y IS mul sub} + {/FY YS D CP MB sub 2 copy /OY E D /OX E D}ie + translate K2 0 ge{/DP AZ K2 get D /BV BM K2 get D XS YS scale /N 0 D XW YW DP + [XW 0 0 YN 0 YW] {IP} FC K2 get 1 eq{image}{f 3 colorimage}ie} + {EX}ie grestore XS 0 R /Ms t D} D +/FM {gsave 0 Sg CP MB sub translate XS neg 0 M 0 YS RL XS 0 RL 0 YS neg RL + XS neg 0 RL stroke grestore} D +/NA {/AT E D /AL AL 1 add D AV AL AT put} D +/OA {AL 0 gt{/AL AL 1 sub D /AT AV AL get D}if} D +/D1 {/BR {CP E pop E BN Mb{CP E pop eq{0 YI R}if}{pop}ie} D + /Sn {OU{C1 E ST cvs join ( Ld ) join /C1 E D}{pop}ie} D} D +/D1 {/BR {BN} D /Sn {OU {C1 E ST cvs join ( Ld ) join /C1 E D} {pop} ie} D} D +/TC {/TF t D /ML 0 D HN{SW pop dup ML gt{/ML E D}{pop}ie}forall NP /RM RM not D + RC /OU Tc D Ep /PN 0 D Ms not TP and{Ip}if /W IW ML sub Ts sub D + /A0 0 D TH{/BR {( ) join BT} D /Sn {pop} D /Au () D}if} D +/TN {0 eq{E EA PF HF or not XR and{HN E get Xr}{pop}ie} + {OU{Tn 0 ge{() BN}if /Tn E D}{pop}ie WB}ie} D +/NT {OU LB not and Tn 0 ge and{PL 0 eq{Ms not{CS CF FS}if CP dup + /y E YA sub D W 9 sub CS -1.8 mul XO L1 add 2 add{y M (.) show}for + HN Tn get dup SW pop IW E sub y M show CP BB M}if /Tn -1 D}if} D +/Ld {/DN E D HN DN Pn put [/View [/XYZ -4 Fl{PS}{CP YA add US E pop}ie null] + /Dest DN ST cvs cvn /DEST pdfmark} D +/C {ND 1 eq{1 sub}if TI mul /XO E D NL Nf not{pop()}if 0 3 -1 roll 1 A} D +/OP {BP not{NP}if PN 2 mod 0 eq{/Ms t D NP}if}D +/Ep {Xp PN 2 mod 0 eq and OU and{/Pn (-) D showpage /PM 1 D LA}if}D +/Dg [73 86 88 76 67 68 77] D +/Rd [0 [1 1 0][2 1 0][3 1 0][2 1 1][1 1 1][2 2 1][3 3 1][4 4 1][2 1 2]] D +/Ns {/m E D /c E 32 mul D /j m 1000 idiv D /p j 12 add string D + c 96 le m 0 gt and{c 32 le {/i 0 D /d 77 D /l 100 D /m m j 1000 mul sub D + j -1 1 {pop p i d c add put /i i 1 add D}for + 4 -2 0 {/j E D /n m l idiv D /m m n l mul sub D /d Dg j get D + n 0 gt {/x Rd n get D x 0 get -1 1 {pop p i d c add put /i i 1 add D}for + p i x 1 get sub Dg x 2 get j add get c add put}if /l l 10 idiv D + }for p 0 i GI} + {/i ST length 1 sub D m {1 sub dup 0 ge{dup 26 mod c add 1 add + ST i 3 -1 roll put 26 idiv dup 0 eq{pop exit}if}if /i i 1 sub D}loop + ST i ST length i sub GI}ie} + {m p cvs}ie} D +/US {matrix currentmatrix matrix defaultmatrix matrix invertmatrix + matrix concatmatrix transform} D +/GB {Gb{US}if}D +/Tl {/Rn E D Xc CP pop ne{ + [/Rect [Xc 1 sub Yc cS 0.25 mul sub GB CP E 1 add E cS 0.85 mul add GB] + /Subtype /Link /Border [0 0 Cf Lc and LX and AU or{0}{1}ie] Rn type + /nametype eq {/Dest Rn}{/Action [/Subtype /URI /URI Rn] Cd}ie + /ANN pdfmark}if} D +/Il {/Rn E D [/Rect [Xc Yc GB Xc XS add Yc YS add GB] /Subtype /Link + /Border [0 0 0] Rn type /nametype eq{/Dest Rn} + {/Action [/Subtype /URI /URI Rn] Cd}ie /ANN pdfmark} D +/XP {[{/Z Bz 2 div D Z 0 R Z Z RL Z neg Z RL Z neg Z neg RL Z Z neg RL + Fi cH 1 eq and{fill}if} {Bz 0 RL 0 Bz RL Bz neg 0 RL 0 Bz neg RL + Fi cH 1 eq and{fill}if} {0 -5 R Bz 0 RL 0 21 RL Bz neg 0 RL 0 -21 RL}]} D +/MS {/Sm E D WB}D +/O {BN()0 Sm BX} D +/BX {/Bt E D Bt 2 lt{/Ch E D CS 0.8 mul}{11 mul}ie W XO sub MR sub + 2 copy gt{E}if pop /HZ E D Bt 2 eq{Fi not{pop()}if ( )E join /Ft E D TT + /PF t D /MW 1 D /Li 1 D /Fw Ft SW pop D Fw HZ gt{/HZ Fw 8 add D}if + HZ ST cvs( )join}{WB Ch ST cvs( )join}ie L1 HZ add XO add MR add W gt{NL}if + Bt 2 eq{Ft ES Fw neg HM{CS sub}if Pd}if Bt ST cvs join( Bx )join + Bt 2 eq HM and{CS Pd}if C1 E join /C1 E D /L1 L1 HZ add D /T f D + ( ) Pd /PF f D Bt 2 lt{YA CS .8 mul lt{/YA CS .8 mul D}if} + {YB 5 lt{/YB 5 D}if YA 21 lt{/YA 21 D}if}ie /CI 0 D} D +/Bx {dup 2 eq{E /Bz E D}{E /cH E D /Bz CS .8 mul D}ie + OU {gsave 0 Sg XP E get exec stroke grestore}{pop}ie Bz 0 R /Ms t D}D +/SD {FD 4 mul Dy add DZ NF newpath 0 0 M DX t charpath pathbbox + 3 -1 roll sub /DY E D E dup /X1 E D sub WM mul WX DY mul add WM DG mul E div + /DF E D /DR WX DF mul DY mul WM div 2 div D} d +/Sd {gsave 0 IL Di mul neg translate IL IW atan Di 0 eq{neg}if rotate + FD 4 mul Dy add DZ NF DR X1 sub DY 2 div neg M cD VC DX show grestore} d +/Pt {/tp t D Tp{NP /Pn (TP) D 0 Tt neg R Th BN NP Ep ET RC ZF}if /tp f D} D +/RC {/AI 0 D /LG 0 D /BC 0 D /UI 0 D /PF f D /Cc 0 D /cC 0 D /Dc 10 array D + /NR [0 1 9{pop 0}for] D /La Ds D /AR 10 array D /TR 10 array D /AV 30 array D + SI /AL -1 D /AT A0 D AT NA /OV 9 array D /Yo 0 D /Co 0 D /Io 0 D /Hy f D + /Ph f D /CL -1 D Ct Sc}D +/ZF {/FR [0 1 30{pop 0}for] D /SZ [0 1 30{pop 0}for] D /FO [0 1 30{pop 0}for] D + /SL 0 D /CF 0 D /FN 0 D 0 Ts SF}D +/QO [[(\234)(\233)(\253\240)(\232)(\273)(\253)][(')(`)(\253\240)(\231)(\273)(\253)]] D +/QC [[(\234)(\234)(\240\273)(\233)(\253)(\273)][(')(')(\240\273)(`)(\253)(\273)]] D +/Hf EF length 2 sub D +/Hz EZ Hf get D +/HS Ey Hf get D +/Fz EZ Hf 1 add get D +/Fs Ey Hf 1 add get D +/LE IL D +/Ps EZ 1 get D +/Fp EF 1 get D +/XO 0 D +/YI 0 D +/CI 0 D +/FP 0 D +/WW Ts 7 mul D +/Mf 0 D +/YA 0 D +/YB 0 D +/Cs Ts D +/GS Ts D +/F0 0 D +/NS 0 D +/NB 0 D +/N 0 D +/C0 [] D +/C1 () D +/Lo 0 D +/L1 0 D +/LM 0 D +/PH 0 D +/EC 0 D +/Lh 0 D +/LT 0 D +/CH 1 string D +/ST 16 string D +/CA 9 array D +/HC (\255) D +/HM f D +/PF f D +/EN f D +/TB f D +/UF f D +/sF f D +/AE f D +/AF f D +/BP t D +/CD f D +/PA t D +/GL f D +/T t D +/HF f D +/AH f D +/SA f D +/PB f D +/f1 f D +/mF f D +/OX 0 D +/OY 0 D +/FY 0 D +/EO 0 D +/FB 0 D +/PL 0 D +/Bw 0 D +/PD -1 D +/TP f D +/tp f D +/TH t D +/Ty 4 D +/Tn -1 D +/Fl t D +/LB t D +/PM 1 D +/Ms f D +/Ba f D +/Bb f D +/Hl 3 D +/hl 6 D +/Hv 6 D +/Hs f D +/HI 0 D +/hi 0 D +/PO t D +/TE f D +/LF t D +/BO 0 D +/Sm 1 D +/Bf 3 D +/A1 0 D +/A2 0 D +/Ds 1 D +/QL -1 D +/Cb Db D +/Ct Dt D +/Cl Dl D +[/Creator (html2ps version 1.0 beta7) /Author () /Keywords (xsd, xml, schema, c++, mapping, data, binding, parsing, serialization, validation) /Subject () + /Title (C++/Tree Mapping Getting Started Guide) /DOCINFO pdfmark +/ND 1 D +/HN [(1) (1) (1) (1) (1) (1) (1) (1) (2) (3) (3) (5) (7) (7) (8) (11) (13) (15) +(16) (16) (16) (17) (17) (18) (20) (23) (24) (26) (29) (??) (32) (33) (35) +(36) (37) (38) (1) (1) (1) (1) (1) (2) (3) (3) (5) (7) (7) (8) (11) (13) +(15) (16) (16) (16) (17) (17) (18) (20) (23) (24) (26) (29) (32) (33) (35) +(36) (37) (38)] D +/h0 [()(Table of Contents)] D +/h1 [(1\240\240)(Preface)] D +/h2 [(1.1\240\240)(About This Document)] D +/h3 [(1.2\240\240)(More Information)] D +/h4 [(2\240\240)(1 Introduction)] D +/h5 [(2.1\240\240)(1.1 Mapping Overview)] D +/h6 [(2.2\240\240)(1.2 Benefits)] D +/h7 [(3\240\240)(2 Hello World Example)] D +/h8 [(3.1\240\240)(2.1 Writing XML Document and Schema)] D +/h9 [(3.2\240\240)(2.2 Translating Schema to C++)] D +/h10 [(3.3\240\240)(2.3 Implementing Application Logic)] D +/h11 [(3.4\240\240)(2.4 Compiling and Running)] D +/h12 [(3.5\240\240)(2.5 Adding Serialization)] D +/h13 [(3.6\240\240)(2.6 Selecting Naming Convention)] D +/h14 [(3.7\240\240)(2.7 Generating Documentation)] D +/h15 [(4\240\240)(3 Overall Mapping Configuration)] D +/h16 [(4.1\240\240)(3.1 C++ Standard)] D +/h17 [(4.2\240\240)(3.2 Character Type and Encoding)] D +/h18 [(4.3\240\240)(3.3 Support for Polymorphism)] D +/h19 [(4.4\240\240)(3.4 Namespace Mapping)] D +/h20 [(4.5\240\240)(3.5 Thread Safety)] D +/h21 [(5\240\240)(4 Working with Object Models)] D +/h22 [(5.1\240\240)(4.1 Attribute and Element Cardinalities)] D +/h23 [(5.2\240\240)(4.2 Accessing the Object Model)] D +/h24 [(5.3\240\240)(4.3 Modifying the Object Model)] D +/h25 [(5.4\240\240)(4.4 Creating the Object Model from Scratch)] D +/h26 [(5.5\240\240)(4.5 Mapping for the Built-in XML Schema Types)] D +/h27 [(6\240\240)(5 Parsing)] D +/h28 [(6.1\240\240)(5.1 XML Schema Validation and Searching)] D +/h29 [(6.2\240\240)(5.2 Error Handling)] D +/h30 [(7\240\240)(6 Serialization)] D +/h31 [(7.1\240\240)(6.1 Namespace and Schema Information)] D +/h32 [(7.2\240\240)(6.2 Error Handling)] D +/Hr [36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 +58 59 60 61 62 63 64 65 66 67]D +/HV [1 2 2 1 2 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 1 2 2]D +/Cn [2 0 0 2 0 0 7 0 0 0 0 0 0 0 5 0 0 0 0 0 5 0 0 0 0 0 2 0 0 2 0 0]D +Hr length 0 gt{[/PageMode /UseOutlines /DOCVIEW pdfmark}if +/Hn 1 D +0 1 Hr length 1 sub{ + /Bn E D [Cn Bn get dup 0 gt{/Count E HV Bn get Bl ge{neg}if}{pop}ie + /Dest Hr Bn get dup abs ST cvs cvn E 0 ge{(h)Hn ST cvs join cvx exec + dup 1 get E Nf{0 get E join}{pop}ie /Hn Hn 1 add D}{()}ie + /Title E dup length 255 gt{0 255 getinterval}if /OUT pdfmark}for +ZF /FN Fp D Ps 0 FS /WC Wf{( )}{<A1A1>}ie SW pop D +ET RC ZF +/Df f D +/R0 (http://www.codesynthesis.com/licenses/fdl-1.2.txt) D +/R1 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/index.xhtml) D +/R2 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/cxx-parser-guide.pdf) D +/R3 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/cxx-parser-guide.ps) D +/R1 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/) D +/R2 (http://wiki.codesynthesis.com/Tree/Customization_guide) D +/R3 (http://wiki.codesynthesis.com/Tree/FAQ) D +/R4 (http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml) D +/R5 (http://www.codesynthesis.com/mailman/listinfo/xsd-users) D +/R6 (http://www.codesynthesis.com/pipermail/xsd-users/) D +/R7 (http://www.w3.org/TR/xmlschema-0/) D +/R8 (http://www.doxygen.org/) D +/R9 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/hello/html/annotated.html) D +/R10 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.11) D +/R11 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.8.4) D +/R12 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.8) D +/R13 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.5) D +/R14 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.9) D +/R15 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#3) D +/R16 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#3.3) D +/R17 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#4) D +/R18 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#4.4) D +/TS { + tables E get /table E D + table aload pop /rdesc E D /cdesc E D /tdesc E D + tdesc aload pop /capalg E D /caption E D /rules E D /frame E D /nfoot E D + /nhead E D /ncol E D /nrow E D /border E D /twid E D /units E D /talign E D + /flow E D /clear E D /tclass E D pop pop + /w W D /eps 0.1 D /OU f D /PL 1 D + /FN EF 21 get D EZ 21 get Ey 21 get FS + 0 1 1{ + /pass E D + 0 1 nrow{ + /irow E D + /cells rdesc irow get 6 get D + 0 1 ncol{ + /icol E D + /cell cells icol get D + cell 0 ne{ + cell aload pop /ang E D /CB E D pop pop pop + /DV E D /bot E D /top E D /right E D /left E D /nowrap E D /valign E D + /dp E D /align E D /rspan E D /cspan E D /cclass E D /ctype E D /cmax E D + /cmin E D /proc E D + rspan 0 eq{/rspan nrow irow sub 1 add D}if + cspan 0 eq{/cspan ncol icol sub 1 add D}if + pass 0 eq cspan 1 eq and pass 1 eq cspan 1 gt and or{ + /W 1e5 D /LL W D /PH 1 D + ctype 1 eq{() BD}if + RC align NA + AT 4 eq{/CD t D /DC dp D /LN 0 D /M1 0 D /M2 0 D}{/CD f D}ie + 0 0 M /LM 0 D proc exec BN + AT 4 eq{ + LN array astore cell 15 3 -1 roll put + cdesc icol get dup dup 5 get M1 lt{5 M1 put}{5 get /M1 E D}ie + dup 6 get M2 lt{6 M2 put}{6 get /M2 E D}ie + /LM M1 M2 add D + }if + /CD f D + ang 0 ne{/LM CP E pop neg D}if + /thiswid LM left add right add eps add D + /oldmin 0 D /oldmax 0 D + 0 1 cspan 1 sub{ + icol add cdesc E get dup 2 get /oldmax E oldmax add D + 1 get /oldmin E oldmin add D + }for + thiswid oldmax ge{ + 0 1 cspan 1 sub{ + icol add cdesc E get dup 2 E 2 get oldmax 0 eq + {pop thiswid cspan div}{thiswid mul oldmax div}ie + put + }for + }if + nowrap 1 eq{ + thiswid oldmin ge{ + 0 1 cspan 1 sub{ + icol add cdesc E get dup 1 E 1 get oldmin 0 eq + {pop thiswid cspan div}{thiswid mul oldmin div}ie + put + }for + }if + }{ + /W 0 D /LL W D /PH 2 D + ctype 1 eq{() ES () BD}if + 0 0 M /LM 0 D RC proc exec BN + /thiswid LM left add right add eps add D + thiswid oldmin ge{ + 0 1 cspan 1 sub{ + icol add cdesc E get dup 1 E 1 get oldmin 0 eq + {pop thiswid cspan div}{thiswid mul oldmin div}ie + put + }for + }if + }ie + ctype 1 eq{() ES}if + }if + }if + }for + }for + }for + /tmin 0 D /tmax 0 D + 0 1 ncol{ + cdesc E get dup 1 get E 2 get 2 copy gt{pop dup}if + tmax add /tmax E D tmin add /tmin E D + }for + twid 0 lt{twid neg IW gt{IW neg}{twid}ie /twid E D}if + tdesc 0 twid neg tmin 2 copy lt{E}if pop put + tdesc 1 twid neg tmax 2 copy lt{E}if pop put + /W w D /LL W D /OU t D /PH 0 D /PL 0 D +} D +/PT { + /PL PL 1 add D + tables E get /table E D Tm 21 get Ts mul BE + PL 2 ge{save}if + /SL SL 1 add D /FN EF 21 get D EZ 21 get Ey 21 get FS + table aload pop /rdesc E D /cdesc E D /tdesc E D + tdesc aload pop /capalg E D /caption E D /rules E D /frame E D /nfoot E D + /nhead E D /ncol E D /nrow E D /border E D /twid E D /units E D /talign E D + /flow E D /clear E D /tclass E D /tmax E D /tmin E D + /w W D /xo XO D /mr MR D /ll LL D /lg LG D /ai AI D /bc BC D /nr NR D /ar AR D + /tr TR D /ui UI D /ph PH D /a0 A0 D /pf PF D /at AT D /av AV D /al AL D + /Le LE D /la La D + talign 0 lt{/talign AL 0 gt{AV AL get}{A0 2 le{A0}{0}ie}ie D}if + ph 1 eq ph 2 eq or{ + NL ph 1 eq{tmax}{tmin}ie dup XO add LM gt{/LM E XO add D}{pop}ie LM E + }{ + /PH 3 D /LE 1e5 D RC %ZF + border 0 gt{/border 1 D}if + /twidth 0 D /avail W xo sub D + twid 0 eq{0 1 ncol{cdesc E get dup 2 get E 3 get dup 0 gt{div neg dup twid lt + {/twid E D}{pop}ie}{pop pop}ie}for}if + /twid twid dup 0 lt{neg avail 2 copy gt{E}if pop}{avail mul}ie D + /OK t D 0 1 ncol{cdesc E get dup 1 get E 3 get twid mul gt{/OK f D}if}for + 0 1 ncol{ + cdesc E get dup 1 get /colmin E D dup 3 get /cwid E twid mul D dup + tmax avail le{2 get}if + tmin avail le tmax avail gt and{ + dup 2 get E 1 get dup 3 1 roll sub avail tmin sub mul tmax tmin sub div add + }if + tmin avail gt{1 get}if + 0 E colmin cwid lt OK and{pop cwid}if dup /twidth E twidth add D put + }for + /OU f D CP + tmin twid le{ + 0 1 ncol{cdesc E get dup 0 get twidth div twid mul 0 E put}for + /twidth twid D + }if + CP printcap CP E pop sub /caphig E D pop + 0 1 1{ + /pass E D + 0 1 nrow{ + /irow E D + /cells rdesc irow get 6 get D + 0 1 ncol{ + /icol E D + /cell cells icol get D + cell 0 ne{ + cell aload pop /ang E D /CB E D pop pop pop + /DV E D /bot E D /top E D /right E D /left E D /nowrap E D /valign E D + /dp E D /align E D /rspan E D /cspan E D /cclass E D /ctype E D /cmax E D + /cmin E D /proc E D + rspan 0 eq{/rspan nrow irow sub 1 add D}if + cspan 0 eq{/cspan ncol icol sub 1 add D}if + /W 0 D + 0 1 cspan 1 sub{icol add cdesc E get 0 get /W E W add D}for + pass 0 eq rspan 1 eq and pass 1 eq rspan 1 gt and or{ + ctype 1 eq{() BD}if + /W W left sub right sub D /XO 0 D /EO 0 D SI + /A0 align D RC align NA + AT 4 eq{ + /DC dp D /DO 0 D /ID 1 D + 0 1 DV length 1 sub{DV E get dup DO gt{/DO E D}{pop}ie}for + /Lo DO DV 0 get sub D /L1 Lo D + }if + 0 0 M /BP t D /Fl t D /MF 0 D /FB 0 D + proc exec T not{/CI 0 D}if BN 0 FB neg R MF 0 eq{/MF CS D}if + CP /thishig E neg bot add top add CI add D pop + ang 0 ne{/thishig LM bot add top add D}if + cell 16 MF put cell 17 Ya put cell 18 thishig put + valign 4 eq{ + /below thishig Ya sub D + rdesc irow get dup dup 4 get Ya lt + {4 Ya put}{4 get /Ya E D}ie + dup 5 get below lt{5 below put}{5 get /below E D}ie + /thishig Ya below add D + }if + ctype 1 eq{()ES}if + /oldhig 0 D + 0 1 rspan 1 sub{ + irow add rdesc E get 0 get /oldhig E oldhig add D + }for + thishig oldhig ge{ + 0 1 rspan 1 sub{ + irow add rdesc E get dup 0 E 0 get oldhig 0 eq + {pop thishig rspan div}{thishig mul oldhig div}ie + put + }for + }if + }if + }if + }for + }for + }for M RC %ZF + /thight 0 D /racc 0 D /maxh 0 D /brk 0 D /rbeg nhead nfoot add D + 0 1 nrow{ + rdesc E get dup 0 get dup /thight E thight add D + brk 0 eq{/racc E D}{/racc E racc add D}ie + racc maxh gt{/maxh racc D}if 2 get /brk E D + }for + ph 3 ge{thight caphig add E}if + ph 0 eq ph 4 eq or{ + /PH 4 D /LE Le D /OU Ou D /yoff 0 D /headsz 0 D + 0 1 nhead 1 sub{rdesc E get 0 get headsz add /headsz E D}for + /footsz 0 D + 0 1 nfoot 1 sub{rdesc E nhead add get 0 get footsz add /footsz E D}for + /ahig LE BO add MI add D /maxh maxh headsz add footsz add D + /thight thight headsz add footsz add D + tmin avail gt maxh ahig gt or + {/Sf avail tmin div dup ahig maxh div gt{pop ahig maxh div}if D /SA t D} + {/Sf 1 D}ie + tclass 1 eq thight LE 15 sub gt and + {/SA t D LE 15 sub thight div dup Sf lt{/Sf E D}{pop}ie}if + SA{Sf Sf scale /ll ll Sf div D /xo xo Sf div D /LE LE Sf div D + /mr mr Sf div D /BO BO Sf div D /ahig ahig Sf div D}if + nhead nfoot add getwid + LE CP E pop add capalg 0 eq{caphig sub}if + bT{f}{dup thight lt thight ahig lt and}ie + E headsz sub footsz sub rwid lt or{NP}if + capalg 0 eq{printcap -8 SP}if + CP /ycur E D pop + printhead + rbeg 1 nrow{/row E D row + getwid + ycur yoff add rwid sub footsz sub LE add 0 lt + {nfoot 0 gt{printfoot}if Tf NP /rbeg irow1 D + Ba{MI /MI MI SA{Sf div}if D MI SP /MI E D}if + CP /ycur E D pop /yoff 0 D printhead}if + irow1 printrow + }for + printfoot /row row 1 add D Tf + 0 ycur yoff add M + capalg 1 eq{/EO 0 D SI -3 SP printcap}if + Sf 1 lt{1 Sf div dup scale /ll ll Sf mul D /xo xo Sf mul D /LE LE Sf mul D + /mr mr Sf mul D /BO BO Sf mul D /SA f D}if + /EO 0 D + }if + }ie + /W w D /XO xo D /MR mr D /LL ll D /LG lg D /AI ai D /BC bc D /NR nr D /AR ar D + /TR tr D /UI ui D /PH ph D /A0 a0 D /PF pf D /AT at D /AV av D /AL al D + /La la D + /SL SL 1 sub NN D /CF 0 D /FN 0 D SZ SL get FR SL get FS Wf not{()F2}if + PL 2 ge{Ms E restore Ms or /Ms E D PH 1 eq PH 2 eq or + {/LM E D}if PH 3 ge{/CI 0 D NL 0 E neg R}if + }if + /PL PL 1 sub D /CI 0 D /BP f D /PO f D () Bm 21 get Ts mul BE BL %CF CS SF +} D +/printcap{ + capalg 0 ge{ + SA{/W w Sf div D} + {talign 1 eq{/XO xo ll twidth sub 2 div add D}if + talign 2 eq{/XO xo ll twidth sub add D}if + /W XO twidth add D + }ie /XO xo D /LL W XO sub MR sub D + /PA f D /Fl capalg 0 eq D + 1 NA BL caption exec BN OA /PA t D + }if +} D +/getwid{ + /irow1 E D + /irow2 irow1 D + /rwid 0 D + {rdesc irow2 get dup 0 get rwid add /rwid E D 2 get 0 eq + {exit}{/irow2 irow2 1 add D}ie + }loop +} D +/printrow{ + /xoff ll twidth PL 2 ge{Sf div}if sub talign mul 2 div D + /xleft xoff xo add D + /irow E D + /cells rdesc irow get 6 get D + 0 1 ncol{ + /icol E D + /cell cells icol get D + cell 0 ne{ + cell aload pop /ang E D /CB E D /cvsize E D /above E D /fontsz E D + /DV E D /bot E D /top E D /right E D /left E D /nowrap E D /valign E D + /dp E D /align E D /rspan E D /cspan E D /cclass E D /ctype E D /cmax E D + /cmin E D /proc E D + rspan 0 eq{/rspan nrow irow sub 1 add D}if + cspan 0 eq{/cspan ncol icol sub 1 add D}if + /width 0 D + 0 1 cspan 1 sub{icol add cdesc E get 0 get /width E width add D}for + /rhight rdesc irow get 0 get D + /hight rhight D + 1 1 rspan 1 sub{irow add rdesc E get 0 get /hight E hight add D}for + /W xo xoff add width add right sub D + ang 0 ne{/W xo xoff add hight add right sub D}if + /EO xo xoff add left add D SI + Cf{ + gsave CB VC xo xoff add ycur yoff add M + 0 hight neg RL width 0 RL 0 hight RL width neg 0 RL fill + grestore + }if + ctype 1 eq{() BD}if + /A0 align D RC + AT 4 eq{ + /DC dp D /ID 1 D /DO cdesc icol get 5 get D /Lo DO DV 0 get sub D /L1 Lo D + }if + ang 0 ne{ + gsave ang 90 eq + {xoff ycur add hight cvsize sub 2 div sub ycur hight sub xoff sub} + {xoff ycur sub width add hight cvsize sub 2 div add ycur xoff add}ie + translate ang rotate + }if + valign 3 le{0 ycur yoff add top sub + hight cvsize sub valign 1 sub mul 2 div sub M} + {0 ycur yoff add top sub above add rdesc irow get 4 get sub M}ie + /PA f D /BP t D /Fl t D + BL proc exec BN + ang 0 ne{grestore}if + /PA t D + ctype 1 eq{() ES}if + }if + /xoff xoff cdesc icol get 0 get add D + }for + /yoff yoff rhight sub D +} D +/printhead {0 1 nhead 1 sub{printrow}for} D +/printfoot {nhead 1 nhead nfoot add 1 sub{printrow}for} D +/Tf { + OU{rules 2 ge{/yoff 0 D + gsave 0 Sg + [0 1 nhead 1 sub{}for rbeg 1 row 1 sub{}for nhead 1 nhead nfoot add 1 sub{}for]{ + /irow E D + /xoff ll twidth PL 2 ge{Sf div}if sub talign mul 2 div D + /cells rdesc irow get 6 get D + 0 1 ncol{ + /icol E D + /cell cells icol get D + cell 0 ne{ + /rspan cell 6 get D + /cspan cell 5 get D + rspan 0 eq{/rspan nrow irow sub 1 add D}if + cspan 0 eq{/cspan ncol icol sub 1 add D}if + /width 0 D + 0 1 cspan 1 sub{icol add cdesc E get 0 get /width E width add D}for + /rhight rdesc irow get 0 get D + /hight rhight D + 1 1 rspan 1 sub{irow add rdesc E get 0 get /hight E hight add D}for + xo xoff add width add ycur yoff add M + 0 hight neg icol cspan add 1 sub ncol lt + {cdesc icol 1 add get 4 get dup rules 3 le{1 eq}{pop t}ie + {1 eq{0.8}{0.3}ie + LW RL CP stroke M}{pop R}ie}{R}ie + irow nhead nfoot add 1 sub ne nfoot 0 eq or + {irow rspan add 1 sub nrow lt + {rdesc irow rspan add get 3 get}{nfoot 0 eq{0}{1}ie}ie + dup rules 2 mod 0 eq{1 eq}{pop t}ie + {1 eq irow rspan add nhead eq or irow rspan add row eq nfoot 0 gt and or + {0.8}{0.3}ie LW width neg 0 RL CP stroke M}{pop}ie}if + }if + /xoff xoff cdesc icol get 0 get add D + }for + /yoff yoff rhight sub D + }forall + grestore + /Ms t D + }if + frame 1 gt{ + gsave + 1 LW 0 Sg + xleft ycur M CP BB + 0 yoff frame 5 eq frame 7 ge or{RL}{R}ie + twidth 0 frame 3 eq frame 4 eq or frame 8 ge or{RL}{R}ie CP BB + 0 yoff neg frame 6 ge{RL}{R}ie + twidth neg 0 frame 2 eq frame 4 eq or frame 8 ge or{RL}{R}ie + closepath stroke + grestore + /Ms t D + }if + }if +} D +/tables [[[0 0 0 0 0 -1 0 0 1 55 2 0 0 9 5 {()} -1] + [[0 0 0 0 0 0 0][0 0 0 0 0 0 0][0 0 0 0 0 0 0]] + [[0 0 0 0 0 0 [[{()1 Sl()WB(XML Schema type)} 0 0 1 0 1 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB(Alias in the )SM(xml_schema)ES( names)HY(pace)YH()} 0 0 1 0 1 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB(C++ type + )} 0 0 1 0 1 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB(fixed-length inte)HY(gral)YH( types + )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +0 +0 +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(byte)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(byte)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(signed\240char)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(unsigned)HY(Byte)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(unsigned_byte)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(unsigned\240char)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(short)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(short_)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(short)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(unsigned)HY(Short)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(unsigned_short)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(unsigned\240short)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(int)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(int_)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(int)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(unsignedInt)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(unsigned_int)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(unsigned\240int)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(long)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(long_)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(long\240long)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(unsigned)HY(Long)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(unsigned_long)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(unsigned\240long\240long)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB(arbi)HY(trary)YH(-length inte)HY(gral)YH( types + )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +0 +0 +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(integer)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(integer)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(long\240long)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(nonPos)HY(i)HY(tiveIn)HY(te)HY(ger)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(non_posi)HY(tive)YH(_integer)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(long\240long)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(nonNeg)HY(a)HY(tiveIn)HY(te)HY(ger)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(non_nega)HY(tive)YH(_integer)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(unsigned long\240long)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(posi)HY(tiveIn)HY(te)HY(ger)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(posi)HY(tive)YH(_integer)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(unsigned long\240long)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(nega)HY(tiveIn)HY(te)HY(ger)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(nega)HY(tive)YH(_integer)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(long\240long)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB(boolean types + )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +0 +0 +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(boolean)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(boolean)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(bool)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB(fixed-preci)HY(sion)YH( float)HY(ing)YH(-point types + )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +0 +0 +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(float)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(float_)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(float)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(double)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(double_)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(double)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB(arbi)HY(trary)YH(-preci)HY(sion)YH( float)HY(ing)YH(-point types + )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +0 +0 +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(decimal)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(decimal)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(double)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB(string types + )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +0 +0 +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(string)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(string)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB(type derived from )SM(std::basic_string)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(normal)HY(ized)HY(String)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(normal)HY(ized)YH(_string)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB(type derived from )SM(string)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(token)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(token)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB(type\240derived\240from\240)SM(normal)HY(ized)YH(_string)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(Name)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(name)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB(type derived from )SM(token)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(NMTOKEN)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(nmtoken)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB(type derived from )SM(token)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(NMTO)HY(KENS)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(nmto)HY(kens)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB(type derived from )SM(sequence<nmtoken>)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(NCName)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(ncname)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB(type derived from )SM(name)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(language)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(language)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB(type derived from )SM(token)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB(qual)HY(i)HY(fied)YH( name + )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +0 +0 +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(QName)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(qname)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(xml_schema::qname)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB(ID/IDREF types + )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +0 +0 +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(ID)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(id)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB(type derived from )SM(ncname)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(IDREF)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(idref)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB(type derived from )SM(ncname)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(IDREFS)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(idrefs)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB(type derived from )SM(sequence<idref>)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB(URI types + )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +0 +0 +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(anyURI)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(uri)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB(type derived from )SM(std::basic_string)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB(binary types + )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +0 +0 +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(base64Binary)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(base64_binary)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(xml_schema::base64_binary)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(hexBi)HY(nary)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(hex_binary)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(xml_schema::hex_binary)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB(date/time types + )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +0 +0 +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(date)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(date)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(xml_schema::date)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(date)HY(Time)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(date_time)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(xml_schema::date_time)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(dura)HY(tion)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(dura)HY(tion)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(xml_schema::dura)HY(tion)YH()ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(gDay)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(gday)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(xml_schema::gday)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(gMonth)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(gmonth)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(xml_schema::gmonth)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(gMon)HY(th)HY(Day)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(gmonth_day)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(xml_schema::gmonth_day)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(gYear)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(gyear)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(xml_schema::gyear)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(gYear)HY(Month)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(gyear_month)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(xml_schema::gyear_month)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(time)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(time)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(xml_schema::time)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB(entity types + )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +0 +0 +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(ENTITY)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(entity)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB(type derived from )SM(name)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +[0 0 0 0 0 0 [[{()1 Sl()WB()SM(ENTI)HY(TIES)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB()SM(enti)HY(ties)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +[{()1 Sl()WB(type derived from )SM(sequence<entity>)ES( + )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] +]] +]] +] D +0 1 0{TS}for RC ZF +/Ba f D /BO 0 D Bs +/UR (/home/boris/work/xsd/xsd/doc/cxx/tree/guide/index.xhtml) D +/Ti (C++/Tree Mapping Getting Started Guide) D +/Au () D +/Df f D +/ME [] D +Pt +/BO 0 D TC /Ba f D Bs /AU f D /UR () D RC ZF + tH WB +ND 1 gt{Ts 3 mul Np 0()0 C()BD(C++/Tree Mapping Getting Started Guide)ES()0 1 TN()EA()BN}if +1 NH le{36(1\240\240)1 C(Preface)WB 3 Sn()36 1 TN()EA()BN}if +2 NH le{37(1.1\240\240)2 C(About)WB 4 Sn( This Docu)HY(ment)YH()37 1 TN()EA()BN}if +2 NH le{38(1.2\240\240)2 C(More)WB 5 Sn( Infor)HY(ma)HY(tion)YH()38 1 TN()EA()BN}if +1 NH le{39(2\240\240)1 C(1)WB 6 Sn( Intro)HY(duc)HY(tion)YH()39 1 TN()EA()BN}if +2 NH le{40(2.1\240\240)2 C(1.1)WB 7 Sn( Mapping Overview)40 1 TN()EA()BN}if +2 NH le{41(2.2\240\240)2 C(1.2)WB 8 Sn( Bene)HY(fits)YH()41 1 TN()EA()BN}if +1 NH le{42(3\240\240)1 C(2)WB 9 Sn( Hello World Example)42 1 TN()EA()BN}if +2 NH le{43(3.1\240\240)2 C(2.1)WB 10 Sn( Writing XML Docu)HY(ment)YH( and Schema)43 1 TN()EA()BN}if +2 NH le{44(3.2\240\240)2 C(2.2)WB 11 Sn( Trans)HY(lat)HY(ing)YH( Schema to C++)44 1 TN()EA()BN}if +2 NH le{45(3.3\240\240)2 C(2.3)WB 12 Sn( Imple)HY(ment)HY(ing)YH( Appli)HY(ca)HY(tion)YH( Logic)45 1 TN()EA()BN}if +2 NH le{46(3.4\240\240)2 C(2.4)WB 13 Sn( Compil)HY(ing)YH( and Running)46 1 TN()EA()BN}if +2 NH le{47(3.5\240\240)2 C(2.5)WB 14 Sn( Adding Seri)HY(al)HY(iza)HY(tion)YH()47 1 TN()EA()BN}if +2 NH le{48(3.6\240\240)2 C(2.6)WB 15 Sn( Select)HY(ing)YH( Naming Conven)HY(tion)YH()48 1 TN()EA()BN}if +2 NH le{49(3.7\240\240)2 C(2.7)WB 16 Sn( Gener)HY(at)HY(ing)YH( Docu)HY(men)HY(ta)HY(tion)YH()49 1 TN()EA()BN}if +1 NH le{50(4\240\240)1 C(3)WB 17 Sn( Overall Mapping Config)HY(u)HY(ra)HY(tion)YH()50 1 TN()EA()BN}if +2 NH le{51(4.1\240\240)2 C(3.1)WB 18 Sn( C++ Stan)HY(dard)YH()51 1 TN()EA()BN}if +2 NH le{52(4.2\240\240)2 C(3.2)WB 19 Sn( Char)HY(ac)HY(ter)YH( Type and Encod)HY(ing)YH()52 1 TN()EA()BN}if +2 NH le{53(4.3\240\240)2 C(3.3)WB 20 Sn( Support for Poly)HY(mor)HY(phism)YH()53 1 TN()EA()BN}if +2 NH le{54(4.4\240\240)2 C(3.4)WB 21 Sn( Names)HY(pace)YH( Mapping)54 1 TN()EA()BN}if +2 NH le{55(4.5\240\240)2 C(3.5)WB 22 Sn( Thread Safety)55 1 TN()EA()BN}if +1 NH le{56(5\240\240)1 C(4)WB 23 Sn( Working with Object Models)56 1 TN()EA()BN}if +2 NH le{57(5.1\240\240)2 C(4.1)WB 24 Sn( Attribute and Element Cardi)HY(nal)HY(i)HY(ties)YH()57 1 TN()EA()BN}if +2 NH le{58(5.2\240\240)2 C(4.2)WB 25 Sn( Access)HY(ing)YH( the Object Model)58 1 TN()EA()BN}if +2 NH le{59(5.3\240\240)2 C(4.3)WB 26 Sn( Modi)HY(fy)HY(ing)YH( the Object Model)59 1 TN()EA()BN}if +2 NH le{60(5.4\240\240)2 C(4.4)WB 27 Sn( Creat)HY(ing)YH( the Object Model from Scratch)60 1 TN()EA()BN}if +2 NH le{61(5.5\240\240)2 C(4.5)WB 28 Sn( Mapping for the Built-in XML Schema Types)61 1 TN()EA()BN}if +1 NH le{62(6\240\240)1 C(5)WB 30 Sn( Parsing)62 1 TN()EA()BN}if +2 NH le{63(6.1\240\240)2 C(5.1)WB 31 Sn( XML Schema Vali)HY(da)HY(tion)YH( and Search)HY(ing)YH()63 1 TN()EA()BN}if +2 NH le{64(6.2\240\240)2 C(5.2)WB 32 Sn( Error Handling)64 1 TN()EA()BN}if +1 NH le{65(7\240\240)1 C(6)WB 33 Sn( Seri)HY(al)HY(iza)HY(tion)YH()65 1 TN()EA()BN}if +2 NH le{66(7.1\240\240)2 C(6.1)WB 34 Sn( Names)HY(pace)YH( and Schema Infor)HY(ma)HY(tion)YH()66 1 TN()EA()BN}if +2 NH le{67(7.2\240\240)2 C(6.2)WB 35 Sn( Error Handling)67 1 TN()EA()BN}if +/OU t D /Cb Db D NP Ep ET +/Cb Db D /Ct [16#00 16#00 16#00] D /Cl [16#00 16#00 16#00] D /CL -1 D Ct Sc + +/Ba f D /BO 0 D Bs +/UR (/home/boris/work/xsd/xsd/doc/cxx/tree/guide/index.xhtml) D +/Ti (C++/Tree Mapping Getting Started Guide) D +/Au () D +/Df f D +/ME [] D + +NP RC ZF +()1 Sl()WB 0 Sn( + +)BR()WB 1 Sn( )BR()WB 2 Sn( + + + )0 1 0 H(Preface)WB 36 Sn()WB 3 Sn()EA()EH( + + )0 2 1 H(About)WB 37 Sn()WB 4 Sn( This Docu)HY(ment)YH()EA()EH( + + )0 P(The goal of this docu)HY(ment)YH( is to provide you with an under)HY(stand)HY(ing)YH( of + the C++/Tree program)HY(ming)YH( model and allow you to effi)HY(ciently)YH( eval)HY(u)HY(ate)YH( + XSD against your project's tech)HY(ni)HY(cal)YH( require)HY(ments)YH(. As such, this + docu)HY(ment)YH( is intended for C++ devel)HY(op)HY(ers)YH( and soft)HY(ware)YH( archi)HY(tects)YH( + who are looking for an XML process)HY(ing)YH( solu)HY(tion)YH(. For a more in-depth + descrip)HY(tion)YH( of the C++/Tree mapping refer to the + )R1 2 A(C++/Tree + Mapping User Manual)EA(.)EP( + + )0 P(Prior expe)HY(ri)HY(ence)YH( with XML and C++ is required to under)HY(stand)YH( this + docu)HY(ment)YH(. Basic under)HY(stand)HY(ing)YH( of XML Schema is advan)HY(ta)HY(geous)YH( but + not expected or required. + )EP( + + + )0 2 2 H(More)WB 38 Sn()WB 5 Sn( Infor)HY(ma)HY(tion)YH()EA()EH( + + )0 P(Beyond this guide, you may also find the follow)HY(ing)YH( sources of + infor)HY(ma)HY(tion)YH( useful:)EP( + + )UL( )-1 LI()R1 2 A(C++/Tree + Mapping User Manual)EA( + + )-1 LI()R2 2 A(C++/Tree + Mapping Customiza)HY(tion)YH( Guide)EA( + + )-1 LI()R3 2 A(C++/Tree + Mapping Frequently Asked Ques)HY(tions)YH( \201FAQ\202)EA( + + )-1 LI()R4 2 A(XSD + Compiler Command Line Manual)EA( + + )-1 LI(The )SM(exam)HY(ples)YH(/cxx/tree/)ES( direc)HY(tory)YH( in the XSD + distri)HY(bu)HY(tion)YH( contains a collec)HY(tion)YH( of exam)HY(ples)YH( and a README + file with an overview of each example. + + )-1 LI(The )SM(README)ES( file in the XSD distri)HY(bu)HY(tion)YH( explains + how to compile the exam)HY(ples)YH( on various plat)HY(forms)YH(. + + )-1 LI(The )R5 2 A(xsd-users)EA( + mailing list is the place to ask tech)HY(ni)HY(cal)YH( ques)HY(tions)YH( about XSD and the C++/Parser mapping. + Further)HY(more)YH(, the )R6 2 A(archives)EA( + may already have answers to some of your ques)HY(tions)YH(. + )LU( + + + + )0 1 3 H(1)WB 39 Sn()WB 6 Sn( Intro)HY(duc)HY(tion)YH()EA()EH( + + )0 P(Welcome to CodeSyn)HY(the)HY(sis)YH( XSD and the C++/Tree mapping. XSD is a + cross-plat)HY(form)YH( W3C XML Schema to C++ data binding compiler. C++/Tree + is a W3C XML Schema to C++ mapping that repre)HY(sents)YH( the data stored + in XML as a stat)HY(i)HY(cally)YH(-typed, vocab)HY(u)HY(lary)YH(-specific object model. + )EP( + + )0 2 4 H(1.1)WB 40 Sn()WB 7 Sn( Mapping Overview)EA()EH( + + )0 P(Based on a formal descrip)HY(tion)YH( of an XML vocab)HY(u)HY(lary)YH( \201schema\202, the + C++/Tree mapping produces a tree-like data struc)HY(ture)YH( suit)HY(able)YH( for + in-memory process)HY(ing)YH(. The core of the mapping consists of C++ + classes that consti)HY(tute)YH( the object model and are derived from + types defined in XML Schema as well as XML parsing and + seri)HY(al)HY(iza)HY(tion)YH( code.)EP( + + )0 P(Besides the core features, C++/Tree provide a number of addi)HY(tional)YH( + mapping elements that can be useful in some appli)HY(ca)HY(tions)YH(. These + include seri)HY(al)HY(iza)HY(tion)YH( and extrac)HY(tion)YH( to/from formats others than + XML, such as unstruc)HY(tured)YH( text \201useful for debug)HY(ging)YH(\202 and binary + repre)HY(sen)HY(ta)HY(tions)YH( such as XDR and CDR for high-speed data process)HY(ing)YH( + as well as auto)HY(matic)YH( docu)HY(men)HY(ta)HY(tion)YH( gener)HY(a)HY(tion)YH(. The C++/Tree mapping + also provides a wide range of mech)HY(a)HY(nisms)YH( for control)HY(ling)YH( and + customiz)HY(ing)YH( the gener)HY(ated)YH( code.)EP( + + )0 P(A typical appli)HY(ca)HY(tion)YH( that uses C++/Tree for XML process)HY(ing)YH( usually + performs the follow)HY(ing)YH( three steps: it first reads \201parses\202 an XML + docu)HY(ment)YH( to an in-memory object model, it then performs some useful + compu)HY(ta)HY(tions)YH( on that object model which may involve modi)HY(fi)HY(ca)HY(tion)YH( + of the model, and finally it may write \201seri)HY(al)HY(ize)YH(\202 the modi)HY(fied)YH( + object model back to XML.)EP( + + )0 P(The next chapter presents a simple appli)HY(ca)HY(tion)YH( that performs these + three steps. The follow)HY(ing)YH( chap)HY(ters)YH( show how to use the C++/Tree + mapping in more detail.)EP( + + )0 2 5 H(1.2)WB 41 Sn()WB 8 Sn( Bene)HY(fits)YH()EA()EH( + + )0 P(Tradi)HY(tional)YH( XML access APIs such as Docu)HY(ment)YH( Object Model \201DOM\202 + or Simple API for XML \201SAX\202 have a number of draw)HY(backs)YH( that + make them less suit)HY(able)YH( for creat)HY(ing)YH( robust and main)HY(tain)HY(able)YH( + XML process)HY(ing)YH( appli)HY(ca)HY(tions)YH(. These draw)HY(backs)YH( include: + )EP( + + )UL( )-1 LI(Generic repre)HY(sen)HY(ta)HY(tion)YH( of XML in terms of elements, attributes, + and text forces an appli)HY(ca)HY(tion)YH( devel)HY(oper)YH( to write a substan)HY(tial)YH( + amount of bridg)HY(ing)YH( code that iden)HY(ti)HY(fies)YH( and trans)HY(forms)YH( pieces + of infor)HY(ma)HY(tion)YH( encoded in XML to a repre)HY(sen)HY(ta)HY(tion)YH( more suit)HY(able)YH( + for consump)HY(tion)YH( by the appli)HY(ca)HY(tion)YH( logic. + + )-1 LI(String-based flow control defers error detec)HY(tion)YH( to runtime. + It also reduces code read)HY(abil)HY(ity)YH( and main)HY(tain)HY(abil)HY(ity)YH(. + + )-1 LI(Lack of type safety because the data is repre)HY(sented)YH( as text. + + )-1 LI(Result)HY(ing)YH( appli)HY(ca)HY(tions)YH( are hard to debug, change, and + main)HY(tain)YH(. + )LU( + + )0 P(In contrast, stat)HY(i)HY(cally)YH(-typed, vocab)HY(u)HY(lary)YH(-specific object model + produced by the C++/Tree mapping allows you to operate in your + domain terms instead of the generic elements, attributes, and + text. Static typing helps catch errors at compile-time rather + than at run-time. Auto)HY(matic)YH( code gener)HY(a)HY(tion)YH( frees you for more + inter)HY(est)HY(ing)YH( tasks \201such as doing some)HY(thing)YH( useful with the + infor)HY(ma)HY(tion)YH( stored in the XML docu)HY(ments)YH(\202 and mini)HY(mizes)YH( the + effort needed to adapt your appli)HY(ca)HY(tions)YH( to changes in the + docu)HY(ment)YH( struc)HY(ture)YH(. To summa)HY(rize)YH(, the C++/Tree object model has + the follow)HY(ing)YH( key advan)HY(tages)YH( over generic XML access APIs:)EP( + + )UL( )-1 LI()BD(Ease of use.)ES( The gener)HY(ated)YH( code hides all the complex)HY(ity)YH( + asso)HY(ci)HY(ated)YH( with parsing and seri)HY(al)HY(iz)HY(ing)YH( XML. This includes navi)HY(gat)HY(ing)YH( + the struc)HY(ture)YH( and convert)HY(ing)YH( between the text repre)HY(sen)HY(ta)HY(tion)YH( and + data types suit)HY(able)YH( for manip)HY(u)HY(la)HY(tion)YH( by the appli)HY(ca)HY(tion)YH( + logic. + + )-1 LI()BD(Natural repre)HY(sen)HY(ta)HY(tion)YH(.)ES( The object repre)HY(sen)HY(ta)HY(tion)YH( allows + you to access the XML data using your domain vocab)HY(u)HY(lary)YH( instead + of generic elements, attributes, and text. + + )-1 LI()BD(Concise code.)ES( With the object repre)HY(sen)HY(ta)HY(tion)YH( the + appli)HY(ca)HY(tion)YH( imple)HY(men)HY(ta)HY(tion)YH( is simpler and thus easier + to read and under)HY(stand)YH(. + + )-1 LI()BD(Safety.)ES( The gener)HY(ated)YH( object model is stat)HY(i)HY(cally)YH( + typed and uses func)HY(tions)YH( instead of strings to access the + infor)HY(ma)HY(tion)YH(. This helps catch program)HY(ming)YH( errors at compile-time + rather than at runtime. + + )-1 LI()BD(Main)HY(tain)HY(abil)HY(ity)YH(.)ES( Auto)HY(matic)YH( code gener)HY(a)HY(tion)YH( mini)HY(mizes)YH( the + effort needed to adapt the appli)HY(ca)HY(tion)YH( to changes in the + docu)HY(ment)YH( struc)HY(ture)YH(. With static typing, the C++ compiler + can pin-point the places in the client code that need to be + changed. + + )-1 LI()BD(Compat)HY(i)HY(bil)HY(ity)YH(.)ES( Sequences of elements are repre)HY(sented)YH( in + the object model as contain)HY(ers)YH( conform)HY(ing)YH( to the stan)HY(dard)YH( C++ + sequence require)HY(ments)YH(. This makes it possi)HY(ble)YH( to use stan)HY(dard)YH( + C++ algo)HY(rithms)YH( on the object repre)HY(sen)HY(ta)HY(tion)YH( and frees you from + learn)HY(ing)YH( yet another container inter)HY(face)YH(, as is the case with + DOM. + + )-1 LI()BD(Effi)HY(ciency)YH(.)ES( If the appli)HY(ca)HY(tion)YH( makes repet)HY(i)HY(tive)YH( use + of the data extracted from XML, then the C++/Tree object model + is more effi)HY(cient)YH( because the navi)HY(ga)HY(tion)YH( is performed using + func)HY(tion)YH( calls rather than string compar)HY(isons)YH( and the XML + data is extracted only once. Further)HY(more)YH(, the runtime memory + usage is reduced due to more effi)HY(cient)YH( data storage + \201for instance, storing numeric data as inte)HY(gers)YH( instead of + strings\202 as well as the static knowl)HY(edge)YH( of cardi)HY(nal)HY(ity)YH( + constraints. + )LU( + + + + + + )0 1 6 H(2)WB 42 Sn()WB 9 Sn( Hello World Example)EA()EH( + + )0 P(In this chapter we will examine how to parse, access, modify, and + seri)HY(al)HY(ize)YH( a very simple XML docu)HY(ment)YH( using the XSD-gener)HY(ated)YH( + C++/Tree object model. The code presented in this chapter is + based on the )SM(hello)ES( example which can be found in + the )SM(exam)HY(ples)YH(/cxx/tree/)ES( direc)HY(tory)YH( of the XSD + distri)HY(bu)HY(tion)YH(.)EP( + + )0 2 7 H(2.1)WB 43 Sn()WB 10 Sn( Writing XML Docu)HY(ment)YH( and Schema)EA()EH( + + )0 P(First, we need to get an idea about the struc)HY(ture)YH( + of the XML docu)HY(ments)YH( we are going to process. Our + )SM(hello.xml)ES(, for example, could look like this:)EP( + + ) 10 28 PR(<?xml version="1.0"?> +<hello> + + <greeting>Hello</greeting> + + <name>sun</name> + <name>moon</name> + <name>world</name> + +</hello>)RP( + + )0 P(Then we can write a descrip)HY(tion)YH( of the above XML in the + XML Schema language and save it into )SM(hello.xsd)ES(:)EP( + + ) 13 70 PR(<?xml version="1.0"?> +<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> + + <xs:complexType name="hello_t"> + <xs:sequence> + <xs:element name="greeting" type="xs:string"/> + <xs:element name="name" type="xs:string" maxOccurs="unbounded"/> + </xs:sequence> + </xs:complexType> + + <xs:element name="hello" type="hello_t"/> + +</xs:schema>)RP( + + )0 P(Even if you are not famil)HY(iar)YH( with XML Schema, it + should be easy to connect decla)HY(ra)HY(tions)YH( in )SM(hello.xsd)ES( + to elements in )SM(hello.xml)ES(. The )SM(hello_t)ES( type + is defined as a sequence of the nested )SM(greet)HY(ing)YH()ES( and + )SM(name)ES( elements. Note that the term sequence in XML + Schema means that elements should appear in a partic)HY(u)HY(lar)YH( order + as opposed to appear)HY(ing)YH( multi)HY(ple)YH( times. The )SM(name)ES( + element has its )SM(maxOc)HY(curs)YH()ES( prop)HY(erty)YH( set to + )SM(unbounded)ES( which means it can appear multi)HY(ple)YH( times + in an XML docu)HY(ment)YH(. Finally, the glob)HY(ally)YH(-defined )SM(hello)ES( + element prescribes the root element for our vocab)HY(u)HY(lary)YH(. For an + easily-approach)HY(able)YH( intro)HY(duc)HY(tion)YH( to XML Schema refer to + )R7 2 A(XML Schema Part 0: + Primer)EA(.)EP( + + )0 P(The above schema is a spec)HY(i)HY(fi)HY(ca)HY(tion)YH( of our XML vocab)HY(u)HY(lary)YH(; it tells + every)HY(body)YH( what valid docu)HY(ments)YH( of our XML-based language should look + like. We can also update our )SM(hello.xml)ES( to include the + infor)HY(ma)HY(tion)YH( about the schema so that XML parsers can vali)HY(date)YH( + our docu)HY(ment)YH(:)EP( + + ) 11 60 PR(<?xml version="1.0"?> +<hello xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" + xsi:noNamespaceSchemaLocation="hello.xsd"> + + <greeting>Hello</greeting> + + <name>sun</name> + <name>moon</name> + <name>world</name> + +</hello>)RP( + + + )0 P(The next step is to compile the schema to gener)HY(ate)YH( the object + model and parsing func)HY(tions)YH(.)EP( + + )0 2 8 H(2.2)WB 44 Sn()WB 11 Sn( Trans)HY(lat)HY(ing)YH( Schema to C++)EA()EH( + + )0 P(Now we are ready to trans)HY(late)YH( our )SM(hello.xsd)ES( to C++. + To do this we invoke the XSD compiler from a termi)HY(nal)YH( \201UNIX\202 or + a command prompt \201Windows\202: + )EP( + + ) 1 24 PR($ xsd cxx-tree hello.xsd)RP( + + )0 P(The XSD compiler produces two C++ files: )SM(hello.hxx)ES( and + )SM(hello.cxx)ES(. The follow)HY(ing)YH( code frag)HY(ment)YH( is taken from + )SM(hello.hxx)ES(; it should give you an idea about what gets + gener)HY(ated)YH(: + )EP( + + ) 45 60 PR(class hello_t +{ +public: + // greeting + // + typedef xml_schema::string greeting_type; + + const greeting_type& + greeting \201\202 const; + + greeting_type& + greeting \201\202; + + void + greeting \201const greeting_type& x\202; + + // name + // + typedef xml_schema::string name_type; + typedef xsd::sequence<name_type> name_sequence; + typedef name_sequence::iterator name_iterator; + typedef name_sequence::const_iterator name_const_iterator; + + const name_sequence& + name \201\202 const; + + name_sequence& + name \201\202; + + void + name \201const name_sequence& s\202;)WR( + + // Constructor. + // + hello_t \201const greeting_type&\202; + + ... + +}; + +std::auto_ptr<hello_t> +hello \201const std::string& uri\202; + +std::auto_ptr<hello_t> +hello \201std::istream&\202;)RP( + + )0 P(The )SM(hello_t)ES( C++ class corre)HY(sponds)YH( to the + )SM(hello_t)ES( XML Schema type. For each element + in this type a set of C++ type defi)HY(ni)HY(tions)YH( as well as + acces)HY(sor)YH( and modi)HY(fier)YH( func)HY(tions)YH( are gener)HY(ated)YH( inside the + )SM(hello_t)ES( class. Note that the type defi)HY(ni)HY(tions)YH( + and member func)HY(tions)YH( for the )SM(greet)HY(ing)YH()ES( and + )SM(name)ES( elements are differ)HY(ent)YH( because of the + cardi)HY(nal)HY(ity)YH( differ)HY(ences)YH( between these two elements + \201)SM(greet)HY(ing)YH()ES( is a required single element and + )SM(name)ES( is a sequence of elements\202.)EP( + + )0 P(The )SM(xml_schema::string)ES( type used in the type + defi)HY(ni)HY(tions)YH( is a C++ class provided by the XSD runtime + that corre)HY(sponds)YH( to built-in XML Schema type + )SM(string)ES(. The )SM(xml_schema::string)ES( + is based on )SM(std::string)ES( and can be used as + such. Simi)HY(larly)YH(, the )SM(sequence)ES( class template + that is used in the )SM(name_sequence)ES( type + defi)HY(ni)HY(tion)YH( is based on and has the same inter)HY(face)YH( as + )SM(std::vector)ES(. The mapping between the built-in + XML Schema types and C++ types is described in more detail in + )0 28 1 A(Section 4.5, "Mapping for the Built-in XML Schema + Types")28 0 TN TL()Ec /AF f D(. The )SM(hello_t)ES( class also includes a + construc)HY(tor)YH( with an initial)HY(izer)YH( for the required + )SM(greet)HY(ing)YH()ES( element as its argu)HY(ment)YH(.)EP( + + )0 P(The )SM(hello)ES( over)HY(loaded)YH( global func)HY(tions)YH( corre)HY(spond)YH( + to the )SM(hello)ES( global element in XML Schema. A + global element in XML Schema is a valid docu)HY(ment)YH( root. + By default XSD gener)HY(ated)YH( a set of parsing func)HY(tions)YH( for each + global element defined in XML Schema \201this can be over)HY(rid)HY(den)YH( + with the )SM(--root-element-*)ES( options\202. Parsing + func)HY(tions)YH( return a dynam)HY(i)HY(cally)YH( allo)HY(cated)YH( object model as an + auto)HY(matic)YH( pointer. The actual pointer used depends on the + C++ stan)HY(dard)YH( selected. For C++98 it is )SM(std::auto_ptr)ES( + as shown above. For C++11 it is )SM(std::unique_ptr)ES(. + For example, if we modify our XSD compiler invo)HY(ca)HY(tion)YH( to + select C++11:)EP( + + ) 1 36 PR($ xsd cxx-tree --std c++11 hello.xsd)RP( + + )0 P(Then the parsing func)HY(tion)YH( signa)HY(tures)YH( will become:)EP( + + ) 5 31 PR(std::unique_ptr<hello_t> +hello \201const std::string& uri\202; + +std::unique_ptr<hello_t> +hello \201std::istream&\202;)RP( + + )0 P(For more infor)HY(ma)HY(tion)YH( on parsing func)HY(tions)YH( see )0 30 1 A(Chapter 5, + "Parsing")30 0 TN TL()Ec /AF f D(.)EP( + + )0 2 9 H(2.3)WB 45 Sn()WB 12 Sn( Imple)HY(ment)HY(ing)YH( Appli)HY(ca)HY(tion)YH( Logic)EA()EH( + + )0 P(At this point we have all the parts we need to do some)HY(thing)YH( useful + with the infor)HY(ma)HY(tion)YH( stored in our XML docu)HY(ment)YH(: + )EP( + + ) 25 62 PR(#include <iostream> +#include "hello.hxx" + +using namespace std; + +int +main \201int argc, char* argv[]\202 +{ + try + { + auto_ptr<hello_t> h \201hello \201argv[1]\202\202; + + for \201hello_t::name_const_iterator i \201h->name \201\202.begin \201\202\202; + i != h->name \201\202.end \201\202; + ++i\202 + { + cerr << h->greeting \201\202 << ", " << *i << "!" << endl; + } + } + catch \201const xml_schema::exception& e\202 + { + cerr << e << endl; + return 1; + } +})RP( + + )0 P(The first part of our appli)HY(ca)HY(tion)YH( calls one of the parsing + func)HY(tions)YH( to parser an XML file spec)HY(i)HY(fied)YH( in the command line. + We then use the returned object model to iterate over names + and print a greet)HY(ing)YH( line for each of them. Finally, we + catch and print the )SM(xml_schema::excep)HY(tion)YH()ES( + excep)HY(tion)YH( in case some)HY(thing)YH( goes wrong. This excep)HY(tion)YH( + is the root of the excep)HY(tion)YH( hier)HY(ar)HY(chy)YH( used by the + XSD-gener)HY(ated)YH( code. + )EP( + + + )0 2 10 H(2.4)WB 46 Sn()WB 13 Sn( Compil)HY(ing)YH( and Running)EA()EH( + + )0 P(After saving our appli)HY(ca)HY(tion)YH( from the previ)HY(ous)YH( section in + )SM(driver.cxx)ES(, we are ready to compile our first + program and run it on the test XML docu)HY(ment)YH(. On a UNIX + system this can be done with the follow)HY(ing)YH( commands: + )EP( + + ) 6 43 PR($ c++ -I.../libxsd -c driver.cxx hello.cxx +$ c++ -o driver driver.o hello.o -lxerces-c +$ ./driver hello.xml +Hello, sun! +Hello, moon! +Hello, world!)RP( + + )0 P(Here )SM(.../libxsd)ES( repre)HY(sents)YH( the path to the + )SM(libxsd)ES( direc)HY(tory)YH( in the XSD distri)HY(bu)HY(tion)YH(. + Note also that we are required to link our appli)HY(ca)HY(tion)YH( + with the Xerces-C++ library because the gener)HY(ated)YH( code + uses it as the under)HY(ly)HY(ing)YH( XML parser.)EP( + + )0 2 11 H(2.5)WB 47 Sn()WB 14 Sn( Adding Seri)HY(al)HY(iza)HY(tion)YH()EA()EH( + + )0 P(While parsing and access)HY(ing)YH( the XML data may be every)HY(thing)YH( + you need, there are appli)HY(ca)HY(tions)YH( that require creat)HY(ing)YH( new + or modi)HY(fy)HY(ing)YH( exist)HY(ing)YH( XML docu)HY(ments)YH(. By default XSD does + not produce seri)HY(al)HY(iza)HY(tion)YH( code. We will need to request + it with the )SM(--gener)HY(ate)YH(-seri)HY(al)HY(iza)HY(tion)YH()ES( options:)EP( + + ) 1 49 PR($ xsd cxx-tree --generate-serialization hello.xsd)RP( + + )0 P(If we now examine the gener)HY(ated)YH( )SM(hello.hxx)ES( file, + we will find a set of over)HY(loaded)YH( seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH(, + includ)HY(ing)YH( the follow)HY(ing)YH( version:)EP( + + ) 5 45 PR(void +hello \201std::ostream&, + const hello_t&, + const xml_schema::namespace_infomap& = + xml_schema::namespace_infomap \201\202\202; +)RP( + + )0 P(Just like with parsing func)HY(tions)YH(, XSD gener)HY(ates)YH( seri)HY(al)HY(iza)HY(tion)YH( + func)HY(tions)YH( for each global element unless instructed other)HY(wise)YH( + with one of the )SM(--root-element-*)ES( options. For more + infor)HY(ma)HY(tion)YH( on seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH( see )0 33 1 A(Chapter 6, + "Seri)HY(al)HY(iza)HY(tion)YH(")33 0 TN TL()Ec /AF f D(.)EP( + + )0 P(We first examine an appli)HY(ca)HY(tion)YH( that modi)HY(fies)YH( an exist)HY(ing)YH( + object model and seri)HY(al)HY(izes)YH( it back to XML:)EP( + + ) 34 50 PR(#include <iostream> +#include "hello.hxx" + +using namespace std; + +int +main \201int argc, char* argv[]\202 +{ + try + { + auto_ptr<hello_t> h \201hello \201argv[1]\202\202; + + // Change the greeting phrase. + // + h->greeting \201"Hi"\202; + + // Add another entry to the name sequence. + // + h->name \201\202.push_back \201"mars"\202; + + // Serialize the modified object model to XML. + // + xml_schema::namespace_infomap map; + map[""].name = ""; + map[""].schema = "hello.xsd"; + + hello \201cout, *h, map\202; + } + catch \201const xml_schema::exception& e\202 + { + cerr << e << endl;)WR( + return 1; + } +})RP( + + )0 P(First, our appli)HY(ca)HY(tion)YH( parses an XML docu)HY(ment)YH( and obtains its + object model as in the previ)HY(ous)YH( example. Then it changes the + greet)HY(ing)YH( string and adds another entry to the list of names. + Finally, it seri)HY(al)HY(izes)YH( the object model back to XML by calling + the seri)HY(al)HY(iza)HY(tion)YH( func)HY(tion)YH(.)EP( + + )0 P(The first argu)HY(ment)YH( we pass to the seri)HY(al)HY(iza)HY(tion)YH( func)HY(tion)YH( is + )SM(cout)ES( which results in the XML being written to + the stan)HY(dard)YH( output for us to inspect. We could have also + written the result to a file or memory buffer by creat)HY(ing)YH( an + instance of )SM(std::ofstream)ES( or )SM(std::ostringstream)ES( + and passing it instead of )SM(cout)ES(. The second argu)HY(ment)YH( is the + object model we want to seri)HY(al)HY(ize)YH(. The final argu)HY(ment)YH( is an optional + names)HY(pace)YH( infor)HY(ma)HY(tion)YH( map for our vocab)HY(u)HY(lary)YH(. It captures infor)HY(ma)HY(tion)YH( + such as names)HY(paces)YH(, names)HY(pace)YH( prefixes to which they should be mapped, + and schemas asso)HY(ci)HY(ated)YH( with these names)HY(paces)YH(. If we don't provide + this argu)HY(ment)YH( then generic names)HY(pace)YH( prefixes \201)SM(p1)ES(, + )SM(p2)ES(, etc.\202 will be auto)HY(mat)HY(i)HY(cally)YH( assigned to XML names)HY(paces)YH( + and no schema infor)HY(ma)HY(tion)YH( will be added to the result)HY(ing)YH( docu)HY(ment)YH( + \201see )0 33 1 A(Chapter 6, "Seri)HY(al)HY(iza)HY(tion)YH(")33 0 TN TL()Ec /AF f D( for details\202. + In our case, the prefix \201map key\202 and names)HY(pace)YH( name are empty + because our vocab)HY(u)HY(lary)YH( does not use XML names)HY(paces)YH(.)EP( + + )0 P(If we now compile and run this appli)HY(ca)HY(tion)YH( we will see the + output as shown in the follow)HY(ing)YH( listing:)EP( + + ) 12 60 PR(<?xml version="1.0"?> +<hello xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" + xsi:noNamespaceSchemaLocation="hello.xsd"> + + <greeting>Hi</greeting> + + <name>sun</name> + <name>moon</name> + <name>world</name> + <name>mars</name> + +</hello>)RP( + + )0 P(We can also create and seri)HY(al)HY(ize)YH( an object model from scratch + as shown in the follow)HY(ing)YH( example:)EP( + + ) 33 43 PR(#include <iostream> +#include <fstream> +#include "hello.hxx" + +using namespace std; + +int +main \201int argc, char* argv[]\202 +{ + try + { + hello_t h \201"Hi"\202; + + hello_t::name_sequence& ns \201h.name \201\202\202; + + ns.push_back \201"Jane"\202; + ns.push_back \201"John"\202; + + // Serialize the object model to XML. + // + xml_schema::namespace_infomap map; + map[""].name = ""; + map[""].schema = "hello.xsd"; + + std::ofstream ofs \201argv[1]\202; + hello \201ofs, h, map\202; + } + catch \201const xml_schema::exception& e\202 + { + cerr << e << endl; + return 1;)WR( + } +})RP( + + )0 P(In this example we used the gener)HY(ated)YH( construc)HY(tor)YH( to create + an instance of type )SM(hello_t)ES(. To reduce typing, + we obtained a refer)HY(ence)YH( to the name sequence which we then + used to add a few names. The seri)HY(al)HY(iza)HY(tion)YH( part is iden)HY(ti)HY(cal)YH( + to the previ)HY(ous)YH( example except this time we are writing to + a file. If we compile and run this program, it produces the + follow)HY(ing)YH( XML file:)EP( + + ) 10 60 PR(<?xml version="1.0"?> +<hello xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" + xsi:noNamespaceSchemaLocation="hello.xsd"> + + <greeting>Hi</greeting> + + <name>Jane</name> + <name>John</name> + +</hello>)RP( + + )0 2 12 H(2.6)WB 48 Sn()WB 15 Sn( Select)HY(ing)YH( Naming Conven)HY(tion)YH()EA()EH( + + )0 P(By default XSD uses the so-called K&R \201Kernighan and Ritchie\202 + iden)HY(ti)HY(fier)YH( naming conven)HY(tion)YH( in the gener)HY(ated)YH( code. In this + conven)HY(tion)YH( both type and func)HY(tion)YH( names are in lower case and + words are sepa)HY(rated)YH( by under)HY(scores)YH(. If your appli)HY(ca)HY(tion)YH( code or + schemas use a differ)HY(ent)YH( nota)HY(tion)YH(, you may want to change the + naming conven)HY(tion)YH( used in the gener)HY(ated)YH( code for consis)HY(tency)YH(. + XSD supports a set of widely-used naming conven)HY(tions)YH( + that you can select with the )SM(--type-naming)ES( and + )SM(--func)HY(tion)YH(-naming)ES( options. You can also further + refine one of the prede)HY(fined)YH( conven)HY(tions)YH( or create a completely + custom naming scheme by using the )SM(--*-regex)ES( options.)EP( + + )0 P(As an example, let's assume that our "Hello World" appli)HY(ca)HY(tion)YH( + uses the so-called upper-camel-case naming conven)HY(tion)YH( for types + \201that is, each word in a type name is capi)HY(tal)HY(ized)YH(\202 and the K&R + conven)HY(tion)YH( for func)HY(tion)YH( names. Since K&R is the default + conven)HY(tion)YH( for both type and func)HY(tion)YH( names, we only need to + change the type naming scheme:)EP( + + ) 1 42 PR($ xsd cxx-tree --type-naming ucc hello.xsd)RP( + + )0 P(The )SM(ucc)ES( argu)HY(ment)YH( to the )SM(--type-naming)ES( + options stands for upper-camel-case. If we now examine the + gener)HY(ated)YH( )SM(hello.hxx)ES(, we will see the follow)HY(ing)YH( + changes compared to the decla)HY(ra)HY(tions)YH( shown in the previ)HY(ous)YH( + sections:)EP( + + ) 45 57 PR(class Hello_t +{ +public: + // greeting + // + typedef xml_schema::String GreetingType; + + const GreetingType& + greeting \201\202 const; + + GreetingType& + greeting \201\202; + + void + greeting \201const GreetingType& x\202; + + // name + // + typedef xml_schema::String NameType; + typedef xsd::sequence<NameType> NameSequence; + typedef NameSequence::iterator NameIterator; + typedef NameSequence::const_iterator NameConstIterator; + + const NameSequence& + name \201\202 const; + + NameSequence& + name \201\202; + + void + name \201const NameSequence& s\202;)WR( + + // Constructor. + // + Hello_t \201const GreetingType&\202; + + ... + +}; + +std::auto_ptr<Hello_t> +hello \201const std::string& uri\202; + +std::auto_ptr<Hello_t> +hello \201std::istream&\202;)RP( + + )0 P(Notice that the type names in the )SM(xml_schema)ES( names)HY(pace)YH(, + for example )SM(xml_schema::String)ES(, now also use the + upper-camel-case naming conven)HY(tion)YH(. The only thing that we may + be unhappy about in the above code is the )SM(_t)ES( + suffix in )SM(Hello_t)ES(. If we are not in a posi)HY(tion)YH( + to change the schema, we can )EM(touch-up)ES( the )SM(ucc)ES( + conven)HY(tion)YH( with a custom trans)HY(la)HY(tion)YH( rule using the + )SM(--type-regex)ES( option:)EP( + + ) 1 72 PR($ xsd cxx-tree --type-naming ucc --type-regex '/ \201.+\202_t/\200u$1/' hello.xsd)RP( + + )0 P(This results in the follow)HY(ing)YH( changes to the gener)HY(ated)YH( code:)EP( + + ) 45 57 PR(class Hello +{ +public: + // greeting + // + typedef xml_schema::String GreetingType; + + const GreetingType& + greeting \201\202 const; + + GreetingType& + greeting \201\202; + + void + greeting \201const GreetingType& x\202; + + // name + // + typedef xml_schema::String NameType; + typedef xsd::sequence<NameType> NameSequence; + typedef NameSequence::iterator NameIterator; + typedef NameSequence::const_iterator NameConstIterator; + + const NameSequence& + name \201\202 const; + + NameSequence& + name \201\202; + + void + name \201const NameSequence& s\202;)WR( + + // Constructor. + // + Hello \201const GreetingType&\202; + + ... + +}; + +std::auto_ptr<Hello> +hello \201const std::string& uri\202; + +std::auto_ptr<Hello> +hello \201std::istream&\202;)RP( + + )0 P(For more detailed infor)HY(ma)HY(tion)YH( on the )SM(--type-naming)ES(, + )SM(--func)HY(tion)YH(-naming)ES(, )SM(--type-regex)ES(, and + other )SM(--*-regex)ES( options refer to the NAMING + CONVEN)HY(TION)YH( section in the )R4 2 A(XSD + Compiler Command Line Manual)EA(.)EP( + + )0 2 13 H(2.7)WB 49 Sn()WB 16 Sn( Gener)HY(at)HY(ing)YH( Docu)HY(men)HY(ta)HY(tion)YH()EA()EH( + + )0 P(While our object model is quite simple, real-world vocab)HY(u)HY(lar)HY(ies)YH( + can be quite complex with hundreds of types, elements, and + attributes. For such vocab)HY(u)HY(lar)HY(ies)YH( figur)HY(ing)YH( out which types + provide which member func)HY(tions)YH( by study)HY(ing)YH( the gener)HY(ated)YH( + source code or schemas can be a daunt)HY(ing)YH( task. To provide + appli)HY(ca)HY(tion)YH( devel)HY(op)HY(ers)YH( with a more acces)HY(si)HY(ble)YH( way of + under)HY(stand)HY(ing)YH( the gener)HY(ated)YH( object models, the XSD compiler + can be instructed to produce source code with docu)HY(men)HY(ta)HY(tion)YH( + comments in the Doxygen format. Then the source code can be + processed with the )R8 2 A(Doxygen)EA( + docu)HY(men)HY(ta)HY(tion)YH( system to extract this infor)HY(ma)HY(tion)YH( and produce + docu)HY(men)HY(ta)HY(tion)YH( in various formats. + )EP( + + )0 P(In this section we will see how to gener)HY(ate)YH( docu)HY(men)HY(ta)HY(tion)YH( + for our "Hello World" vocab)HY(u)HY(lary)YH(. To show)HY(case)YH( the full power + of the XSD docu)HY(men)HY(ta)HY(tion)YH( facil)HY(i)HY(ties)YH(, we will first docu)HY(ment)YH( + our schema. The XSD compiler will then trans)HY(fer)YH( + this infor)HY(ma)HY(tion)YH( from the schema to the gener)HY(ated)YH( code and + then to the object model docu)HY(men)HY(ta)HY(tion)YH(. Note that the + docu)HY(men)HY(ta)HY(tion)YH( in the schema is not required for XSD to + gener)HY(ate)YH( useful docu)HY(men)HY(ta)HY(tion)YH(. Below you will find + our )SM(hello.xsd)ES( with added docu)HY(men)HY(ta)HY(tion)YH(:)EP( + + ) 43 69 PR(<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> + + <xs:complexType name="hello_t"> + + <xs:annotation> + <xs:documentation> + The hello_t type consists of a greeting phrase and a + collection of names to which this greeting applies. + </xs:documentation> + </xs:annotation> + + <xs:sequence> + + <xs:element name="greeting" type="xs:string"> + <xs:annotation> + <xs:documentation> + The greeting element contains the greeting phrase + for this hello object. + </xs:documentation> + </xs:annotation> + </xs:element> + + <xs:element name="name" type="xs:string" maxOccurs="unbounded"> + <xs:annotation> + <xs:documentation> + The name elements contains names to be greeted. + </xs:documentation> + </xs:annotation> + </xs:element> + + </xs:sequence>)WR( + </xs:complexType> + + <xs:element name="hello" type="hello_t"> + <xs:annotation> + <xs:documentation> + The hello element is a root of the Hello XML vocabulary. + Every conforming document should start with this element. + </xs:documentation> + </xs:annotation> + </xs:element> + +</xs:schema>)RP( + + )0 P(The first step in obtain)HY(ing)YH( the docu)HY(men)HY(ta)HY(tion)YH( is to recom)HY(pile)YH( + our schema with the )SM(--gener)HY(ate)YH(-doxygen)ES( option:)EP( + + ) 1 68 PR($ xsd cxx-tree --generate-serialization --generate-doxygen hello.xsd)RP( + + )0 P(Now the gener)HY(ated)YH( )SM(hello.hxx)ES( file contains comments + in the Doxygen format. The next step is to process this file + with the Doxygen docu)HY(men)HY(ta)HY(tion)YH( system. If your project does + not use Doxygen then you first need to create a config)HY(u)HY(ra)HY(tion)YH( + file for your project:)EP( + + ) 1 26 PR($ doxygen -g hello.doxygen)RP( + + )0 P(You only need to perform this step once. Now we can gener)HY(ate)YH( + the docu)HY(men)HY(ta)HY(tion)YH( by execut)HY(ing)YH( the follow)HY(ing)YH( command in the + direc)HY(tory)YH( with the gener)HY(ated)YH( source code:)EP( + + ) 1 23 PR($ doxygen hello.doxygen)RP( + + )0 P(While the gener)HY(ated)YH( docu)HY(men)HY(ta)HY(tion)YH( can be useful as is, we can + go one step further and link \201using the Doxygen tags mech)HY(a)HY(nism)YH(\202 + the docu)HY(men)HY(ta)HY(tion)YH( for our object model with the docu)HY(men)HY(ta)HY(tion)YH( + for the XSD runtime library which defines C++ classes for the + built-in XML Schema types. This way we can seam)HY(lessly)YH( browse + between docu)HY(men)HY(ta)HY(tion)YH( for the )SM(hello_t)ES( class which + is gener)HY(ated)YH( by the XSD compiler and the )SM(xml_schema::string)ES( + class which is defined in the XSD runtime library. The Doxygen + config)HY(u)HY(ra)HY(tion)YH( file for the XSD runtime is provided with the XSD + distri)HY(bu)HY(tion)YH(.)EP( + + )0 P(You can view the result of the steps described in this section + on the )R9 2 A(Hello + Example Docu)HY(men)HY(ta)HY(tion)YH()EA( page.)EP( + + + + + )0 1 14 H(3)WB 50 Sn()WB 17 Sn( Overall Mapping Config)HY(u)HY(ra)HY(tion)YH()EA()EH( + + )0 P(The C++/Tree mapping has a number of config)HY(u)HY(ra)HY(tion)YH( param)HY(e)HY(ters)YH( that + deter)HY(mine)YH( the overall prop)HY(er)HY(ties)YH( and behav)HY(ior)YH( of the gener)HY(ated)YH( code. + Config)HY(u)HY(ra)HY(tion)YH( param)HY(e)HY(ters)YH( are spec)HY(i)HY(fied)YH( with the XSD command line + options. This chapter describes config)HY(u)HY(ra)HY(tion)YH( aspects that are most + commonly encoun)HY(tered)YH( by appli)HY(ca)HY(tion)YH( devel)HY(op)HY(ers)YH(. These include: the + C++ stan)HY(dard)YH(, the char)HY(ac)HY(ter)YH( type that is used by the gener)HY(ated)YH( code, + handling of vocab)HY(u)HY(lar)HY(ies)YH( that use XML Schema poly)HY(mor)HY(phism)YH(, XML Schema + to C++ names)HY(pace)YH( mapping, and thread safety. For more ways to config)HY(ure)YH( + the gener)HY(ated)YH( code refer to the + )R4 2 A(XSD + Compiler Command Line Manual)EA(. + )EP( + + )0 2 15 H(3.1)WB 51 Sn()WB 18 Sn( C++ Stan)HY(dard)YH()EA()EH( + + )0 P(The C++/Tree mapping provides support for ISO/IEC C++ 1998/2003 \201C++98\202 + and ISO/IEC C++ 2011 \201C++11\202. To select the C++ stan)HY(dard)YH( for the + gener)HY(ated)YH( code we use the )SM(--std)ES( XSD compiler command + line option. While the major)HY(ity)YH( of the exam)HY(ples)YH( in this guide use + C++98, support for the new func)HY(tion)HY(al)HY(ity)YH( and library compo)HY(nents)YH( + intro)HY(duced)YH( in C++11 are discussed through)HY(out)YH( the docu)HY(ment)YH(.)EP( + + )0 2 16 H(3.2)WB 52 Sn()WB 19 Sn( Char)HY(ac)HY(ter)YH( Type and Encod)HY(ing)YH()EA()EH( + + )0 P(The C++/Tree mapping has built-in support for two char)HY(ac)HY(ter)YH( types: + )SM(char)ES( and )SM(wchar_t)ES(. You can select the + char)HY(ac)HY(ter)YH( type with the )SM(--char-type)ES( command line + option. The default char)HY(ac)HY(ter)YH( type is )SM(char)ES(. The + char)HY(ac)HY(ter)YH( type affects all string and string-based types that + are used in the mapping. These include the string-based built-in + XML Schema types, excep)HY(tion)YH( types, stream types, etc.)EP( + + )0 P(Another aspect of the mapping that depends on the char)HY(ac)HY(ter)YH( type + is char)HY(ac)HY(ter)YH( encod)HY(ing)YH(. For the )SM(char)ES( char)HY(ac)HY(ter)YH( type + the default encod)HY(ing)YH( is UTF-8. Other supported encod)HY(ings)YH( are + ISO-8859-1, Xerces-C++ Local Code Page \201LPC\202, as well as + custom encod)HY(ings)YH(. You can select which encod)HY(ing)YH( should be used + in the object model with the )SM(--char-encod)HY(ing)YH()ES( command + line option.)EP( + + )0 P(For the )SM(wchar_t)ES( char)HY(ac)HY(ter)YH( type the encod)HY(ing)YH( is + auto)HY(mat)HY(i)HY(cally)YH( selected between UTF-16 and UTF-32/UCS-4 depend)HY(ing)YH( + on the size of the )SM(wchar_t)ES( type. On some plat)HY(forms)YH( + \201for example, Windows with Visual C++ and AIX with IBM XL C++\202 + )SM(wchar_t)ES( is 2 bytes long. For these plat)HY(forms)YH( the + encod)HY(ing)YH( is UTF-16. On other plat)HY(forms)YH( )SM(wchar_t)ES( is 4 bytes + long and UTF-32/UCS-4 is used.)EP( + + )0 P(Note also that the char)HY(ac)HY(ter)YH( encod)HY(ing)YH( that is used in the object model + is inde)HY(pen)HY(dent)YH( of the encod)HY(ings)YH( used in input and output XML. In fact, + all three \201object mode, input XML, and output XML\202 can have differ)HY(ent)YH( + encod)HY(ings)YH(.)EP( + + )0 2 17 H(3.3)WB 53 Sn()WB 20 Sn( Support for Poly)HY(mor)HY(phism)YH()EA()EH( + + )0 P(By default XSD gener)HY(ates)YH( non-poly)HY(mor)HY(phic)YH( code. If your vocab)HY(u)HY(lary)YH( + uses XML Schema poly)HY(mor)HY(phism)YH( in the form of )SM(xsi:type)ES( + and/or substi)HY(tu)HY(tion)YH( groups, then you will need to compile + your schemas with the )SM(--gener)HY(ate)YH(-poly)HY(mor)HY(phic)YH()ES( option + to produce poly)HY(mor)HY(phism)YH(-aware code. For more infor)HY(ma)HY(tion)YH( on + working with poly)HY(mor)HY(phic)YH( object models, refer to + )R10 2 A(Section 2.11, + "Mapping for )SM(xsi:type)ES( and Substi)HY(tu)HY(tion)YH( Groups")EA( in + the C++/Tree Mapping User Manual.)EP( + + )0 2 18 H(3.4)WB 54 Sn()WB 21 Sn( Names)HY(pace)YH( Mapping)EA()EH( + + )0 P(XSD maps XML names)HY(paces)YH( spec)HY(i)HY(fied)YH( in the )SM(target)HY(Names)HY(pace)YH()ES( + attribute in XML Schema to one or more nested C++ names)HY(paces)YH(. By + default, a names)HY(pace)YH( URI is mapped to a sequence of C++ names)HY(pace)YH( + names by remov)HY(ing)YH( the proto)HY(col)YH( and host parts and split)HY(ting)YH( the + rest into a sequence of names with )SM('/')ES( as the name + sepa)HY(ra)HY(tor)YH(.)EP( + + )0 P(The default mapping of names)HY(pace)YH( URIs to C++ names)HY(paces)YH( + can be altered using the )SM(--names)HY(pace)YH(-map)ES( and + )SM(--names)HY(pace)YH(-regex)ES( compiler options. For example, + to map names)HY(pace)YH( URI )SM(http://www.codesyn)HY(the)HY(sis)YH(.com/my)ES( to + C++ names)HY(pace)YH( )SM(cs::my)ES(, we can use the follow)HY(ing)YH( option:)EP( + + ) 1 54 PR(--namespace-map http://www.codesynthesis.com/my=cs::my)RP( + + )0 P(A vocab)HY(u)HY(lary)YH( without a names)HY(pace)YH( is mapped to the global scope. This + also can be altered with the above options by using an empty name + for the XML names)HY(pace)YH(:)EP( + + ) 1 19 PR(--namespace-map =cs)RP( + + )0 2 19 H(3.5)WB 55 Sn()WB 22 Sn( Thread Safety)EA()EH( + + )0 P(XSD-gener)HY(ated)YH( code is thread-safe in the sense that you can + use differ)HY(ent)YH( instan)HY(ti)HY(a)HY(tions)YH( of the object model in several + threads concur)HY(rently)YH(. This is possi)HY(ble)YH( due to the gener)HY(ated)YH( + code not relying on any writable global vari)HY(ables)YH(. If you need + to share the same object between several threads then you will + need to provide some form of synchro)HY(niza)HY(tion)YH(. One approach would + be to use the gener)HY(ated)YH( code customiza)HY(tion)YH( mech)HY(a)HY(nisms)YH( to embed + synchro)HY(niza)HY(tion)YH( prim)HY(i)HY(tives)YH( into the gener)HY(ated)YH( C++ classes. For more + infor)HY(ma)HY(tion)YH( on gener)HY(ated)YH( code customiza)HY(tion)YH( refer to the + )R2 2 A(C++/Tree + Mapping Customiza)HY(tion)YH( Guide)EA(.)EP( + + )0 P(If you also would like to call parsing and/or seri)HY(al)HY(iza)HY(tion)YH( + func)HY(tions)YH( from several threads poten)HY(tially)YH( concur)HY(rently)YH(, then + you will need to make sure the Xerces-C++ runtime is initial)HY(ized)YH( + and termi)HY(nated)YH( only once. The easiest way to do this is to + initial)HY(ize)YH(/termi)HY(nate)YH( Xerces-C++ from )SM(main\201\202)ES( when + there are no threads yet/anymore:)EP( + + ) 13 56 PR(#include <xercesc/util/PlatformUtils.hpp> + +int +main \201\202 +{ + xercesc::XMLPlatformUtils::Initialize \201\202; + + { + // Start/terminate threads and parse/serialize here. + } + + xercesc::XMLPlatformUtils::Terminate \201\202; +})RP( + + )0 P(Because you initial)HY(ize)YH( the Xerces-C++ runtime your)HY(self)YH( you should + also pass the )SM(xml_schema::flags::dont_initial)HY(ize)YH()ES( flag + to parsing and seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH(. See )0 30 1 A(Chapter 5, + "Parsing")30 0 TN TL()Ec /AF f D( and )0 33 1 A(Chapter 6, "Seri)HY(al)HY(iza)HY(tion)YH(")33 0 TN TL()Ec /AF f D( for + more infor)HY(ma)HY(tion)YH(.)EP( + + + + + + )0 1 20 H(4)WB 56 Sn()WB 23 Sn( Working with Object Models)EA()EH( + + )0 P(As we have seen in the previ)HY(ous)YH( chap)HY(ters)YH(, the XSD compiler gener)HY(ates)YH( + a C++ class for each type defined in XML Schema. Together these classes + consti)HY(tute)YH( an object model for an XML vocab)HY(u)HY(lary)YH(. In this chapter we + will take a closer look at differ)HY(ent)YH( elements that comprise an + object model class as well as how to create, access, and modify + object models.)EP( + + )0 P(In this and subse)HY(quent)YH( chap)HY(ters)YH( we will use the follow)HY(ing)YH( schema + that describes a collec)HY(tion)YH( of person records. We save it in + )SM(people.xsd)ES(:)EP( + + ) 30 71 PR(<?xml version="1.0"?> +<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> + + <xs:simpleType name="gender_t"> + <xs:restriction base="xs:string"> + <xs:enumeration value="male"/> + <xs:enumeration value="female"/> + </xs:restriction> + </xs:simpleType> + + <xs:complexType name="person_t"> + <xs:sequence> + <xs:element name="first-name" type="xs:string"/> + <xs:element name="middle-name" type="xs:string" minOccurs="0"/> + <xs:element name="last-name" type="xs:string"/> + <xs:element name="gender" type="gender_t"/> + <xs:element name="age" type="xs:short"/> + </xs:sequence> + <xs:attribute name="id" type="xs:unsignedInt" use="required"/> + </xs:complexType> + + <xs:complexType name="people_t"> + <xs:sequence> + <xs:element name="person" type="person_t" maxOccurs="unbounded"/> + </xs:sequence> + </xs:complexType> + + <xs:element name="people" type="people_t"/> + +</xs:schema>)RP( + + )0 P(A sample XML instance to go along with this schema is saved + in )SM(people.xml)ES(:)EP( + + ) 20 61 PR(<?xml version="1.0"?> +<people xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" + xsi:noNamespaceSchemaLocation="people.xsd"> + + <person id="1"> + <first-name>John</first-name> + <last-name>Doe</last-name> + <gender>male</gender> + <age>32</age> + </person> + + <person id="2"> + <first-name>Jane</first-name> + <middle-name>Mary</middle-name> + <last-name>Doe</last-name> + <gender>female</gender> + <age>28</age> + </person> + +</people>)RP( + + )0 P(Compil)HY(ing)YH( )SM(people.xsd)ES( with the XSD compiler results + in three gener)HY(ated)YH( C++ classes: )SM(gender_t)ES(, + )SM(person_t)ES(, and )SM(people_t)ES(. + The )SM(gender_t)ES( class is modelled after the C++ + )SM(enum)ES( type. Its defi)HY(ni)HY(tion)YH( is presented below:)EP( + + ) 17 41 PR(class gender_t: public xml_schema::string +{ +public: + enum value + { + male, + female + }; + + gender_t \201value\202; + gender_t \201const xml_schema::string&\202; + + gender_t& + operator= \201value\202; + + operator value \201\202 const; +};)RP( + + )0 P(The follow)HY(ing)YH( listing shows how we can use this type:)EP( + + ) 19 41 PR(gender_t m \201gender_t::male\202; +gender_t f \201"female"\202; + +if \201m == "female" || f == gender_t::male\202 +{ + ... +} + +switch \201m\202 +{ +case gender_t::male: + { + ... + } +case gender_t::female: + { + ... + } +})RP( + + )0 P(The other two classes will be exam)HY(ined)YH( in detail in the subse)HY(quent)YH( + sections.)EP( + + )0 2 21 H(4.1)WB 57 Sn()WB 24 Sn( Attribute and Element Cardi)HY(nal)HY(i)HY(ties)YH()EA()EH( + + )0 P(As we have seen in the previ)HY(ous)YH( chap)HY(ters)YH(, XSD gener)HY(ates)YH( a differ)HY(ent)YH( + set of type defi)HY(ni)HY(tions)YH( and member func)HY(tions)YH( for elements with + differ)HY(ent)YH( cardi)HY(nal)HY(i)HY(ties)YH(. The C++/Tree mapping divides all the possi)HY(ble)YH( + element and attribute cardi)HY(nal)HY(i)HY(ties)YH( into three cardi)HY(nal)HY(ity)YH( classes: + )EM(one)ES(, )EM(optional)ES(, and )EM(sequence)ES(.)EP( + + )0 P(The )EM(one)ES( cardi)HY(nal)HY(ity)YH( class covers all elements that should + occur exactly once as well as required attributes. In our + example, the )SM(first-name)ES(, )SM(last-name)ES(, + )SM(gender)ES(, and )SM(age)ES( elements as well as + the )SM(id)ES( attribute belong to this cardi)HY(nal)HY(ity)YH( class. + The follow)HY(ing)YH( code frag)HY(ment)YH( shows type defi)HY(ni)HY(tions)YH( as well as the + acces)HY(sor)YH( and modi)HY(fier)YH( func)HY(tions)YH( that are gener)HY(ated)YH( for the + )SM(gender)ES( element in the )SM(person_t)ES( class:)EP( + + ) 15 31 PR(class person_t +{ + // gender + // + typedef gender_t gender_type; + + const gender_type& + gender \201\202 const; + + gender_type& + gender \201\202; + + void + gender \201const gender_type&\202; +};)RP( + + )0 P(The )SM(gender_type)ES( type is an alias for the element's type. + The first two acces)HY(sor)YH( func)HY(tions)YH( return read-only \201constant\202 and + read-write refer)HY(ences)YH( to the element's value, respec)HY(tively)YH(. The + modi)HY(fier)YH( func)HY(tion)YH( sets the new value for the element.)EP( + + )0 P(The )EM(optional)ES( cardi)HY(nal)HY(ity)YH( class covers all elements that + can occur zero or one time as well as optional attributes. In our + example, the )SM(middle-name)ES( element belongs to this + cardi)HY(nal)HY(ity)YH( class. The follow)HY(ing)YH( code frag)HY(ment)YH( shows the type + defi)HY(ni)HY(tions)YH( as well as the acces)HY(sor)YH( and modi)HY(fier)YH( func)HY(tions)YH( that + are gener)HY(ated)YH( for this element in the )SM(person_t)ES( class:)EP( + + ) 19 63 PR(class person_t +{ + // middle-name + // + typedef xml_schema::string middle_name_type; + typedef xsd::optional<middle_name_type> middle_name_optional; + + const middle_name_optional& + middle_name \201\202 const; + + middle_name_optional& + middle_name \201\202; + + void + middle_name \201const middle_name_type&\202; + + void + middle_name \201const middle_name_optional&\202; +};)RP( + + )0 P(As with the )SM(gender)ES( element, )SM(middle_name_type)ES( + is an alias for the element's type. The )SM(middle_name_optional)ES( + type is a container for the element's optional value. It can be queried + for the pres)HY(ence)YH( of the value using the )SM(present\201\202)ES( func)HY(tion)YH(. + The value itself can be retrieved using the )SM(get\201\202)ES( + acces)HY(sor)YH( and set using the )SM(set\201\202)ES( modi)HY(fier)YH(. The container + can be reverted to the value not present state with the call to the + )SM(reset\201\202)ES( func)HY(tion)YH(. The follow)HY(ing)YH( example shows how we + can use this container:)EP( + + ) 9 42 PR(person_t::middle_name_optional n \201"John"\202; + +if \201n.present \201\202\202 +{ + cout << n.get \201\202 << endl; +} + +n.set \201"Jane"\202; +n.reset \201\202;)RP( + + + )0 P(Unlike the )EM(one)ES( cardi)HY(nal)HY(ity)YH( class, the acces)HY(sor)YH( func)HY(tions)YH( + for the )EM(optional)ES( class return read-only \201constant\202 and + read-write refer)HY(ences)YH( to the container instead of the element's + value directly. The modi)HY(fier)YH( func)HY(tions)YH( set the new value for the + element.)EP( + + )0 P(Finally, the )EM(sequence)ES( cardi)HY(nal)HY(ity)YH( class covers all elements + that can occur more than once. In our example, the + )SM(person)ES( element in the )SM(people_t)ES( type + belongs to this cardi)HY(nal)HY(ity)YH( class. The follow)HY(ing)YH( code frag)HY(ment)YH( shows + the type defi)HY(ni)HY(tions)YH( as well as the acces)HY(sor)YH( and modi)HY(fier)YH( func)HY(tions)YH( + that are gener)HY(ated)YH( for this element in the )SM(people_t)ES( + class:)EP( + + ) 18 64 PR(class people_t +{ + // person + // + typedef person_t person_type; + typedef xsd::sequence<person_type> person_sequence; + typedef person_sequence::iterator person_iterator; + typedef person_sequence::const_iterator person_const_iterator; + + const person_sequence& + person \201\202 const; + + person_sequence& + person \201\202; + + void + person \201const person_sequence&\202; +};)RP( + + )0 P(Iden)HY(ti)HY(cal)YH( to the other cardi)HY(nal)HY(ity)YH( classes, )SM(person_type)ES( + is an alias for the element's type. The )SM(person_sequence)ES( + type is a sequence container for the element's values. It is based + on and has the same inter)HY(face)YH( as )SM(std::vector)ES( and + there)HY(fore)YH( can be used in similar ways. The )SM(person_iter)HY(a)HY(tor)YH()ES( + and )SM(person_const_iter)HY(a)HY(tor)YH()ES( types are read-only + \201constant\202 and read-write iter)HY(a)HY(tors)YH( for the )SM(person_sequence)ES( + container.)EP( + + )0 P(Similar to the )EM(optional)ES( cardi)HY(nal)HY(ity)YH( class, the + acces)HY(sor)YH( func)HY(tions)YH( for the )EM(sequence)ES( class return + read-only \201constant\202 and read-write refer)HY(ences)YH( to the sequence + container. The modi)HY(fier)YH( func)HY(tions)YH( copies the entries from + the passed sequence.)EP( + + )0 P(C++/Tree is a "flat)HY(ten)HY(ing)YH(" mapping in a sense that many levels of + nested compos)HY(i)HY(tors)YH( \201)SM(choice)ES( and )SM(sequence)ES(\202, + all poten)HY(tially)YH( with their own cardi)HY(nal)HY(i)HY(ties)YH(, are in the end mapped + to a flat set of elements with one of the three cardi)HY(nal)HY(ity)YH( classes + discussed above. While this results in a simple and easy to use API + for most types, in certain cases, the order of elements in the actual + XML docu)HY(ments)YH( is not preserved once parsed into the object model. To + over)HY(come)YH( this limi)HY(ta)HY(tion)YH( we can mark certain schema types, for which + content order is not suffi)HY(ciently)YH( preserved, as ordered. For more + infor)HY(ma)HY(tion)YH( on this func)HY(tion)HY(al)HY(ity)YH( refer to + )R11 2 A(Section + 2.8.4, "Element Order")EA( in the C++/Tree Mapping User Manual.)EP( + + )0 P(For complex schemas with many levels of nested compos)HY(i)HY(tors)YH( + \201)SM(choice)ES( and )SM(sequence)ES(\202 it can also + be hard to deduce the cardi)HY(nal)HY(ity)YH( class of a partic)HY(u)HY(lar)YH( element. + The gener)HY(ated)YH( Doxygen docu)HY(men)HY(ta)HY(tion)YH( can greatly help with + this task. For each element and attribute the docu)HY(men)HY(ta)HY(tion)YH( + clearly iden)HY(ti)HY(fies)YH( its cardi)HY(nal)HY(ity)YH( class. Alter)HY(na)HY(tively)YH(, you + can study the gener)HY(ated)YH( header files to find out the cardi)HY(nal)HY(ity)YH( + class of a partic)HY(u)HY(lar)YH( attribute or element.)EP( + + )0 P(In the next sections we will examine how to access and modify + infor)HY(ma)HY(tion)YH( stored in an object model using acces)HY(sor)YH( and modi)HY(fier)YH( + func)HY(tions)YH( described in this section.)EP( + + )0 2 22 H(4.2)WB 58 Sn()WB 25 Sn( Access)HY(ing)YH( the Object Model)EA()EH( + + )0 P(In this section we will learn how to get to the infor)HY(ma)HY(tion)YH( + stored in the object model for our person records vocab)HY(u)HY(lary)YH(. + The follow)HY(ing)YH( appli)HY(ca)HY(tion)YH( accesses and prints the contents + of the )SM(people.xml)ES( file:)EP( + + ) 36 70 PR(#include <iostream> +#include "people.hxx" + +using namespace std; + +int +main \201\202 +{ + auto_ptr<people_t> ppl \201people \201"people.xml"\202\202; + + // Iterate over individual person records. + // + people_t::person_sequence& ps \201ppl->person \201\202\202; + + for \201people_t::person_iterator i \201ps.begin \201\202\202; i != ps.end \201\202; ++i\202 + { + person_t& p \201*i\202; + + // Print names: first-name and last-name are required elements, + // middle-name is optional. + // + cout << "name: " << p.first_name \201\202 << " "; + + if \201p.middle_name \201\202.present \201\202\202 + cout << p.middle_name \201\202.get \201\202 << " "; + + cout << p.last_name \201\202 << endl; + + // Print gender, age, and id which are all required. + // + cout << "gender: " << p.gender \201\202 << endl)WR( + << "age: " << p.age \201\202 << endl + << "id: " << p.id \201\202 << endl + << endl; + } +})RP( + + )0 P(This code shows common patterns of access)HY(ing)YH( elements and attributes + with differ)HY(ent)YH( cardi)HY(nal)HY(ity)YH( classes. For the sequence element + \201)SM(person)ES( in )SM(people_t)ES(\202 we first obtain a + refer)HY(ence)YH( to the container and then iterate over indi)HY(vid)HY(ual)YH( + records. The values of elements and attributes with the + )EM(one)ES( cardi)HY(nal)HY(ity)YH( class \201)SM(first-name)ES(, + )SM(last-name)ES(, )SM(gender)ES(, )SM(age)ES(, + and )SM(id)ES(\202 can be obtained directly by calling the + corre)HY(spond)HY(ing)YH( acces)HY(sor)YH( func)HY(tions)YH(. For the optional element + )SM(middle-name)ES( we first check if the value is present + and only then call )SM(get\201\202)ES( to retrieve it.)EP( + + )0 P(Note that when we want to reduce typing by creat)HY(ing)YH( a vari)HY(able)YH( + repre)HY(sent)HY(ing)YH( a frag)HY(ment)YH( of the object model that we are currently + working with \201)SM(ps)ES( and )SM(p)ES( above\202, we obtain + a refer)HY(ence)YH( to that frag)HY(ment)YH( instead of making a poten)HY(tially)YH( + expen)HY(sive)YH( copy. This is gener)HY(ally)YH( a good rule to follow when + creat)HY(ing)YH( high-perfor)HY(mance)YH( appli)HY(ca)HY(tions)YH(.)EP( + + )0 P(If we run the above appli)HY(ca)HY(tion)YH( on our sample + )SM(people.xml)ES(, the output looks as follows:)EP( + + ) 9 21 PR(name: John Doe +gender: male +age: 32 +id: 1 + +name: Jane Mary Doe +gender: female +age: 28 +id: 2)RP( + + + )0 2 23 H(4.3)WB 59 Sn()WB 26 Sn( Modi)HY(fy)HY(ing)YH( the Object Model)EA()EH( + + )0 P(In this section we will learn how to modify the infor)HY(ma)HY(tion)YH( + stored in the object model for our person records vocab)HY(u)HY(lary)YH(. + The follow)HY(ing)YH( appli)HY(ca)HY(tion)YH( changes the contents of the + )SM(people.xml)ES( file:)EP( + + ) 43 70 PR(#include <iostream> +#include "people.hxx" + +using namespace std; + +int +main \201\202 +{ + auto_ptr<people_t> ppl \201people \201"people.xml"\202\202; + + // Iterate over individual person records and increment + // the age. + // + people_t::person_sequence& ps \201ppl->person \201\202\202; + + for \201people_t::person_iterator i \201ps.begin \201\202\202; i != ps.end \201\202; ++i\202 + { + // Alternative way: i->age \201\202++; + // + i->age \201i->age \201\202 + 1\202; + } + + // Add middle-name to the first record and remove it from + // the second. + // + person_t& john \201ps[0]\202; + person_t& jane \201ps[1]\202; + + john.middle_name \201"Mary"\202; + jane.middle_name \201\202.reset \201\202; +)WR( + // Add another John record. + // + ps.push_back \201john\202; + + // Serialize the modified object model to XML. + // + xml_schema::namespace_infomap map; + map[""].name = ""; + map[""].schema = "people.xsd"; + + people \201cout, *ppl, map\202; +})RP( + + )0 P(The first modi)HY(fi)HY(ca)HY(tion)YH( the above appli)HY(ca)HY(tion)YH( performs is iter)HY(at)HY(ing)YH( + over person records and incre)HY(ment)HY(ing)YH( the age value. This code + frag)HY(ment)YH( shows how to modify the value of a required attribute + or element. The next modi)HY(fi)HY(ca)HY(tion)YH( shows how to set a new value + for the optional )SM(middle-name)ES( element as well + as clear its value. Finally the example adds a copy of the + John Doe record to the )SM(person)ES( element sequence.)EP( + + )0 P(Note that in this case using refer)HY(ences)YH( for the )SM(ps)ES(, + )SM(john)ES(, and )SM(jane)ES( vari)HY(ables)YH( is no longer + a perfor)HY(mance)YH( improve)HY(ment)YH( but a require)HY(ment)YH( for the appli)HY(ca)HY(tion)YH( + to func)HY(tion)YH( correctly. If we hadn't used refer)HY(ences)YH(, all our changes + would have been made on copies without affect)HY(ing)YH( the object model.)EP( + + )0 P(If we run the above appli)HY(ca)HY(tion)YH( on our sample )SM(people.xml)ES(, + the output looks as follows:)EP( + + ) 28 61 PR(<?xml version="1.0"?> +<people xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" + xsi:noNamespaceSchemaLocation="people.xsd"> + + <person id="1"> + <first-name>John</first-name> + <middle-name>Mary</middle-name> + <last-name>Doe</last-name> + <gender>male</gender> + <age>33</age> + </person> + + <person id="2"> + <first-name>Jane</first-name> + <last-name>Doe</last-name> + <gender>female</gender> + <age>29</age> + </person> + + <person id="1"> + <first-name>John</first-name> + <middle-name>Mary</middle-name> + <last-name>Doe</last-name> + <gender>male</gender> + <age>33</age> + </person> + +</people>)RP( + + + )0 2 24 H(4.4)WB 60 Sn()WB 27 Sn( Creat)HY(ing)YH( the Object Model from Scratch)EA()EH( + + )0 P(In this section we will learn how to create a new object model + for our person records vocab)HY(u)HY(lary)YH(. The follow)HY(ing)YH( appli)HY(ca)HY(tion)YH( + recre)HY(ates)YH( the content of the orig)HY(i)HY(nal)YH( )SM(people.xml)ES( + file:)EP( + + ) 42 48 PR(#include <iostream> +#include "people.hxx" + +using namespace std; + +int +main \201\202 +{ + people_t ppl; + people_t::person_sequence& ps \201ppl.person \201\202\202; + + // Add the John Doe record. + // + ps.push_back \201 + person_t \201"John", // first-name + "Doe", // last-name + gender_t::male, // gender + 32, // age + 1\202\202; + + // Add the Jane Doe record. + // + ps.push_back \201 + person_t \201"Jane", // first-name + "Doe", // last-name + gender_t::female, // gender + 28, // age + 2\202\202; // id + + // Add middle name to the Jane Doe record. + //)WR( + person_t& jane \201ps.back \201\202\202; + jane.middle_name \201"Mary"\202; + + // Serialize the object model to XML. + // + xml_schema::namespace_infomap map; + map[""].name = ""; + map[""].schema = "people.xsd"; + + people \201cout, ppl, map\202; +})RP( + + )0 P(The only new part in the above appli)HY(ca)HY(tion)YH( is the calls + to the )SM(people_t)ES( and )SM(person_t)ES( + construc)HY(tors)YH(. As a general rule, for each C++ class + XSD gener)HY(ates)YH( a construc)HY(tor)YH( with initial)HY(iz)HY(ers)YH( + for each element and attribute belong)HY(ing)YH( to the )EM(one)ES( + cardi)HY(nal)HY(ity)YH( class. For our vocab)HY(u)HY(lary)YH(, the follow)HY(ing)YH( + construc)HY(tors)YH( are gener)HY(ated)YH(:)EP( + + ) 13 35 PR(class person_t +{ + person_t \201const first_name_type&, + const last_name_type&, + const gender_type&, + const age_type&, + const id_type&\202; +}; + +class people_t +{ + people_t \201\202; +};)RP( + + )0 P(Note also that we set the )SM(middle-name)ES( element + on the Jane Doe record by obtain)HY(ing)YH( a refer)HY(ence)YH( to that record + in the object model and setting the )SM(middle-name)ES( + value on it. This is a general rule that should be followed + in order to obtain the best perfor)HY(mance)YH(: if possi)HY(ble)YH(, + direct modi)HY(fi)HY(ca)HY(tions)YH( to the object model should be preferred + to modi)HY(fi)HY(ca)HY(tions)YH( on tempo)HY(raries)YH( with subse)HY(quent)YH( copying. The + follow)HY(ing)YH( code frag)HY(ment)YH( shows a seman)HY(ti)HY(cally)YH( equiv)HY(a)HY(lent)YH( but + slightly slower version:)EP( + + ) 11 46 PR(// Add the Jane Doe record. +// +person_t jane \201"Jane", // first-name + "Doe", // last-name + gender_t::female, // gender + 28, // age + 2\202; // id + +jane.middle_name \201"Mary"\202; + +ps.push_back \201jane\202;)RP( + + )0 P(We can also go one step further to reduce copying and improve + the perfor)HY(mance)YH( of our appli)HY(ca)HY(tion)YH( by using the non-copying + )SM(push_back\201\202)ES( func)HY(tion)YH( which assumes owner)HY(ship)YH( + of the passed objects:)EP( + + ) 19 55 PR(// Add the John Doe record. C++98 version. +// +auto_ptr<person_t> john_p \201 + new person_t \201"John", // first-name + "Doe", // last-name + gender_t::male, // gender + 32, // age + 1\202\202; +ps.push_back \201john_p\202; // assumes ownership + +// Add the Jane Doe record. C++11 version +// +unique_ptr<person_t> jane_p \201 + new person_t \201"Jane", // first-name + "Doe", // last-name + gender_t::female, // gender + 28, // age + 2\202\202; // id +ps.push_back \201std::move \201jane_p\202\202; // assumes ownership)RP( + + )0 P(For more infor)HY(ma)HY(tion)YH( on the non-copying modi)HY(fier)YH( func)HY(tions)YH( refer to + )R12 2 A(Section + 2.8, "Mapping for Local Elements and Attributes")EA( in the C++/Tree Mapping + User Manual. The above appli)HY(ca)HY(tion)YH( produces the follow)HY(ing)YH( output:)EP( + + ) 20 61 PR(<?xml version="1.0" ?> +<people xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" + xsi:noNamespaceSchemaLocation="people.xsd"> + + <person id="1"> + <first-name>John</first-name> + <last-name>Doe</last-name> + <gender>male</gender> + <age>32</age> + </person> + + <person id="2"> + <first-name>Jane</first-name> + <middle-name>Mary</middle-name> + <last-name>Doe</last-name> + <gender>female</gender> + <age>28</age> + </person> + +</people>)RP( + + )0 2 25 H(4.5)WB 61 Sn()WB 28 Sn( Mapping for the Built-in XML Schema Types)EA()EH( + + )0 P(Our person record vocab)HY(u)HY(lary)YH( uses several built-in XML Schema + types: )SM(string)ES(, )SM(short)ES(, and + )SM(unsignedInt)ES(. Until now we haven't talked about + the mapping of built-in XML Schema types to C++ types and how + to work with them. This section provides an overview + of the built-in types. For more detailed infor)HY(ma)HY(tion)YH( refer + to )R13 2 A(Section + 2.5, "Mapping for Built-in Data Types")EA( in the C++/Tree Mapping + User Manual.)EP( + + )0 P(In XML Schema, built-in types are defined in the XML Schema names)HY(pace)YH(. + By default, the C++/Tree mapping maps this names)HY(pace)YH( to C++ + names)HY(pace)YH( )SM(xml_schema)ES( \201this mapping can be altered + with the )SM(--names)HY(pace)YH(-map)ES( option\202. The follow)HY(ing)YH( table + summa)HY(rizes)YH( the mapping of XML Schema built-in types to C++ types:)EP( + + + )0 PT( + + )0 P(As you can see from the table above a number of built-in + XML Schema types are mapped to funda)HY(men)HY(tal)YH( C++ types such + as )SM(int)ES( or )SM(bool)ES(. All string-based + XML Schema types are mapped to C++ types that are derived + from either )SM(std::string)ES( or + )SM(std::wstring)ES(, depend)HY(ing)YH( on the char)HY(ac)HY(ter)YH( + type selected. For access and modi)HY(fi)HY(ca)HY(tion)YH( purposes these + types can be treated as )SM(std::string)ES(. A number + of built-in types, such as )SM(qname)ES(, the binary + types, and the date/time types do not have suit)HY(able)YH( + funda)HY(men)HY(tal)YH( or stan)HY(dard)YH( C++ types to map to. As a result, + these types are imple)HY(mented)YH( from scratch in the XSD runtime. + For more infor)HY(ma)HY(tion)YH( on their inter)HY(faces)YH( refer to + )R13 2 A(Section + 2.5, "Mapping for Built-in Data Types")EA( in the C++/Tree Mapping + User Manual.)EP( + + + + + + )0 1 26 H(5)WB 62 Sn()WB 30 Sn( Parsing)EA()EH( + + )0 P(We have already seen how to parse XML to an object model in this guide + before. In this chapter we will discuss the parsing topic in more + detail.)EP( + + )0 P(By default, the C++/Tree mapping provides a total of 14 over)HY(loaded)YH( + parsing func)HY(tions)YH(. They differ in the input methods used to + read XML as well as the error report)HY(ing)YH( mech)HY(a)HY(nisms)YH(. It is also possi)HY(ble)YH( + to gener)HY(ate)YH( types for root elements instead of parsing and seri)HY(al)HY(iza)HY(tion)YH( + func)HY(tions)YH(. This may be useful if your XML vocab)HY(u)HY(lary)YH( has multi)HY(ple)YH( + root elements. For more infor)HY(ma)HY(tion)YH( on element types refer to + )R14 2 A(Section + 2.9, "Mapping for Global Elements")EA( in the C++/Tree Mapping User + Manual.)EP( + + + )0 P(In this section we will discuss the most commonly used versions of + the parsing func)HY(tions)YH(. For a compre)HY(hen)HY(sive)YH( descrip)HY(tion)YH( of parsing + refer to )R15 2 A(Chapter + 3, "Parsing")EA( in the C++/Tree Mapping User Manual. For the )SM(people)ES( + global element from our person record vocab)HY(u)HY(lary)YH(, we will concen)HY(trate)YH( + on the follow)HY(ing)YH( three parsing func)HY(tions)YH(:)EP( + + ) 15 71 PR(std::[auto|unique]_ptr<people_t> +people \201const std::string& uri, + xml_schema::flags f = 0, + const xml_schema::properties& p = xml_schema::properties \201\202\202; + +std::[auto|unique]_ptr<people_t> +people \201std::istream& is, + xml_schema::flags f = 0, + const xml_schema::properties& p = xml_schema::properties \201\202\202; + +std::[auto|unique]_ptr<people_t> +people \201std::istream& is, + const std::string& resource_id, + xml_schema::flags f = 0, + const xml_schema::properties& p = ::xml_schema::properties \201\202\202;)RP( + + )0 P(The first func)HY(tion)YH( parses a local file or a URI. We have already + used this parsing func)HY(tion)YH( in the previ)HY(ous)YH( chap)HY(ters)YH(. The second + and third func)HY(tions)YH( read XML from a stan)HY(dard)YH( input stream. The + last func)HY(tion)YH( also requires a resource id. This id is used to + iden)HY(tify)YH( the XML docu)HY(ment)YH( being parser in diag)HY(nos)HY(tics)YH( messages + as well as to resolve rela)HY(tive)YH( paths to other docu)HY(ments)YH( \201for example, + schemas\202 that might be refer)HY(enced)YH( from the XML docu)HY(ment)YH(.)EP( + + )0 P(The last two argu)HY(ments)YH( to all three parsing func)HY(tions)YH( are parsing + flags and prop)HY(er)HY(ties)YH(. The flags argu)HY(ment)YH( provides a number of ways + to fine-tune the parsing process. The prop)HY(er)HY(ties)YH( argu)HY(ment)YH( allows + to pass addi)HY(tional)YH( infor)HY(ma)HY(tion)YH( to the parsing func)HY(tions)YH(. We will + use these two argu)HY(ments)YH( in )0 31 1 A(Section 5.1, "XML Schema + Vali)HY(da)HY(tion)YH( and Search)HY(ing)YH(")31 0 TN TL()Ec /AF f D( below. All three func)HY(tions)YH( return + the object model as either )SM(std::auto_ptr)ES( \201C++98\202 or + )SM(std::unique_ptr)ES( \201C++11\202, depend)HY(ing)YH( on the C++ stan)HY(dard)YH( + selected \201)SM(--std)ES( XSD compiler option\202. The follow)HY(ing)YH( + example shows how we can use the above parsing func)HY(tions)YH(:)EP( + + ) 17 65 PR(using std::auto_ptr; + +// Parse a local file or URI. +// +auto_ptr<people_t> p1 \201people \201"people.xml"\202\202; +auto_ptr<people_t> p2 \201people \201"http://example.com/people.xml"\202\202; + +// Parse a local file via ifstream. +// +std::ifstream ifs \201"people.xml"\202; +auto_ptr<people_t> p3 \201people \201ifs, "people.xml"\202\202; + +// Parse an XML string. +// +std::string str \201"..."\202; // XML in a string. +std::istringstream iss \201str\202; +auto_ptr<people_t> p4 \201people \201iss\202\202;)RP( + + + )0 2 27 H(5.1)WB 63 Sn()WB 31 Sn( XML Schema Vali)HY(da)HY(tion)YH( and Search)HY(ing)YH()EA()EH( + + )0 P(The C++/Tree mapping relies on the under)HY(ly)HY(ing)YH( Xerces-C++ XML + parser for full XML docu)HY(ment)YH( vali)HY(da)HY(tion)YH(. The XML Schema + vali)HY(da)HY(tion)YH( is enabled by default and can be disabled by + passing the )SM(xml_schema::flags::dont_vali)HY(date)YH()ES( + flag to the parsing func)HY(tions)YH(, for example:)EP( + + ) 2 59 PR(auto_ptr<people_t> p \201 + people \201"people.xml", xml_schema::flags::dont_validate\202\202;)RP( + + )0 P(Even when XML Schema vali)HY(da)HY(tion)YH( is disabled, the gener)HY(ated)YH( + code still performs a number of checks to prevent + construc)HY(tion)YH( of an incon)HY(sis)HY(tent)YH( object model \201for example, an + object model with missing required attributes or elements\202.)EP( + + )0 P(When XML Schema vali)HY(da)HY(tion)YH( is enabled, the XML parser needs + to locate a schema to vali)HY(date)YH( against. There are several + methods to provide the schema loca)HY(tion)YH( infor)HY(ma)HY(tion)YH( to the + parser. The easiest and most commonly used method is to + specify schema loca)HY(tions)YH( in the XML docu)HY(ment)YH( itself + with the )SM(schemaLo)HY(ca)HY(tion)YH()ES( or + )SM(noNames)HY(paceSchemaLo)HY(ca)HY(tion)YH()ES( attributes, for example:)EP( + + ) 4 74 PR(<?xml version="1.0" ?> +<people xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" + xsi:noNamespaceSchemaLocation="people.xsd" + xsi:schemaLocation="http://www.w3.org/XML/1998/namespace xml.xsd">)RP( + + )0 P(As you might have noticed, we used this method in all the sample XML + docu)HY(ments)YH( presented in this guide up until now. Note that the + schema loca)HY(tions)YH( spec)HY(i)HY(fied)YH( with these two attributes are rela)HY(tive)YH( + to the docu)HY(ment)YH('s path unless they are abso)HY(lute)YH( URIs \201that is + start with )SM(http://)ES(, )SM(file://)ES(, etc.\202. + In partic)HY(u)HY(lar)YH(, if you specify just file names as your schema + loca)HY(tions)YH(, as we did above, then the schemas should reside in + the same direc)HY(tory)YH( as the XML docu)HY(ment)YH( itself.)EP( + + )0 P(Another method of provid)HY(ing)YH( the schema loca)HY(tion)YH( infor)HY(ma)HY(tion)YH( + is via the )SM(xml_schema::prop)HY(er)HY(ties)YH()ES( argu)HY(ment)YH(, as + shown in the follow)HY(ing)YH( example:)EP( + + ) 5 74 PR(xml_schema::properties props; +props.no_namespace_schema_location \201"people.xsd"\202; +props.schema_location \201"http://www.w3.org/XML/1998/namespace", "xml.xsd"\202; + +auto_ptr<people_t> p \201people \201"people.xml", 0, props\202\202;)RP( + + )0 P(The schema loca)HY(tions)YH( provided with this method over)HY(rides)YH( + those spec)HY(i)HY(fied)YH( in the XML docu)HY(ment)YH(. As with the previ)HY(ous)YH( + method, the schema loca)HY(tions)YH( spec)HY(i)HY(fied)YH( this way are + rela)HY(tive)YH( to the docu)HY(ment)YH('s path unless they are abso)HY(lute)YH( URIs. + In partic)HY(u)HY(lar)YH(, if you want to use local schemas that are + not related to the docu)HY(ment)YH( being parsed, then you will + need to use the )SM(file://)ES( URI. The follow)HY(ing)YH( + example shows how to use schemas that reside in the current + working direc)HY(tory)YH(:)EP( + + ) 19 55 PR(#include <unistd.h> // getcwd +#include <limits.h> // PATH_MAX + +char cwd[PATH_MAX]; +if \201getcwd \201cwd, PATH_MAX\202 == 0\202 +{ + // Buffer too small? +} + +xml_schema::properties props; + +props.no_namespace_schema_location \201 + "file:///" + std::string \201cwd\202 + "/people.xsd"\202; + +props.schema_location \201 + "http://www.w3.org/XML/1998/namespace", + "file:///" + std::string \201cwd\202 + "/xml.xsd"\202; + +auto_ptr<people_t> p \201people \201"people.xml", 0, props\202\202;)RP( + + )0 P(A third method is the most useful if you are plan)HY(ning)YH( to parse + several XML docu)HY(ments)YH( of the same vocab)HY(u)HY(lary)YH(. In that case + it may be bene)HY(fi)HY(cial)YH( to pre-parse and cache the schemas in + the XML parser which can then be used to parse all docu)HY(ments)YH( + without re-parsing the schemas. For more infor)HY(ma)HY(tion)YH( on + this method refer to the )SM(caching)ES( example in the + )SM(exam)HY(ples)YH(/cxx/tree/)ES( direc)HY(tory)YH( of the XSD + distri)HY(bu)HY(tion)YH(. It is also possi)HY(ble)YH( to convert the schemas into + a pre-compiled binary repre)HY(sen)HY(ta)HY(tion)YH( and embed this repre)HY(sen)HY(ta)HY(tion)YH( + directly into the appli)HY(ca)HY(tion)YH( executable. With this approach your + appli)HY(ca)HY(tion)YH( can perform XML Schema vali)HY(da)HY(tion)YH( without depend)HY(ing)YH( on + any exter)HY(nal)YH( schema files. For more infor)HY(ma)HY(tion)YH( on how to achieve + this refer to the )SM(embed)HY(ded)YH()ES( example in the + )SM(exam)HY(ples)YH(/cxx/tree/)ES( direc)HY(tory)YH( of the XSD distri)HY(bu)HY(tion)YH(.)EP( + + )0 P(When the XML parser cannot locate a schema for the + XML docu)HY(ment)YH(, the vali)HY(da)HY(tion)YH( fails and XML docu)HY(ment)YH( + elements and attributes for which schema defi)HY(ni)HY(tions)YH( could + not be located are reported in the diag)HY(nos)HY(tics)YH(. For + example, if we remove the )SM(noNames)HY(paceSchemaLo)HY(ca)HY(tion)YH()ES( + attribute in )SM(people.xml)ES( from the previ)HY(ous)YH( chapter, + then we will get the follow)HY(ing)YH( diag)HY(nos)HY(tics)YH( if we try to parse + this file with vali)HY(da)HY(tion)YH( enabled:)EP( + + ) 8 74 PR(people.xml:2:63 error: no declaration found for element 'people' +people.xml:4:18 error: no declaration found for element 'person' +people.xml:4:18 error: attribute 'id' is not declared for element 'person' +people.xml:5:17 error: no declaration found for element 'first-name' +people.xml:6:18 error: no declaration found for element 'middle-name' +people.xml:7:16 error: no declaration found for element 'last-name' +people.xml:8:13 error: no declaration found for element 'gender' +people.xml:9:10 error: no declaration found for element 'age')RP( + + )0 2 28 H(5.2)WB 64 Sn()WB 32 Sn( Error Handling)EA()EH( + + )0 P(The parsing func)HY(tions)YH( offer a number of ways to handle error condi)HY(tions)YH( + with the C++ excep)HY(tions)YH( being the most commonly used mech)HY(a)HY(nism)YH(. All + C++/Tree excep)HY(tions)YH( derive from common base )SM(xml_schema::excep)HY(tion)YH()ES( + which in turn derives from )SM(std::excep)HY(tion)YH()ES(. The easiest + way to uniformly handle all possi)HY(ble)YH( C++/Tree excep)HY(tions)YH( and print + detailed infor)HY(ma)HY(tion)YH( about the error is to catch and print + )SM(xml_schema::excep)HY(tion)YH()ES(, as shown in the follow)HY(ing)YH( + example:)EP( + + ) 8 47 PR(try +{ + auto_ptr<people_t> p \201people \201"people.xml"\202\202; +} +catch \201const xml_schema::exception& e\202 +{ + cerr << e << endl; +})RP( + + )0 P(Each indi)HY(vid)HY(ual)YH( C++/Tree excep)HY(tion)YH( also allows you to obtain + error details program)HY(mat)HY(i)HY(cally)YH(. For example, the + )SM(xml_schema::parsing)ES( excep)HY(tion)YH( is thrown when + the XML parsing and vali)HY(da)HY(tion)YH( in the under)HY(ly)HY(ing)YH( XML parser + fails. It encap)HY(su)HY(lates)YH( various diag)HY(nos)HY(tics)YH( infor)HY(ma)HY(tion)YH( + such as the file name, line and column numbers, as well as the + error or warning message for each entry. For more infor)HY(ma)HY(tion)YH( + about this and other excep)HY(tions)YH( that can be thrown during + parsing, refer to + )R16 2 A(Section + 3.3, "Error Handling")EA( in the C++/Tree Mapping + User Manual.)EP( + + )0 P(Note that if you are parsing )SM(std::istream)ES( on which + excep)HY(tions)YH( are not enabled, then you will need to check the + stream state after the call to the parsing func)HY(tion)YH( in order + to detect any possi)HY(ble)YH( stream fail)HY(ures)YH(, for example:)EP( + + ) 15 50 PR(std::ifstream ifs \201"people.xml"\202; + +if \201ifs.fail \201\202\202 +{ + cerr << "people.xml: unable to open" << endl; + return 1; +} + +auto_ptr<people_t> p \201people \201ifs, "people.xml"\202\202; + +if \201ifs.fail \201\202\202 +{ + cerr << "people.xml: read error" << endl; + return 1; +})RP( + + )0 P(The above example can be rewrit)HY(ten)YH( to use excep)HY(tions)YH( as + shown below:)EP( + + ) 13 66 PR(try +{ + std::ifstream ifs; + ifs.exceptions \201std::ifstream::badbit | std::ifstream::failbit\202; + ifs.open \201"people.xml"\202; + + auto_ptr<people_t> p \201people \201ifs, "people.xml"\202\202; +} +catch \201const std::ifstream::failure&\202 +{ + cerr << "people.xml: unable to open or read error" << endl; + return 1; +})RP( + + + + + + )0 1 29 H(6)WB 65 Sn()WB 33 Sn( Seri)HY(al)HY(iza)HY(tion)YH()EA()EH( + + )0 P(We have already seen how to seri)HY(al)HY(ize)YH( an object model back to XML + in this guide before. In this chapter we will discuss the + seri)HY(al)HY(iza)HY(tion)YH( topic in more detail.)EP( + + )0 P(By default, the C++/Tree mapping provides a total of 8 over)HY(loaded)YH( + seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH(. They differ in the output methods used to write + XML as well as the error report)HY(ing)YH( mech)HY(a)HY(nisms)YH(. It is also possi)HY(ble)YH( to + gener)HY(ate)YH( types for root elements instead of parsing and seri)HY(al)HY(iza)HY(tion)YH( + func)HY(tions)YH(. This may be useful if your XML vocab)HY(u)HY(lary)YH( has multi)HY(ple)YH( + root elements. For more infor)HY(ma)HY(tion)YH( on element types refer to + )R14 2 A(Section + 2.9, "Mapping for Global Elements")EA( in the C++/Tree Mapping User + Manual.)EP( + + + )0 P(In this section we will discuss the most commonly + used version of seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH(. For a compre)HY(hen)HY(sive)YH( descrip)HY(tion)YH( + of seri)HY(al)HY(iza)HY(tion)YH( refer to + )R17 2 A(Chapter + 4, "Seri)HY(al)HY(iza)HY(tion)YH(")EA( in the C++/Tree Mapping User Manual. For the + )SM(people)ES( global element from our person record vocab)HY(u)HY(lary)YH(, + we will concen)HY(trate)YH( on the follow)HY(ing)YH( seri)HY(al)HY(iza)HY(tion)YH( func)HY(tion)YH(:)EP( + + ) 7 50 PR(void +people \201std::ostream& os, + const people_t& x, + const xml_schema::namespace_infomap& map = + xml_schema::namespace_infomap \201\202, + const std::string& encoding = "UTF-8", + xml_schema::flags f = 0\202;)RP( + + )0 P(This func)HY(tion)YH( seri)HY(al)HY(izes)YH( the object model passed as the second + argu)HY(ment)YH( to the stan)HY(dard)YH( output stream passed as the first + argu)HY(ment)YH(. The third argu)HY(ment)YH( is a names)HY(pace)YH( infor)HY(ma)HY(tion)YH( map + which we will discuss in more detail in the next section. + The fourth argu)HY(ment)YH( is a char)HY(ac)HY(ter)YH( encod)HY(ing)YH( that the result)HY(ing)YH( + XML docu)HY(ment)YH( should be in. Possi)HY(ble)YH( valid values for this + argu)HY(ment)YH( are "US-ASCII", "ISO8859-1", "UTF-8", "UTF-16BE", + "UTF-16LE", "UCS-4BE", and "UCS-4LE". Finally, the flags + argu)HY(ment)YH( allows fine-tuning of the seri)HY(al)HY(iza)HY(tion)YH( process. + The follow)HY(ing)YH( example shows how we can use the above seri)HY(al)HY(iza)HY(tion)YH( + func)HY(tion)YH(:)EP( + + ) 19 34 PR(people_t& p = ... + +xml_schema::namespace_infomap map; +map[""].schema = "people.xsd"; + +// Serialize to stdout. +// +people \201std::cout, p, map\202; + +// Serialize to a file. +// +std::ofstream ofs \201"people.xml"\202; +people \201ofs, p, map\202; + +// Serialize to a string. +// +std::ostringstream oss; +people \201oss, p, map\202; +std::string xml \201oss.str \201\202\202;)RP( + + + )0 2 30 H(6.1)WB 66 Sn()WB 34 Sn( Names)HY(pace)YH( and Schema Infor)HY(ma)HY(tion)YH()EA()EH( + + )0 P(While XML seri)HY(al)HY(iza)HY(tion)YH( can be done just from the object + model alone, it is often desir)HY(able)YH( to assign mean)HY(ing)HY(ful)YH( + prefixes to XML names)HY(paces)YH( used in the vocab)HY(u)HY(lary)YH( as + well as to provide the schema loca)HY(tion)YH( infor)HY(ma)HY(tion)YH(. + This is accom)HY(plished)YH( by passing the names)HY(pace)YH( infor)HY(ma)HY(tion)YH( + map to the seri)HY(al)HY(iza)HY(tion)YH( func)HY(tion)YH(. The key in this map is + a names)HY(pace)YH( prefix that should be assigned to an XML names)HY(pace)YH( + spec)HY(i)HY(fied)YH( in the )SM(name)ES( vari)HY(able)YH( of the + map value. You can also assign an optional schema loca)HY(tion)YH( for + this names)HY(pace)YH( in the )SM(schema)ES( vari)HY(able)YH(. Based + on each key-value entry in this map, the seri)HY(al)HY(iza)HY(tion)YH( + func)HY(tion)YH( adds two attributes to the result)HY(ing)YH( XML docu)HY(ment)YH(: + the names)HY(pace)YH(-prefix mapping attribute and schema loca)HY(tion)YH( + attribute. The empty prefix indi)HY(cates)YH( that the names)HY(pace)YH( + should be mapped without a prefix. For example, the follow)HY(ing)YH( + map:)EP( + + ) 7 55 PR(xml_schema::namespace_infomap map; + +map[""].name = "http://www.example.com/example"; +map[""].schema = "example.xsd"; + +map["x"].name = "http://www.w3.org/XML/1998/namespace"; +map["x"].schema = "xml.xsd";)RP( + + )0 P(Results in the follow)HY(ing)YH( XML docu)HY(ment)YH(:)EP( + + ) 7 68 PR(<?xml version="1.0" ?> +<example + xmlns="http://www.example.com/example" + xmlns:x="http://www.w3.org/XML/1998/namespace" + xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" + xsi:schemaLocation="http://www.example.com/example example.xsd + http://www.w3.org/XML/1998/namespace xml.xsd">)RP( + + )0 P(The empty names)HY(pace)YH( indi)HY(cates)YH( that the vocab)HY(u)HY(lary)YH( has no target + names)HY(pace)YH(. For example, the follow)HY(ing)YH( map results in only the + )SM(noNames)HY(paceSchemaLo)HY(ca)HY(tion)YH()ES( attribute being added:)EP( + + ) 4 34 PR(xml_schema::namespace_infomap map; + +map[""].name = ""; +map[""].schema = "example.xsd";)RP( + + )0 2 31 H(6.2)WB 67 Sn()WB 35 Sn( Error Handling)EA()EH( + + )0 P(Similar to the parsing func)HY(tions)YH(, the seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH( offer a + number of ways to handle error condi)HY(tions)YH( with the C++ excep)HY(tions)YH( being + the most commonly used mech)HY(a)HY(nisms)YH(. As with parsing, the easiest way to + uniformly handle all possi)HY(ble)YH( seri)HY(al)HY(iza)HY(tion)YH( excep)HY(tions)YH( and print + detailed infor)HY(ma)HY(tion)YH( about the error is to catch and print + )SM(xml_schema::excep)HY(tion)YH()ES(:)EP( + + ) 13 38 PR(try +{ + people_t& p = ... + + xml_schema::namespace_infomap map; + map[""].schema = "people.xsd"; + + people \201std::cout, p, map\202\202; +} +catch \201const xml_schema::exception& e\202 +{ + cerr << e << endl; +})RP( + + )0 P(The most commonly encoun)HY(tered)YH( seri)HY(al)HY(iza)HY(tion)YH( excep)HY(tion)YH( is + )SM(xml_schema::seri)HY(al)HY(iza)HY(tion)YH()ES(. It is thrown + when the XML seri)HY(al)HY(iza)HY(tion)YH( in the under)HY(ly)HY(ing)YH( XML writer + fails. It encap)HY(su)HY(lates)YH( various diag)HY(nos)HY(tics)YH( infor)HY(ma)HY(tion)YH( + such as the file name, line and column numbers, as well as the + error or warning message for each entry. For more infor)HY(ma)HY(tion)YH( + about this and other excep)HY(tions)YH( that can be thrown during + seri)HY(al)HY(iza)HY(tion)YH(, refer to + )R18 2 A(Section + 4.4, "Error Handling")EA( in the C++/Tree Mapping + User Manual.)EP( + + )0 P(Note that if you are seri)HY(al)HY(iz)HY(ing)YH( to )SM(std::ostream)ES( on + which excep)HY(tions)YH( are not enabled, then you will need to check the + stream state after the call to the seri)HY(al)HY(iza)HY(tion)YH( func)HY(tion)YH( in order + to detect any possi)HY(ble)YH( stream fail)HY(ures)YH(, for example:)EP( + + ) 15 47 PR(std::ofstream ofs \201"people.xml"\202; + +if \201ofs.fail \201\202\202 +{ + cerr << "people.xml: unable to open" << endl; + return 1; +} + +people \201ofs, p, map\202\202; + +if \201ofs.fail \201\202\202 +{ + cerr << "people.xml: write error" << endl; + return 1; +})RP( + + )0 P(The above example can be rewrit)HY(ten)YH( to use excep)HY(tions)YH( as + shown below:)EP( + + ) 13 66 PR(try +{ + std::ofstream ofs; + ofs.exceptions \201std::ofstream::badbit | std::ofstream::failbit\202; + ofs.open \201"people.xml"\202; + + people \201ofs, p, map\202\202; +} +catch \201const std::ofstream::failure&\202 +{ + cerr << "people.xml: unable to open or write error" << endl; + return 1; +})RP( + + )BR( +)BR( + +)WB NL +/TE t D NP /OU t D TU PM 1 eq and{/Pn () D showpage}if end restore diff --git a/xsd/doc/cxx/tree/guide/guide.html2ps b/xsd/doc/cxx/tree/guide/guide.html2ps new file mode 100644 index 0000000..fbdaaf5 --- /dev/null +++ b/xsd/doc/cxx/tree/guide/guide.html2ps @@ -0,0 +1,65 @@ +@html2ps { + option { + toc: hb; + colour: 1; + hyphenate: 1; + titlepage: 1; + } + + datefmt: "%B %Y"; + + titlepage { + content: " +<div align=center> + <h1><big>C++/Tree Mapping</big></h1> + <h1><big>Getting Started Guide</big></h1> + <h1> </h1> + <h1> </h1> + <h1> </h1> + <h1> </h1> + <h1> </h1> + <h1> </h1> +</div> + <p>Copyright © 2005-2014 CODE SYNTHESIS TOOLS CC</p> + + <p>Permission is granted to copy, distribute and/or modify this + document under the terms of the + <a href='http://www.codesynthesis.com/licenses/fdl-1.2.txt'>GNU Free + Documentation License, version 1.2</a>; with no Invariant Sections, + no Front-Cover Texts and no Back-Cover Texts. + </p> + + <p>This document is available in the following formats: + <a href='http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/index.xhtml'>XHTML</a>, + <a href='http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/cxx-parser-guide.pdf'>PDF</a>, and + <a href='http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/cxx-parser-guide.ps'>PostScript</a>.</p>"; + } + + toc { + indent: 2em; + } + + header { + odd-right: $H; + even-left: $H; + } + + footer { + odd-left: $D; + odd-center: $T; + odd-right: $N; + + even-left: $N; + even-center: $T; + even-right: $D; + } +} + +body { + font-size: 12pt; + text-align: justify; +} + +pre { + font-size: 10pt; +} diff --git a/xsd/doc/cxx/tree/guide/index.xhtml b/xsd/doc/cxx/tree/guide/index.xhtml new file mode 100644 index 0000000..49ad3a6 --- /dev/null +++ b/xsd/doc/cxx/tree/guide/index.xhtml @@ -0,0 +1,2732 @@ +<?xml version="1.0" encoding="iso-8859-1"?> +<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> +<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> + +<head> + <title>C++/Tree Mapping Getting Started Guide</title> + + <meta name="copyright" content="© 2005-2014 Code Synthesis Tools CC"/> + <meta name="keywords" content="xsd,xml,schema,c++,mapping,data,binding,parsing,serialization,validation"/> + <meta name="description" content="C++/Tree Mapping Getting Started Guide"/> + + <link rel="stylesheet" type="text/css" href="../../../default.css" /> + +<style type="text/css"> + pre { + padding : 0 0 0 0em; + margin : 0em 0em 0em 0; + + font-size : 102% + } + + body { + min-width: 48em; + } + + h1 { + font-weight: bold; + font-size: 200%; + line-height: 1.2em; + } + + h2 { + font-weight : bold; + font-size : 150%; + + padding-top : 0.8em; + } + + h3 { + font-size : 140%; + padding-top : 0.8em; + } + + /* Adjust indentation for three levels. */ + #container { + max-width: 48em; + } + + #content { + padding: 0 0.1em 0 4em; + /*background-color: red;*/ + } + + #content h1 { + margin-left: -2.06em; + } + + #content h2 { + margin-left: -1.33em; + } + + /* Title page */ + + #titlepage { + padding: 2em 0 1em 0; + border-bottom: 1px solid black; + } + + #titlepage .title { + font-weight: bold; + font-size: 200%; + text-align: center; + } + + #titlepage #first-title { + padding: 1em 0 0.4em 0; + } + + #titlepage #second-title { + padding: 0.4em 0 2em 0; + } + + /* Lists */ + ul.list li { + padding-top : 0.3em; + padding-bottom : 0.3em; + } + + div.img { + text-align: center; + padding: 2em 0 2em 0; + } + + /* */ + dl dt { + padding : 0.8em 0 0 0; + } + + /* Built-in table */ + #builtin { + margin: 2em 0 2em 0; + + border-collapse : collapse; + border : 1px solid; + border-color : #000000; + + font-size : 11px; + line-height : 14px; + } + + #builtin th, #builtin td { + border: 1px solid; + padding : 0.9em 0.9em 0.7em 0.9em; + } + + #builtin th { + background : #cde8f6; + } + + #builtin td { + text-align: left; + } + + /* TOC */ + table.toc { + border-style : none; + border-collapse : separate; + border-spacing : 0; + + margin : 0.2em 0 0.2em 0; + padding : 0 0 0 0; + } + + table.toc tr { + padding : 0 0 0 0; + margin : 0 0 0 0; + } + + table.toc * td, table.toc * th { + border-style : none; + margin : 0 0 0 0; + vertical-align : top; + } + + table.toc * th { + font-weight : normal; + padding : 0em 0.1em 0em 0; + text-align : left; + white-space : nowrap; + } + + table.toc * table.toc th { + padding-left : 1em; + } + + table.toc * td { + padding : 0em 0 0em 0.7em; + text-align : left; + } +</style> + + +</head> + +<body> +<div id="container"> + <div id="content"> + + <div class="noprint"> + + <div id="titlepage"> + <div class="title" id="first-title">C++/Tree Mapping</div> + <div class="title" id="second-title">Getting Started Guide</div> + + <p>Copyright © 2005-2014 CODE SYNTHESIS TOOLS CC</p> + + <p>Permission is granted to copy, distribute and/or modify this + document under the terms of the + <a href="http://www.codesynthesis.com/licenses/fdl-1.2.txt">GNU Free + Documentation License, version 1.2</a>; with no Invariant Sections, + no Front-Cover Texts and no Back-Cover Texts. + </p> + + <p>This document is available in the following formats: + <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/index.xhtml">XHTML</a>, + <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/cxx-tree-guide.pdf">PDF</a>, and + <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/cxx-tree-guide.ps">PostScript</a>.</p> + + </div> + + <h1>Table of Contents</h1> + + <table class="toc"> + <tr> + <th></th><td><a href="#0">Preface</a> + <table class="toc"> + <tr><th></th><td><a href="#0.1">About This Document</a></td></tr> + <tr><th></th><td><a href="#0.2">More Information</a></td></tr> + </table> + </td> + </tr> + + <tr> + <th>1</th><td><a href="#1">Introduction</a> + <table class="toc"> + <tr><th>1.1</th><td><a href="#1.1">Mapping Overview</a></td></tr> + <tr><th>1.2</th><td><a href="#1.2">Benefits</a></td></tr> + </table> + </td> + </tr> + + <tr> + <th>2</th><td><a href="#2">Hello World Example</a> + <table class="toc"> + <tr><th>2.1</th><td><a href="#2.1">Writing XML Document and Schema</a></td></tr> + <tr><th>2.2</th><td><a href="#2.2">Translating Schema to C++</a></td></tr> + <tr><th>2.3</th><td><a href="#2.3">Implementing Application Logic</a></td></tr> + <tr><th>2.4</th><td><a href="#2.4">Compiling and Running</a></td></tr> + <tr><th>2.5</th><td><a href="#2.5">Adding Serialization</a></td></tr> + <tr><th>2.6</th><td><a href="#2.6">Selecting Naming Convention</a></td></tr> + <tr><th>2.7</th><td><a href="#2.7">Generating Documentation</a></td></tr> + </table> + </td> + </tr> + + <tr> + <th>3</th><td><a href="#3">Overall Mapping Configuration</a> + <table class="toc"> + <tr><th>3.1</th><td><a href="#3.1">C++ Standard</a></td></tr> + <tr><th>3.2</th><td><a href="#3.2">Character Type and Encoding</a></td></tr> + <tr><th>3.3</th><td><a href="#3.3">Support for Polymorphism </a></td></tr> + <tr><th>3.4</th><td><a href="#3.4">Namespace Mapping</a></td></tr> + <tr><th>3.5</th><td><a href="#3.5">Thread Safety</a></td></tr> + </table> + </td> + </tr> + + <tr> + <th>4</th><td><a href="#4">Working with Object Models</a> + <table class="toc"> + <tr><th>4.1</th><td><a href="#4.1">Attribute and Element Cardinalities</a></td></tr> + <tr><th>4.2</th><td><a href="#4.2">Accessing the Object Model</a></td></tr> + <tr><th>4.3</th><td><a href="#4.3">Modifying the Object Model</a></td></tr> + <tr><th>4.4</th><td><a href="#4.4">Creating the Object Model from Scratch</a></td></tr> + <tr><th>4.5</th><td><a href="#4.5">Mapping for the Built-in XML Schema Types</a></td></tr> + </table> + </td> + </tr> + + <tr> + <th>5</th><td><a href="#5">Parsing</a> + <table class="toc"> + <tr><th>5.1</th><td><a href="#5.1">XML Schema Validation and Searching</a></td></tr> + <tr><th>5.2</th><td><a href="#5.2">Error Handling</a></td></tr> + </table> + </td> + </tr> + + <tr> + <th>6</th><td><a href="#6">Serialization</a> + <table class="toc"> + <tr><th>6.1</th><td><a href="#6.1">Namespace and Schema Information</a></td></tr> + <tr><th>6.2</th><td><a href="#6.2">Error Handling</a></td></tr> + </table> + </td> + </tr> + + </table> + </div> + + <h1><a name="0">Preface</a></h1> + + <h2><a name="0.1">About This Document</a></h2> + + <p>The goal of this document is to provide you with an understanding of + the C++/Tree programming model and allow you to efficiently evaluate + XSD against your project's technical requirements. As such, this + document is intended for C++ developers and software architects + who are looking for an XML processing solution. For a more in-depth + description of the C++/Tree mapping refer to the + <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/">C++/Tree + Mapping User Manual</a>.</p> + + <p>Prior experience with XML and C++ is required to understand this + document. Basic understanding of XML Schema is advantageous but + not expected or required. + </p> + + + <h2><a name="0.2">More Information</a></h2> + + <p>Beyond this guide, you may also find the following sources of + information useful:</p> + + <ul class="list"> + <li><a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/">C++/Tree + Mapping User Manual</a></li> + + <li><a href="http://wiki.codesynthesis.com/Tree/Customization_guide">C++/Tree + Mapping Customization Guide</a></li> + + <li><a href="http://wiki.codesynthesis.com/Tree/FAQ">C++/Tree + Mapping Frequently Asked Questions (FAQ)</a></li> + + <li><a href="http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml">XSD + Compiler Command Line Manual</a></li> + + <li>The <code>examples/cxx/tree/</code> directory in the XSD + distribution contains a collection of examples and a README + file with an overview of each example.</li> + + <li>The <code>README</code> file in the XSD distribution explains + how to compile the examples on various platforms.</li> + + <li>The <a href="http://www.codesynthesis.com/mailman/listinfo/xsd-users">xsd-users</a> + mailing list is the place to ask technical questions about XSD and the C++/Parser mapping. + Furthermore, the <a href="http://www.codesynthesis.com/pipermail/xsd-users/">archives</a> + may already have answers to some of your questions.</li> + </ul> + + <!-- Introduction --> + + <h1><a name="1">1 Introduction</a></h1> + + <p>Welcome to CodeSynthesis XSD and the C++/Tree mapping. XSD is a + cross-platform W3C XML Schema to C++ data binding compiler. C++/Tree + is a W3C XML Schema to C++ mapping that represents the data stored + in XML as a statically-typed, vocabulary-specific object model. + </p> + + <h2><a name="1.1">1.1 Mapping Overview</a></h2> + + <p>Based on a formal description of an XML vocabulary (schema), the + C++/Tree mapping produces a tree-like data structure suitable for + in-memory processing. The core of the mapping consists of C++ + classes that constitute the object model and are derived from + types defined in XML Schema as well as XML parsing and + serialization code.</p> + + <p>Besides the core features, C++/Tree provide a number of additional + mapping elements that can be useful in some applications. These + include serialization and extraction to/from formats others than + XML, such as unstructured text (useful for debugging) and binary + representations such as XDR and CDR for high-speed data processing + as well as automatic documentation generation. The C++/Tree mapping + also provides a wide range of mechanisms for controlling and + customizing the generated code.</p> + + <p>A typical application that uses C++/Tree for XML processing usually + performs the following three steps: it first reads (parses) an XML + document to an in-memory object model, it then performs some useful + computations on that object model which may involve modification + of the model, and finally it may write (serialize) the modified + object model back to XML.</p> + + <p>The next chapter presents a simple application that performs these + three steps. The following chapters show how to use the C++/Tree + mapping in more detail.</p> + + <h2><a name="1.2">1.2 Benefits</a></h2> + + <p>Traditional XML access APIs such as Document Object Model (DOM) + or Simple API for XML (SAX) have a number of drawbacks that + make them less suitable for creating robust and maintainable + XML processing applications. These drawbacks include: + </p> + + <ul class="list"> + <li>Generic representation of XML in terms of elements, attributes, + and text forces an application developer to write a substantial + amount of bridging code that identifies and transforms pieces + of information encoded in XML to a representation more suitable + for consumption by the application logic.</li> + + <li>String-based flow control defers error detection to runtime. + It also reduces code readability and maintainability.</li> + + <li>Lack of type safety because the data is represented as text.</li> + + <li>Resulting applications are hard to debug, change, and + maintain.</li> + </ul> + + <p>In contrast, statically-typed, vocabulary-specific object model + produced by the C++/Tree mapping allows you to operate in your + domain terms instead of the generic elements, attributes, and + text. Static typing helps catch errors at compile-time rather + than at run-time. Automatic code generation frees you for more + interesting tasks (such as doing something useful with the + information stored in the XML documents) and minimizes the + effort needed to adapt your applications to changes in the + document structure. To summarize, the C++/Tree object model has + the following key advantages over generic XML access APIs:</p> + + <ul class="list"> + <li><b>Ease of use.</b> The generated code hides all the complexity + associated with parsing and serializing XML. This includes navigating + the structure and converting between the text representation and + data types suitable for manipulation by the application + logic.</li> + + <li><b>Natural representation.</b> The object representation allows + you to access the XML data using your domain vocabulary instead + of generic elements, attributes, and text.</li> + + <li><b>Concise code.</b> With the object representation the + application implementation is simpler and thus easier + to read and understand.</li> + + <li><b>Safety.</b> The generated object model is statically + typed and uses functions instead of strings to access the + information. This helps catch programming errors at compile-time + rather than at runtime.</li> + + <li><b>Maintainability.</b> Automatic code generation minimizes the + effort needed to adapt the application to changes in the + document structure. With static typing, the C++ compiler + can pin-point the places in the client code that need to be + changed.</li> + + <li><b>Compatibility.</b> Sequences of elements are represented in + the object model as containers conforming to the standard C++ + sequence requirements. This makes it possible to use standard + C++ algorithms on the object representation and frees you from + learning yet another container interface, as is the case with + DOM.</li> + + <li><b>Efficiency.</b> If the application makes repetitive use + of the data extracted from XML, then the C++/Tree object model + is more efficient because the navigation is performed using + function calls rather than string comparisons and the XML + data is extracted only once. Furthermore, the runtime memory + usage is reduced due to more efficient data storage + (for instance, storing numeric data as integers instead of + strings) as well as the static knowledge of cardinality + constraints.</li> + </ul> + + + <!-- Hello World Parser --> + + + <h1><a name="2">2 Hello World Example</a></h1> + + <p>In this chapter we will examine how to parse, access, modify, and + serialize a very simple XML document using the XSD-generated + C++/Tree object model. The code presented in this chapter is + based on the <code>hello</code> example which can be found in + the <code>examples/cxx/tree/</code> directory of the XSD + distribution.</p> + + <h2><a name="2.1">2.1 Writing XML Document and Schema</a></h2> + + <p>First, we need to get an idea about the structure + of the XML documents we are going to process. Our + <code>hello.xml</code>, for example, could look like this:</p> + + <pre class="xml"> +<?xml version="1.0"?> +<hello> + + <greeting>Hello</greeting> + + <name>sun</name> + <name>moon</name> + <name>world</name> + +</hello> + </pre> + + <p>Then we can write a description of the above XML in the + XML Schema language and save it into <code>hello.xsd</code>:</p> + + <pre class="xml"> +<?xml version="1.0"?> +<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> + + <xs:complexType name="hello_t"> + <xs:sequence> + <xs:element name="greeting" type="xs:string"/> + <xs:element name="name" type="xs:string" maxOccurs="unbounded"/> + </xs:sequence> + </xs:complexType> + + <xs:element name="hello" type="hello_t"/> + +</xs:schema> + </pre> + + <p>Even if you are not familiar with XML Schema, it + should be easy to connect declarations in <code>hello.xsd</code> + to elements in <code>hello.xml</code>. The <code>hello_t</code> type + is defined as a sequence of the nested <code>greeting</code> and + <code>name</code> elements. Note that the term sequence in XML + Schema means that elements should appear in a particular order + as opposed to appearing multiple times. The <code>name</code> + element has its <code>maxOccurs</code> property set to + <code>unbounded</code> which means it can appear multiple times + in an XML document. Finally, the globally-defined <code>hello</code> + element prescribes the root element for our vocabulary. For an + easily-approachable introduction to XML Schema refer to + <a href="http://www.w3.org/TR/xmlschema-0/">XML Schema Part 0: + Primer</a>.</p> + + <p>The above schema is a specification of our XML vocabulary; it tells + everybody what valid documents of our XML-based language should look + like. We can also update our <code>hello.xml</code> to include the + information about the schema so that XML parsers can validate + our document:</p> + + <pre class="xml"> +<?xml version="1.0"?> +<hello xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" + xsi:noNamespaceSchemaLocation="hello.xsd"> + + <greeting>Hello</greeting> + + <name>sun</name> + <name>moon</name> + <name>world</name> + +</hello> + </pre> + + + <p>The next step is to compile the schema to generate the object + model and parsing functions.</p> + + <h2><a name="2.2">2.2 Translating Schema to C++</a></h2> + + <p>Now we are ready to translate our <code>hello.xsd</code> to C++. + To do this we invoke the XSD compiler from a terminal (UNIX) or + a command prompt (Windows): + </p> + + <pre class="terminal"> +$ xsd cxx-tree hello.xsd + </pre> + + <p>The XSD compiler produces two C++ files: <code>hello.hxx</code> and + <code>hello.cxx</code>. The following code fragment is taken from + <code>hello.hxx</code>; it should give you an idea about what gets + generated: + </p> + + <pre class="c++"> +class hello_t +{ +public: + // greeting + // + typedef xml_schema::string greeting_type; + + const greeting_type& + greeting () const; + + greeting_type& + greeting (); + + void + greeting (const greeting_type& x); + + // name + // + typedef xml_schema::string name_type; + typedef xsd::sequence<name_type> name_sequence; + typedef name_sequence::iterator name_iterator; + typedef name_sequence::const_iterator name_const_iterator; + + const name_sequence& + name () const; + + name_sequence& + name (); + + void + name (const name_sequence& s); + + // Constructor. + // + hello_t (const greeting_type&); + + ... + +}; + +std::auto_ptr<hello_t> +hello (const std::string& uri); + +std::auto_ptr<hello_t> +hello (std::istream&); + </pre> + + <p>The <code>hello_t</code> C++ class corresponds to the + <code>hello_t</code> XML Schema type. For each element + in this type a set of C++ type definitions as well as + accessor and modifier functions are generated inside the + <code>hello_t</code> class. Note that the type definitions + and member functions for the <code>greeting</code> and + <code>name</code> elements are different because of the + cardinality differences between these two elements + (<code>greeting</code> is a required single element and + <code>name</code> is a sequence of elements).</p> + + <p>The <code>xml_schema::string</code> type used in the type + definitions is a C++ class provided by the XSD runtime + that corresponds to built-in XML Schema type + <code>string</code>. The <code>xml_schema::string</code> + is based on <code>std::string</code> and can be used as + such. Similarly, the <code>sequence</code> class template + that is used in the <code>name_sequence</code> type + definition is based on and has the same interface as + <code>std::vector</code>. The mapping between the built-in + XML Schema types and C++ types is described in more detail in + <a href="#4.5">Section 4.5, "Mapping for the Built-in XML Schema + Types"</a>. The <code>hello_t</code> class also includes a + constructor with an initializer for the required + <code>greeting</code> element as its argument.</p> + + <p>The <code>hello</code> overloaded global functions correspond + to the <code>hello</code> global element in XML Schema. A + global element in XML Schema is a valid document root. + By default XSD generated a set of parsing functions for each + global element defined in XML Schema (this can be overridden + with the <code>--root-element-*</code> options). Parsing + functions return a dynamically allocated object model as an + automatic pointer. The actual pointer used depends on the + C++ standard selected. For C++98 it is <code>std::auto_ptr</code> + as shown above. For C++11 it is <code>std::unique_ptr</code>. + For example, if we modify our XSD compiler invocation to + select C++11:</p> + + <pre class="terminal"> +$ xsd cxx-tree --std c++11 hello.xsd + </pre> + + <p>Then the parsing function signatures will become:</p> + + <pre class="c++"> +std::unique_ptr<hello_t> +hello (const std::string& uri); + +std::unique_ptr<hello_t> +hello (std::istream&); + </pre> + + <p>For more information on parsing functions see <a href="#5">Chapter 5, + "Parsing"</a>.</p> + + <h2><a name="2.3">2.3 Implementing Application Logic</a></h2> + + <p>At this point we have all the parts we need to do something useful + with the information stored in our XML document: + </p> + + <pre class="c++"> +#include <iostream> +#include "hello.hxx" + +using namespace std; + +int +main (int argc, char* argv[]) +{ + try + { + auto_ptr<hello_t> h (hello (argv[1])); + + for (hello_t::name_const_iterator i (h->name ().begin ()); + i != h->name ().end (); + ++i) + { + cerr << h->greeting () << ", " << *i << "!" << endl; + } + } + catch (const xml_schema::exception& e) + { + cerr << e << endl; + return 1; + } +} + </pre> + + <p>The first part of our application calls one of the parsing + functions to parser an XML file specified in the command line. + We then use the returned object model to iterate over names + and print a greeting line for each of them. Finally, we + catch and print the <code>xml_schema::exception</code> + exception in case something goes wrong. This exception + is the root of the exception hierarchy used by the + XSD-generated code. + </p> + + + <h2><a name="2.4">2.4 Compiling and Running</a></h2> + + <p>After saving our application from the previous section in + <code>driver.cxx</code>, we are ready to compile our first + program and run it on the test XML document. On a UNIX + system this can be done with the following commands: + </p> + + <pre class="terminal"> +$ c++ -I.../libxsd -c driver.cxx hello.cxx +$ c++ -o driver driver.o hello.o -lxerces-c +$ ./driver hello.xml +Hello, sun! +Hello, moon! +Hello, world! + </pre> + + <p>Here <code>.../libxsd</code> represents the path to the + <code>libxsd</code> directory in the XSD distribution. + Note also that we are required to link our application + with the Xerces-C++ library because the generated code + uses it as the underlying XML parser.</p> + + <h2><a name="2.5">2.5 Adding Serialization</a></h2> + + <p>While parsing and accessing the XML data may be everything + you need, there are applications that require creating new + or modifying existing XML documents. By default XSD does + not produce serialization code. We will need to request + it with the <code>--generate-serialization</code> options:</p> + + <pre class="terminal"> +$ xsd cxx-tree --generate-serialization hello.xsd + </pre> + + <p>If we now examine the generated <code>hello.hxx</code> file, + we will find a set of overloaded serialization functions, + including the following version:</p> + + <pre class="c++"> +void +hello (std::ostream&, + const hello_t&, + const xml_schema::namespace_infomap& = + xml_schema::namespace_infomap ()); + + </pre> + + <p>Just like with parsing functions, XSD generates serialization + functions for each global element unless instructed otherwise + with one of the <code>--root-element-*</code> options. For more + information on serialization functions see <a href="#6">Chapter 6, + "Serialization"</a>.</p> + + <p>We first examine an application that modifies an existing + object model and serializes it back to XML:</p> + + <pre class="c++"> +#include <iostream> +#include "hello.hxx" + +using namespace std; + +int +main (int argc, char* argv[]) +{ + try + { + auto_ptr<hello_t> h (hello (argv[1])); + + // Change the greeting phrase. + // + h->greeting ("Hi"); + + // Add another entry to the name sequence. + // + h->name ().push_back ("mars"); + + // Serialize the modified object model to XML. + // + xml_schema::namespace_infomap map; + map[""].name = ""; + map[""].schema = "hello.xsd"; + + hello (cout, *h, map); + } + catch (const xml_schema::exception& e) + { + cerr << e << endl; + return 1; + } +} + </pre> + + <p>First, our application parses an XML document and obtains its + object model as in the previous example. Then it changes the + greeting string and adds another entry to the list of names. + Finally, it serializes the object model back to XML by calling + the serialization function.</p> + + <p>The first argument we pass to the serialization function is + <code>cout</code> which results in the XML being written to + the standard output for us to inspect. We could have also + written the result to a file or memory buffer by creating an + instance of <code>std::ofstream</code> or <code>std::ostringstream</code> + and passing it instead of <code>cout</code>. The second argument is the + object model we want to serialize. The final argument is an optional + namespace information map for our vocabulary. It captures information + such as namespaces, namespace prefixes to which they should be mapped, + and schemas associated with these namespaces. If we don't provide + this argument then generic namespace prefixes (<code>p1</code>, + <code>p2</code>, etc.) will be automatically assigned to XML namespaces + and no schema information will be added to the resulting document + (see <a href="#6">Chapter 6, "Serialization"</a> for details). + In our case, the prefix (map key) and namespace name are empty + because our vocabulary does not use XML namespaces.</p> + + <p>If we now compile and run this application we will see the + output as shown in the following listing:</p> + + <pre class="xml"> +<?xml version="1.0"?> +<hello xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" + xsi:noNamespaceSchemaLocation="hello.xsd"> + + <greeting>Hi</greeting> + + <name>sun</name> + <name>moon</name> + <name>world</name> + <name>mars</name> + +</hello> + </pre> + + <p>We can also create and serialize an object model from scratch + as shown in the following example:</p> + + <pre class="c++"> +#include <iostream> +#include <fstream> +#include "hello.hxx" + +using namespace std; + +int +main (int argc, char* argv[]) +{ + try + { + hello_t h ("Hi"); + + hello_t::name_sequence& ns (h.name ()); + + ns.push_back ("Jane"); + ns.push_back ("John"); + + // Serialize the object model to XML. + // + xml_schema::namespace_infomap map; + map[""].name = ""; + map[""].schema = "hello.xsd"; + + std::ofstream ofs (argv[1]); + hello (ofs, h, map); + } + catch (const xml_schema::exception& e) + { + cerr << e << endl; + return 1; + } +} + </pre> + + <p>In this example we used the generated constructor to create + an instance of type <code>hello_t</code>. To reduce typing, + we obtained a reference to the name sequence which we then + used to add a few names. The serialization part is identical + to the previous example except this time we are writing to + a file. If we compile and run this program, it produces the + following XML file:</p> + + <pre class="xml"> +<?xml version="1.0"?> +<hello xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" + xsi:noNamespaceSchemaLocation="hello.xsd"> + + <greeting>Hi</greeting> + + <name>Jane</name> + <name>John</name> + +</hello> + </pre> + + <h2><a name="2.6">2.6 Selecting Naming Convention</a></h2> + + <p>By default XSD uses the so-called K&R (Kernighan and Ritchie) + identifier naming convention in the generated code. In this + convention both type and function names are in lower case and + words are separated by underscores. If your application code or + schemas use a different notation, you may want to change the + naming convention used in the generated code for consistency. + XSD supports a set of widely-used naming conventions + that you can select with the <code>--type-naming</code> and + <code>--function-naming</code> options. You can also further + refine one of the predefined conventions or create a completely + custom naming scheme by using the <code>--*-regex</code> options.</p> + + <p>As an example, let's assume that our "Hello World" application + uses the so-called upper-camel-case naming convention for types + (that is, each word in a type name is capitalized) and the K&R + convention for function names. Since K&R is the default + convention for both type and function names, we only need to + change the type naming scheme:</p> + + <pre class="terminal"> +$ xsd cxx-tree --type-naming ucc hello.xsd + </pre> + + <p>The <code>ucc</code> argument to the <code>--type-naming</code> + options stands for upper-camel-case. If we now examine the + generated <code>hello.hxx</code>, we will see the following + changes compared to the declarations shown in the previous + sections:</p> + + <pre class="c++"> +class Hello_t +{ +public: + // greeting + // + typedef xml_schema::String GreetingType; + + const GreetingType& + greeting () const; + + GreetingType& + greeting (); + + void + greeting (const GreetingType& x); + + // name + // + typedef xml_schema::String NameType; + typedef xsd::sequence<NameType> NameSequence; + typedef NameSequence::iterator NameIterator; + typedef NameSequence::const_iterator NameConstIterator; + + const NameSequence& + name () const; + + NameSequence& + name (); + + void + name (const NameSequence& s); + + // Constructor. + // + Hello_t (const GreetingType&); + + ... + +}; + +std::auto_ptr<Hello_t> +hello (const std::string& uri); + +std::auto_ptr<Hello_t> +hello (std::istream&); + </pre> + + <p>Notice that the type names in the <code>xml_schema</code> namespace, + for example <code>xml_schema::String</code>, now also use the + upper-camel-case naming convention. The only thing that we may + be unhappy about in the above code is the <code>_t</code> + suffix in <code>Hello_t</code>. If we are not in a position + to change the schema, we can <em>touch-up</em> the <code>ucc</code> + convention with a custom translation rule using the + <code>--type-regex</code> option:</p> + + <pre class="terminal"> +$ xsd cxx-tree --type-naming ucc --type-regex '/ (.+)_t/\u$1/' hello.xsd + </pre> + + <p>This results in the following changes to the generated code:</p> + + <pre class="c++"> +class Hello +{ +public: + // greeting + // + typedef xml_schema::String GreetingType; + + const GreetingType& + greeting () const; + + GreetingType& + greeting (); + + void + greeting (const GreetingType& x); + + // name + // + typedef xml_schema::String NameType; + typedef xsd::sequence<NameType> NameSequence; + typedef NameSequence::iterator NameIterator; + typedef NameSequence::const_iterator NameConstIterator; + + const NameSequence& + name () const; + + NameSequence& + name (); + + void + name (const NameSequence& s); + + // Constructor. + // + Hello (const GreetingType&); + + ... + +}; + +std::auto_ptr<Hello> +hello (const std::string& uri); + +std::auto_ptr<Hello> +hello (std::istream&); + </pre> + + <p>For more detailed information on the <code>--type-naming</code>, + <code>--function-naming</code>, <code>--type-regex</code>, and + other <code>--*-regex</code> options refer to the NAMING + CONVENTION section in the <a href="http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml">XSD + Compiler Command Line Manual</a>.</p> + + <h2><a name="2.7">2.7 Generating Documentation</a></h2> + + <p>While our object model is quite simple, real-world vocabularies + can be quite complex with hundreds of types, elements, and + attributes. For such vocabularies figuring out which types + provide which member functions by studying the generated + source code or schemas can be a daunting task. To provide + application developers with a more accessible way of + understanding the generated object models, the XSD compiler + can be instructed to produce source code with documentation + comments in the Doxygen format. Then the source code can be + processed with the <a href="http://www.doxygen.org">Doxygen</a> + documentation system to extract this information and produce + documentation in various formats. + </p> + + <p>In this section we will see how to generate documentation + for our "Hello World" vocabulary. To showcase the full power + of the XSD documentation facilities, we will first document + our schema. The XSD compiler will then transfer + this information from the schema to the generated code and + then to the object model documentation. Note that the + documentation in the schema is not required for XSD to + generate useful documentation. Below you will find + our <code>hello.xsd</code> with added documentation:</p> + + <pre class="xml"> +<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> + + <xs:complexType name="hello_t"> + + <xs:annotation> + <xs:documentation> + The hello_t type consists of a greeting phrase and a + collection of names to which this greeting applies. + </xs:documentation> + </xs:annotation> + + <xs:sequence> + + <xs:element name="greeting" type="xs:string"> + <xs:annotation> + <xs:documentation> + The greeting element contains the greeting phrase + for this hello object. + </xs:documentation> + </xs:annotation> + </xs:element> + + <xs:element name="name" type="xs:string" maxOccurs="unbounded"> + <xs:annotation> + <xs:documentation> + The name elements contains names to be greeted. + </xs:documentation> + </xs:annotation> + </xs:element> + + </xs:sequence> + </xs:complexType> + + <xs:element name="hello" type="hello_t"> + <xs:annotation> + <xs:documentation> + The hello element is a root of the Hello XML vocabulary. + Every conforming document should start with this element. + </xs:documentation> + </xs:annotation> + </xs:element> + +</xs:schema> + </pre> + + <p>The first step in obtaining the documentation is to recompile + our schema with the <code>--generate-doxygen</code> option:</p> + + <pre class="terminal"> +$ xsd cxx-tree --generate-serialization --generate-doxygen hello.xsd + </pre> + + <p>Now the generated <code>hello.hxx</code> file contains comments + in the Doxygen format. The next step is to process this file + with the Doxygen documentation system. If your project does + not use Doxygen then you first need to create a configuration + file for your project:</p> + + <pre class="terminal"> +$ doxygen -g hello.doxygen + </pre> + + <p>You only need to perform this step once. Now we can generate + the documentation by executing the following command in the + directory with the generated source code:</p> + + <pre class="terminal"> +$ doxygen hello.doxygen + </pre> + + <p>While the generated documentation can be useful as is, we can + go one step further and link (using the Doxygen tags mechanism) + the documentation for our object model with the documentation + for the XSD runtime library which defines C++ classes for the + built-in XML Schema types. This way we can seamlessly browse + between documentation for the <code>hello_t</code> class which + is generated by the XSD compiler and the <code>xml_schema::string</code> + class which is defined in the XSD runtime library. The Doxygen + configuration file for the XSD runtime is provided with the XSD + distribution.</p> + + <p>You can view the result of the steps described in this section + on the <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/hello/html/annotated.html">Hello + Example Documentation</a> page.</p> + + <!-- Chapater 3 --> + + + <h1><a name="3">3 Overall Mapping Configuration</a></h1> + + <p>The C++/Tree mapping has a number of configuration parameters that + determine the overall properties and behavior of the generated code. + Configuration parameters are specified with the XSD command line + options. This chapter describes configuration aspects that are most + commonly encountered by application developers. These include: the + C++ standard, the character type that is used by the generated code, + handling of vocabularies that use XML Schema polymorphism, XML Schema + to C++ namespace mapping, and thread safety. For more ways to configure + the generated code refer to the + <a href="http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml">XSD + Compiler Command Line Manual</a>. + </p> + + <h2><a name="3.1">3.1 C++ Standard</a></h2> + + <p>The C++/Tree mapping provides support for ISO/IEC C++ 1998/2003 (C++98) + and ISO/IEC C++ 2011 (C++11). To select the C++ standard for the + generated code we use the <code>--std</code> XSD compiler command + line option. While the majority of the examples in this guide use + C++98, support for the new functionality and library components + introduced in C++11 are discussed throughout the document.</p> + + <h2><a name="3.2">3.2 Character Type and Encoding</a></h2> + + <p>The C++/Tree mapping has built-in support for two character types: + <code>char</code> and <code>wchar_t</code>. You can select the + character type with the <code>--char-type</code> command line + option. The default character type is <code>char</code>. The + character type affects all string and string-based types that + are used in the mapping. These include the string-based built-in + XML Schema types, exception types, stream types, etc.</p> + + <p>Another aspect of the mapping that depends on the character type + is character encoding. For the <code>char</code> character type + the default encoding is UTF-8. Other supported encodings are + ISO-8859-1, Xerces-C++ Local Code Page (LPC), as well as + custom encodings. You can select which encoding should be used + in the object model with the <code>--char-encoding</code> command + line option.</p> + + <p>For the <code>wchar_t</code> character type the encoding is + automatically selected between UTF-16 and UTF-32/UCS-4 depending + on the size of the <code>wchar_t</code> type. On some platforms + (for example, Windows with Visual C++ and AIX with IBM XL C++) + <code>wchar_t</code> is 2 bytes long. For these platforms the + encoding is UTF-16. On other platforms <code>wchar_t</code> is 4 bytes + long and UTF-32/UCS-4 is used.</p> + + <p>Note also that the character encoding that is used in the object model + is independent of the encodings used in input and output XML. In fact, + all three (object mode, input XML, and output XML) can have different + encodings.</p> + + <h2><a name="3.3">3.3 Support for Polymorphism</a></h2> + + <p>By default XSD generates non-polymorphic code. If your vocabulary + uses XML Schema polymorphism in the form of <code>xsi:type</code> + and/or substitution groups, then you will need to compile + your schemas with the <code>--generate-polymorphic</code> option + to produce polymorphism-aware code. For more information on + working with polymorphic object models, refer to + <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.11">Section 2.11, + "Mapping for <code>xsi:type</code> and Substitution Groups"</a> in + the C++/Tree Mapping User Manual.</p> + + <h2><a name="3.4">3.4 Namespace Mapping</a></h2> + + <p>XSD maps XML namespaces specified in the <code>targetNamespace</code> + attribute in XML Schema to one or more nested C++ namespaces. By + default, a namespace URI is mapped to a sequence of C++ namespace + names by removing the protocol and host parts and splitting the + rest into a sequence of names with <code>'/'</code> as the name + separator.</p> + + <p>The default mapping of namespace URIs to C++ namespaces + can be altered using the <code>--namespace-map</code> and + <code>--namespace-regex</code> compiler options. For example, + to map namespace URI <code>http://www.codesynthesis.com/my</code> to + C++ namespace <code>cs::my</code>, we can use the following option:</p> + + <pre class="terminal"> +--namespace-map http://www.codesynthesis.com/my=cs::my + </pre> + + <p>A vocabulary without a namespace is mapped to the global scope. This + also can be altered with the above options by using an empty name + for the XML namespace:</p> + + <pre class="terminal"> +--namespace-map =cs + </pre> + + <h2><a name="3.5">3.5 Thread Safety</a></h2> + + <p>XSD-generated code is thread-safe in the sense that you can + use different instantiations of the object model in several + threads concurrently. This is possible due to the generated + code not relying on any writable global variables. If you need + to share the same object between several threads then you will + need to provide some form of synchronization. One approach would + be to use the generated code customization mechanisms to embed + synchronization primitives into the generated C++ classes. For more + information on generated code customization refer to the + <a href="http://wiki.codesynthesis.com/Tree/Customization_guide">C++/Tree + Mapping Customization Guide</a>.</p> + + <p>If you also would like to call parsing and/or serialization + functions from several threads potentially concurrently, then + you will need to make sure the Xerces-C++ runtime is initialized + and terminated only once. The easiest way to do this is to + initialize/terminate Xerces-C++ from <code>main()</code> when + there are no threads yet/anymore:</p> + + <pre class="c++"> +#include <xercesc/util/PlatformUtils.hpp> + +int +main () +{ + xercesc::XMLPlatformUtils::Initialize (); + + { + // Start/terminate threads and parse/serialize here. + } + + xercesc::XMLPlatformUtils::Terminate (); +} + </pre> + + <p>Because you initialize the Xerces-C++ runtime yourself you should + also pass the <code>xml_schema::flags::dont_initialize</code> flag + to parsing and serialization functions. See <a href="#5">Chapter 5, + "Parsing"</a> and <a href="#6">Chapter 6, "Serialization"</a> for + more information.</p> + + + <!-- Chapater 4 --> + + + <h1><a name="4">4 Working with Object Models</a></h1> + + <p>As we have seen in the previous chapters, the XSD compiler generates + a C++ class for each type defined in XML Schema. Together these classes + constitute an object model for an XML vocabulary. In this chapter we + will take a closer look at different elements that comprise an + object model class as well as how to create, access, and modify + object models.</p> + + <p>In this and subsequent chapters we will use the following schema + that describes a collection of person records. We save it in + <code>people.xsd</code>:</p> + + <pre class="xml"> +<?xml version="1.0"?> +<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> + + <xs:simpleType name="gender_t"> + <xs:restriction base="xs:string"> + <xs:enumeration value="male"/> + <xs:enumeration value="female"/> + </xs:restriction> + </xs:simpleType> + + <xs:complexType name="person_t"> + <xs:sequence> + <xs:element name="first-name" type="xs:string"/> + <xs:element name="middle-name" type="xs:string" minOccurs="0"/> + <xs:element name="last-name" type="xs:string"/> + <xs:element name="gender" type="gender_t"/> + <xs:element name="age" type="xs:short"/> + </xs:sequence> + <xs:attribute name="id" type="xs:unsignedInt" use="required"/> + </xs:complexType> + + <xs:complexType name="people_t"> + <xs:sequence> + <xs:element name="person" type="person_t" maxOccurs="unbounded"/> + </xs:sequence> + </xs:complexType> + + <xs:element name="people" type="people_t"/> + +</xs:schema> + </pre> + + <p>A sample XML instance to go along with this schema is saved + in <code>people.xml</code>:</p> + + <pre class="xml"> +<?xml version="1.0"?> +<people xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" + xsi:noNamespaceSchemaLocation="people.xsd"> + + <person id="1"> + <first-name>John</first-name> + <last-name>Doe</last-name> + <gender>male</gender> + <age>32</age> + </person> + + <person id="2"> + <first-name>Jane</first-name> + <middle-name>Mary</middle-name> + <last-name>Doe</last-name> + <gender>female</gender> + <age>28</age> + </person> + +</people> + </pre> + + <p>Compiling <code>people.xsd</code> with the XSD compiler results + in three generated C++ classes: <code>gender_t</code>, + <code>person_t</code>, and <code>people_t</code>. + The <code>gender_t</code> class is modelled after the C++ + <code>enum</code> type. Its definition is presented below:</p> + + <pre class="c++"> +class gender_t: public xml_schema::string +{ +public: + enum value + { + male, + female + }; + + gender_t (value); + gender_t (const xml_schema::string&); + + gender_t& + operator= (value); + + operator value () const; +}; + </pre> + + <p>The following listing shows how we can use this type:</p> + + <pre class="c++"> +gender_t m (gender_t::male); +gender_t f ("female"); + +if (m == "female" || f == gender_t::male) +{ + ... +} + +switch (m) +{ +case gender_t::male: + { + ... + } +case gender_t::female: + { + ... + } +} + </pre> + + <p>The other two classes will be examined in detail in the subsequent + sections.</p> + + <h2><a name="4.1">4.1 Attribute and Element Cardinalities</a></h2> + + <p>As we have seen in the previous chapters, XSD generates a different + set of type definitions and member functions for elements with + different cardinalities. The C++/Tree mapping divides all the possible + element and attribute cardinalities into three cardinality classes: + <em>one</em>, <em>optional</em>, and <em>sequence</em>.</p> + + <p>The <em>one</em> cardinality class covers all elements that should + occur exactly once as well as required attributes. In our + example, the <code>first-name</code>, <code>last-name</code>, + <code>gender</code>, and <code>age</code> elements as well as + the <code>id</code> attribute belong to this cardinality class. + The following code fragment shows type definitions as well as the + accessor and modifier functions that are generated for the + <code>gender</code> element in the <code>person_t</code> class:</p> + + <pre class="c++"> +class person_t +{ + // gender + // + typedef gender_t gender_type; + + const gender_type& + gender () const; + + gender_type& + gender (); + + void + gender (const gender_type&); +}; + </pre> + + <p>The <code>gender_type</code> type is an alias for the element's type. + The first two accessor functions return read-only (constant) and + read-write references to the element's value, respectively. The + modifier function sets the new value for the element.</p> + + <p>The <em>optional</em> cardinality class covers all elements that + can occur zero or one time as well as optional attributes. In our + example, the <code>middle-name</code> element belongs to this + cardinality class. The following code fragment shows the type + definitions as well as the accessor and modifier functions that + are generated for this element in the <code>person_t</code> class:</p> + + <pre class="c++"> +class person_t +{ + // middle-name + // + typedef xml_schema::string middle_name_type; + typedef xsd::optional<middle_name_type> middle_name_optional; + + const middle_name_optional& + middle_name () const; + + middle_name_optional& + middle_name (); + + void + middle_name (const middle_name_type&); + + void + middle_name (const middle_name_optional&); +}; + </pre> + + <p>As with the <code>gender</code> element, <code>middle_name_type</code> + is an alias for the element's type. The <code>middle_name_optional</code> + type is a container for the element's optional value. It can be queried + for the presence of the value using the <code>present()</code> function. + The value itself can be retrieved using the <code>get()</code> + accessor and set using the <code>set()</code> modifier. The container + can be reverted to the value not present state with the call to the + <code>reset()</code> function. The following example shows how we + can use this container:</p> + + <pre class="c++"> +person_t::middle_name_optional n ("John"); + +if (n.present ()) +{ + cout << n.get () << endl; +} + +n.set ("Jane"); +n.reset (); + </pre> + + + <p>Unlike the <em>one</em> cardinality class, the accessor functions + for the <em>optional</em> class return read-only (constant) and + read-write references to the container instead of the element's + value directly. The modifier functions set the new value for the + element.</p> + + <p>Finally, the <em>sequence</em> cardinality class covers all elements + that can occur more than once. In our example, the + <code>person</code> element in the <code>people_t</code> type + belongs to this cardinality class. The following code fragment shows + the type definitions as well as the accessor and modifier functions + that are generated for this element in the <code>people_t</code> + class:</p> + + <pre class="c++"> +class people_t +{ + // person + // + typedef person_t person_type; + typedef xsd::sequence<person_type> person_sequence; + typedef person_sequence::iterator person_iterator; + typedef person_sequence::const_iterator person_const_iterator; + + const person_sequence& + person () const; + + person_sequence& + person (); + + void + person (const person_sequence&); +}; + </pre> + + <p>Identical to the other cardinality classes, <code>person_type</code> + is an alias for the element's type. The <code>person_sequence</code> + type is a sequence container for the element's values. It is based + on and has the same interface as <code>std::vector</code> and + therefore can be used in similar ways. The <code>person_iterator</code> + and <code>person_const_iterator</code> types are read-only + (constant) and read-write iterators for the <code>person_sequence</code> + container.</p> + + <p>Similar to the <em>optional</em> cardinality class, the + accessor functions for the <em>sequence</em> class return + read-only (constant) and read-write references to the sequence + container. The modifier functions copies the entries from + the passed sequence.</p> + + <p>C++/Tree is a "flattening" mapping in a sense that many levels of + nested compositors (<code>choice</code> and <code>sequence</code>), + all potentially with their own cardinalities, are in the end mapped + to a flat set of elements with one of the three cardinality classes + discussed above. While this results in a simple and easy to use API + for most types, in certain cases, the order of elements in the actual + XML documents is not preserved once parsed into the object model. To + overcome this limitation we can mark certain schema types, for which + content order is not sufficiently preserved, as ordered. For more + information on this functionality refer to + <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.8.4">Section + 2.8.4, "Element Order"</a> in the C++/Tree Mapping User Manual.</p> + + <p>For complex schemas with many levels of nested compositors + (<code>choice</code> and <code>sequence</code>) it can also + be hard to deduce the cardinality class of a particular element. + The generated Doxygen documentation can greatly help with + this task. For each element and attribute the documentation + clearly identifies its cardinality class. Alternatively, you + can study the generated header files to find out the cardinality + class of a particular attribute or element.</p> + + <p>In the next sections we will examine how to access and modify + information stored in an object model using accessor and modifier + functions described in this section.</p> + + <h2><a name="4.2">4.2 Accessing the Object Model</a></h2> + + <p>In this section we will learn how to get to the information + stored in the object model for our person records vocabulary. + The following application accesses and prints the contents + of the <code>people.xml</code> file:</p> + + <pre class="c++"> +#include <iostream> +#include "people.hxx" + +using namespace std; + +int +main () +{ + auto_ptr<people_t> ppl (people ("people.xml")); + + // Iterate over individual person records. + // + people_t::person_sequence& ps (ppl->person ()); + + for (people_t::person_iterator i (ps.begin ()); i != ps.end (); ++i) + { + person_t& p (*i); + + // Print names: first-name and last-name are required elements, + // middle-name is optional. + // + cout << "name: " << p.first_name () << " "; + + if (p.middle_name ().present ()) + cout << p.middle_name ().get () << " "; + + cout << p.last_name () << endl; + + // Print gender, age, and id which are all required. + // + cout << "gender: " << p.gender () << endl + << "age: " << p.age () << endl + << "id: " << p.id () << endl + << endl; + } +} + </pre> + + <p>This code shows common patterns of accessing elements and attributes + with different cardinality classes. For the sequence element + (<code>person</code> in <code>people_t</code>) we first obtain a + reference to the container and then iterate over individual + records. The values of elements and attributes with the + <em>one</em> cardinality class (<code>first-name</code>, + <code>last-name</code>, <code>gender</code>, <code>age</code>, + and <code>id</code>) can be obtained directly by calling the + corresponding accessor functions. For the optional element + <code>middle-name</code> we first check if the value is present + and only then call <code>get()</code> to retrieve it.</p> + + <p>Note that when we want to reduce typing by creating a variable + representing a fragment of the object model that we are currently + working with (<code>ps</code> and <code>p</code> above), we obtain + a reference to that fragment instead of making a potentially + expensive copy. This is generally a good rule to follow when + creating high-performance applications.</p> + + <p>If we run the above application on our sample + <code>people.xml</code>, the output looks as follows:</p> + + <pre class="terminal"> +name: John Doe +gender: male +age: 32 +id: 1 + +name: Jane Mary Doe +gender: female +age: 28 +id: 2 + </pre> + + + <h2><a name="4.3">4.3 Modifying the Object Model</a></h2> + + <p>In this section we will learn how to modify the information + stored in the object model for our person records vocabulary. + The following application changes the contents of the + <code>people.xml</code> file:</p> + + <pre class="c++"> +#include <iostream> +#include "people.hxx" + +using namespace std; + +int +main () +{ + auto_ptr<people_t> ppl (people ("people.xml")); + + // Iterate over individual person records and increment + // the age. + // + people_t::person_sequence& ps (ppl->person ()); + + for (people_t::person_iterator i (ps.begin ()); i != ps.end (); ++i) + { + // Alternative way: i->age ()++; + // + i->age (i->age () + 1); + } + + // Add middle-name to the first record and remove it from + // the second. + // + person_t& john (ps[0]); + person_t& jane (ps[1]); + + john.middle_name ("Mary"); + jane.middle_name ().reset (); + + // Add another John record. + // + ps.push_back (john); + + // Serialize the modified object model to XML. + // + xml_schema::namespace_infomap map; + map[""].name = ""; + map[""].schema = "people.xsd"; + + people (cout, *ppl, map); +} + </pre> + + <p>The first modification the above application performs is iterating + over person records and incrementing the age value. This code + fragment shows how to modify the value of a required attribute + or element. The next modification shows how to set a new value + for the optional <code>middle-name</code> element as well + as clear its value. Finally the example adds a copy of the + John Doe record to the <code>person</code> element sequence.</p> + + <p>Note that in this case using references for the <code>ps</code>, + <code>john</code>, and <code>jane</code> variables is no longer + a performance improvement but a requirement for the application + to function correctly. If we hadn't used references, all our changes + would have been made on copies without affecting the object model.</p> + + <p>If we run the above application on our sample <code>people.xml</code>, + the output looks as follows:</p> + + <pre class="xml"> +<?xml version="1.0"?> +<people xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" + xsi:noNamespaceSchemaLocation="people.xsd"> + + <person id="1"> + <first-name>John</first-name> + <middle-name>Mary</middle-name> + <last-name>Doe</last-name> + <gender>male</gender> + <age>33</age> + </person> + + <person id="2"> + <first-name>Jane</first-name> + <last-name>Doe</last-name> + <gender>female</gender> + <age>29</age> + </person> + + <person id="1"> + <first-name>John</first-name> + <middle-name>Mary</middle-name> + <last-name>Doe</last-name> + <gender>male</gender> + <age>33</age> + </person> + +</people> + </pre> + + + <h2><a name="4.4">4.4 Creating the Object Model from Scratch</a></h2> + + <p>In this section we will learn how to create a new object model + for our person records vocabulary. The following application + recreates the content of the original <code>people.xml</code> + file:</p> + + <pre class="c++"> +#include <iostream> +#include "people.hxx" + +using namespace std; + +int +main () +{ + people_t ppl; + people_t::person_sequence& ps (ppl.person ()); + + // Add the John Doe record. + // + ps.push_back ( + person_t ("John", // first-name + "Doe", // last-name + gender_t::male, // gender + 32, // age + 1)); + + // Add the Jane Doe record. + // + ps.push_back ( + person_t ("Jane", // first-name + "Doe", // last-name + gender_t::female, // gender + 28, // age + 2)); // id + + // Add middle name to the Jane Doe record. + // + person_t& jane (ps.back ()); + jane.middle_name ("Mary"); + + // Serialize the object model to XML. + // + xml_schema::namespace_infomap map; + map[""].name = ""; + map[""].schema = "people.xsd"; + + people (cout, ppl, map); +} + </pre> + + <p>The only new part in the above application is the calls + to the <code>people_t</code> and <code>person_t</code> + constructors. As a general rule, for each C++ class + XSD generates a constructor with initializers + for each element and attribute belonging to the <em>one</em> + cardinality class. For our vocabulary, the following + constructors are generated:</p> + + <pre class="c++"> +class person_t +{ + person_t (const first_name_type&, + const last_name_type&, + const gender_type&, + const age_type&, + const id_type&); +}; + +class people_t +{ + people_t (); +}; + </pre> + + <p>Note also that we set the <code>middle-name</code> element + on the Jane Doe record by obtaining a reference to that record + in the object model and setting the <code>middle-name</code> + value on it. This is a general rule that should be followed + in order to obtain the best performance: if possible, + direct modifications to the object model should be preferred + to modifications on temporaries with subsequent copying. The + following code fragment shows a semantically equivalent but + slightly slower version:</p> + + <pre class="c++"> +// Add the Jane Doe record. +// +person_t jane ("Jane", // first-name + "Doe", // last-name + gender_t::female, // gender + 28, // age + 2); // id + +jane.middle_name ("Mary"); + +ps.push_back (jane); + </pre> + + <p>We can also go one step further to reduce copying and improve + the performance of our application by using the non-copying + <code>push_back()</code> function which assumes ownership + of the passed objects:</p> + + <pre class="c++"> +// Add the John Doe record. C++98 version. +// +auto_ptr<person_t> john_p ( + new person_t ("John", // first-name + "Doe", // last-name + gender_t::male, // gender + 32, // age + 1)); +ps.push_back (john_p); // assumes ownership + +// Add the Jane Doe record. C++11 version +// +unique_ptr<person_t> jane_p ( + new person_t ("Jane", // first-name + "Doe", // last-name + gender_t::female, // gender + 28, // age + 2)); // id +ps.push_back (std::move (jane_p)); // assumes ownership + </pre> + + <p>For more information on the non-copying modifier functions refer to + <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.8">Section + 2.8, "Mapping for Local Elements and Attributes"</a> in the C++/Tree Mapping + User Manual. The above application produces the following output:</p> + + <pre class="xml"> +<?xml version="1.0" ?> +<people xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" + xsi:noNamespaceSchemaLocation="people.xsd"> + + <person id="1"> + <first-name>John</first-name> + <last-name>Doe</last-name> + <gender>male</gender> + <age>32</age> + </person> + + <person id="2"> + <first-name>Jane</first-name> + <middle-name>Mary</middle-name> + <last-name>Doe</last-name> + <gender>female</gender> + <age>28</age> + </person> + +</people> + </pre> + + <h2><a name="4.5">4.5 Mapping for the Built-in XML Schema Types</a></h2> + + <p>Our person record vocabulary uses several built-in XML Schema + types: <code>string</code>, <code>short</code>, and + <code>unsignedInt</code>. Until now we haven't talked about + the mapping of built-in XML Schema types to C++ types and how + to work with them. This section provides an overview + of the built-in types. For more detailed information refer + to <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.5">Section + 2.5, "Mapping for Built-in Data Types"</a> in the C++/Tree Mapping + User Manual.</p> + + <p>In XML Schema, built-in types are defined in the XML Schema namespace. + By default, the C++/Tree mapping maps this namespace to C++ + namespace <code>xml_schema</code> (this mapping can be altered + with the <code>--namespace-map</code> option). The following table + summarizes the mapping of XML Schema built-in types to C++ types:</p> + + <!-- border="1" is necessary for html2ps --> + <table id="builtin" border="1"> + <tr> + <th>XML Schema type</th> + <th>Alias in the <code>xml_schema</code> namespace</th> + <th>C++ type</th> + </tr> + + <tr> + <th colspan="3">fixed-length integral types</th> + </tr> + <!-- 8-bit --> + <tr> + <td><code>byte</code></td> + <td><code>byte</code></td> + <td><code>signed char</code></td> + </tr> + <tr> + <td><code>unsignedByte</code></td> + <td><code>unsigned_byte</code></td> + <td><code>unsigned char</code></td> + </tr> + + <!-- 16-bit --> + <tr> + <td><code>short</code></td> + <td><code>short_</code></td> + <td><code>short</code></td> + </tr> + <tr> + <td><code>unsignedShort</code></td> + <td><code>unsigned_short</code></td> + <td><code>unsigned short</code></td> + </tr> + + <!-- 32-bit --> + <tr> + <td><code>int</code></td> + <td><code>int_</code></td> + <td><code>int</code></td> + </tr> + <tr> + <td><code>unsignedInt</code></td> + <td><code>unsigned_int</code></td> + <td><code>unsigned int</code></td> + </tr> + + <!-- 64-bit --> + <tr> + <td><code>long</code></td> + <td><code>long_</code></td> + <td><code>long long</code></td> + </tr> + <tr> + <td><code>unsignedLong</code></td> + <td><code>unsigned_long</code></td> + <td><code>unsigned long long</code></td> + </tr> + + <tr> + <th colspan="3">arbitrary-length integral types</th> + </tr> + <tr> + <td><code>integer</code></td> + <td><code>integer</code></td> + <td><code>long long</code></td> + </tr> + <tr> + <td><code>nonPositiveInteger</code></td> + <td><code>non_positive_integer</code></td> + <td><code>long long</code></td> + </tr> + <tr> + <td><code>nonNegativeInteger</code></td> + <td><code>non_negative_integer</code></td> + <td><code>unsigned long long</code></td> + </tr> + <tr> + <td><code>positiveInteger</code></td> + <td><code>positive_integer</code></td> + <td><code>unsigned long long</code></td> + </tr> + <tr> + <td><code>negativeInteger</code></td> + <td><code>negative_integer</code></td> + <td><code>long long</code></td> + </tr> + + <tr> + <th colspan="3">boolean types</th> + </tr> + <tr> + <td><code>boolean</code></td> + <td><code>boolean</code></td> + <td><code>bool</code></td> + </tr> + + <tr> + <th colspan="3">fixed-precision floating-point types</th> + </tr> + <tr> + <td><code>float</code></td> + <td><code>float_</code></td> + <td><code>float</code></td> + </tr> + <tr> + <td><code>double</code></td> + <td><code>double_</code></td> + <td><code>double</code></td> + </tr> + + <tr> + <th colspan="3">arbitrary-precision floating-point types</th> + </tr> + <tr> + <td><code>decimal</code></td> + <td><code>decimal</code></td> + <td><code>double</code></td> + </tr> + + <tr> + <th colspan="3">string types</th> + </tr> + <tr> + <td><code>string</code></td> + <td><code>string</code></td> + <td>type derived from <code>std::basic_string</code></td> + </tr> + <tr> + <td><code>normalizedString</code></td> + <td><code>normalized_string</code></td> + <td>type derived from <code>string</code></td> + </tr> + <tr> + <td><code>token</code></td> + <td><code>token</code></td> + <td>type derived from <code>normalized_string</code></td> + </tr> + <tr> + <td><code>Name</code></td> + <td><code>name</code></td> + <td>type derived from <code>token</code></td> + </tr> + <tr> + <td><code>NMTOKEN</code></td> + <td><code>nmtoken</code></td> + <td>type derived from <code>token</code></td> + </tr> + <tr> + <td><code>NMTOKENS</code></td> + <td><code>nmtokens</code></td> + <td>type derived from <code>sequence<nmtoken></code></td> + </tr> + <tr> + <td><code>NCName</code></td> + <td><code>ncname</code></td> + <td>type derived from <code>name</code></td> + </tr> + <tr> + <td><code>language</code></td> + <td><code>language</code></td> + <td>type derived from <code>token</code></td> + </tr> + + <tr> + <th colspan="3">qualified name</th> + </tr> + <tr> + <td><code>QName</code></td> + <td><code>qname</code></td> + <td><code>xml_schema::qname</code></td> + </tr> + + <tr> + <th colspan="3">ID/IDREF types</th> + </tr> + <tr> + <td><code>ID</code></td> + <td><code>id</code></td> + <td>type derived from <code>ncname</code></td> + </tr> + <tr> + <td><code>IDREF</code></td> + <td><code>idref</code></td> + <td>type derived from <code>ncname</code></td> + </tr> + <tr> + <td><code>IDREFS</code></td> + <td><code>idrefs</code></td> + <td>type derived from <code>sequence<idref></code></td> + </tr> + + <tr> + <th colspan="3">URI types</th> + </tr> + <tr> + <td><code>anyURI</code></td> + <td><code>uri</code></td> + <td>type derived from <code>std::basic_string</code></td> + </tr> + + <tr> + <th colspan="3">binary types</th> + </tr> + <tr> + <td><code>base64Binary</code></td> + <td><code>base64_binary</code></td> + <td><code>xml_schema::base64_binary</code></td> + </tr> + <tr> + <td><code>hexBinary</code></td> + <td><code>hex_binary</code></td> + <td><code>xml_schema::hex_binary</code></td> + </tr> + + <tr> + <th colspan="3">date/time types</th> + </tr> + <tr> + <td><code>date</code></td> + <td><code>date</code></td> + <td><code>xml_schema::date</code></td> + </tr> + <tr> + <td><code>dateTime</code></td> + <td><code>date_time</code></td> + <td><code>xml_schema::date_time</code></td> + </tr> + <tr> + <td><code>duration</code></td> + <td><code>duration</code></td> + <td><code>xml_schema::duration</code></td> + </tr> + <tr> + <td><code>gDay</code></td> + <td><code>gday</code></td> + <td><code>xml_schema::gday</code></td> + </tr> + <tr> + <td><code>gMonth</code></td> + <td><code>gmonth</code></td> + <td><code>xml_schema::gmonth</code></td> + </tr> + <tr> + <td><code>gMonthDay</code></td> + <td><code>gmonth_day</code></td> + <td><code>xml_schema::gmonth_day</code></td> + </tr> + <tr> + <td><code>gYear</code></td> + <td><code>gyear</code></td> + <td><code>xml_schema::gyear</code></td> + </tr> + <tr> + <td><code>gYearMonth</code></td> + <td><code>gyear_month</code></td> + <td><code>xml_schema::gyear_month</code></td> + </tr> + <tr> + <td><code>time</code></td> + <td><code>time</code></td> + <td><code>xml_schema::time</code></td> + </tr> + + <tr> + <th colspan="3">entity types</th> + </tr> + <tr> + <td><code>ENTITY</code></td> + <td><code>entity</code></td> + <td>type derived from <code>name</code></td> + </tr> + <tr> + <td><code>ENTITIES</code></td> + <td><code>entities</code></td> + <td>type derived from <code>sequence<entity></code></td> + </tr> + </table> + + <p>As you can see from the table above a number of built-in + XML Schema types are mapped to fundamental C++ types such + as <code>int</code> or <code>bool</code>. All string-based + XML Schema types are mapped to C++ types that are derived + from either <code>std::string</code> or + <code>std::wstring</code>, depending on the character + type selected. For access and modification purposes these + types can be treated as <code>std::string</code>. A number + of built-in types, such as <code>qname</code>, the binary + types, and the date/time types do not have suitable + fundamental or standard C++ types to map to. As a result, + these types are implemented from scratch in the XSD runtime. + For more information on their interfaces refer to + <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.5">Section + 2.5, "Mapping for Built-in Data Types"</a> in the C++/Tree Mapping + User Manual.</p> + + + <!-- Chapater 5 --> + + + <h1><a name="5">5 Parsing</a></h1> + + <p>We have already seen how to parse XML to an object model in this guide + before. In this chapter we will discuss the parsing topic in more + detail.</p> + + <p>By default, the C++/Tree mapping provides a total of 14 overloaded + parsing functions. They differ in the input methods used to + read XML as well as the error reporting mechanisms. It is also possible + to generate types for root elements instead of parsing and serialization + functions. This may be useful if your XML vocabulary has multiple + root elements. For more information on element types refer to + <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.9">Section + 2.9, "Mapping for Global Elements"</a> in the C++/Tree Mapping User + Manual.</p> + + + <p>In this section we will discuss the most commonly used versions of + the parsing functions. For a comprehensive description of parsing + refer to <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#3">Chapter + 3, "Parsing"</a> in the C++/Tree Mapping User Manual. For the <code>people</code> + global element from our person record vocabulary, we will concentrate + on the following three parsing functions:</p> + + <pre class="c++"> +std::[auto|unique]_ptr<people_t> +people (const std::string& uri, + xml_schema::flags f = 0, + const xml_schema::properties& p = xml_schema::properties ()); + +std::[auto|unique]_ptr<people_t> +people (std::istream& is, + xml_schema::flags f = 0, + const xml_schema::properties& p = xml_schema::properties ()); + +std::[auto|unique]_ptr<people_t> +people (std::istream& is, + const std::string& resource_id, + xml_schema::flags f = 0, + const xml_schema::properties& p = ::xml_schema::properties ()); + </pre> + + <p>The first function parses a local file or a URI. We have already + used this parsing function in the previous chapters. The second + and third functions read XML from a standard input stream. The + last function also requires a resource id. This id is used to + identify the XML document being parser in diagnostics messages + as well as to resolve relative paths to other documents (for example, + schemas) that might be referenced from the XML document.</p> + + <p>The last two arguments to all three parsing functions are parsing + flags and properties. The flags argument provides a number of ways + to fine-tune the parsing process. The properties argument allows + to pass additional information to the parsing functions. We will + use these two arguments in <a href="#5.1">Section 5.1, "XML Schema + Validation and Searching"</a> below. All three functions return + the object model as either <code>std::auto_ptr</code> (C++98) or + <code>std::unique_ptr</code> (C++11), depending on the C++ standard + selected (<code>--std</code> XSD compiler option). The following + example shows how we can use the above parsing functions:</p> + + <pre class="c++"> +using std::auto_ptr; + +// Parse a local file or URI. +// +auto_ptr<people_t> p1 (people ("people.xml")); +auto_ptr<people_t> p2 (people ("http://example.com/people.xml")); + +// Parse a local file via ifstream. +// +std::ifstream ifs ("people.xml"); +auto_ptr<people_t> p3 (people (ifs, "people.xml")); + +// Parse an XML string. +// +std::string str ("..."); // XML in a string. +std::istringstream iss (str); +auto_ptr<people_t> p4 (people (iss)); + </pre> + + + <h2><a name="5.1">5.1 XML Schema Validation and Searching</a></h2> + + <p>The C++/Tree mapping relies on the underlying Xerces-C++ XML + parser for full XML document validation. The XML Schema + validation is enabled by default and can be disabled by + passing the <code>xml_schema::flags::dont_validate</code> + flag to the parsing functions, for example:</p> + + <pre class="c++"> +auto_ptr<people_t> p ( + people ("people.xml", xml_schema::flags::dont_validate)); + </pre> + + <p>Even when XML Schema validation is disabled, the generated + code still performs a number of checks to prevent + construction of an inconsistent object model (for example, an + object model with missing required attributes or elements).</p> + + <p>When XML Schema validation is enabled, the XML parser needs + to locate a schema to validate against. There are several + methods to provide the schema location information to the + parser. The easiest and most commonly used method is to + specify schema locations in the XML document itself + with the <code>schemaLocation</code> or + <code>noNamespaceSchemaLocation</code> attributes, for example:</p> + + <pre class="xml"> +<?xml version="1.0" ?> +<people xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" + xsi:noNamespaceSchemaLocation="people.xsd" + xsi:schemaLocation="http://www.w3.org/XML/1998/namespace xml.xsd"> + </pre> + + <p>As you might have noticed, we used this method in all the sample XML + documents presented in this guide up until now. Note that the + schema locations specified with these two attributes are relative + to the document's path unless they are absolute URIs (that is + start with <code>http://</code>, <code>file://</code>, etc.). + In particular, if you specify just file names as your schema + locations, as we did above, then the schemas should reside in + the same directory as the XML document itself.</p> + + <p>Another method of providing the schema location information + is via the <code>xml_schema::properties</code> argument, as + shown in the following example:</p> + + <pre class="c++"> +xml_schema::properties props; +props.no_namespace_schema_location ("people.xsd"); +props.schema_location ("http://www.w3.org/XML/1998/namespace", "xml.xsd"); + +auto_ptr<people_t> p (people ("people.xml", 0, props)); + </pre> + + <p>The schema locations provided with this method overrides + those specified in the XML document. As with the previous + method, the schema locations specified this way are + relative to the document's path unless they are absolute URIs. + In particular, if you want to use local schemas that are + not related to the document being parsed, then you will + need to use the <code>file://</code> URI. The following + example shows how to use schemas that reside in the current + working directory:</p> + + <pre class="c++"> +#include <unistd.h> // getcwd +#include <limits.h> // PATH_MAX + +char cwd[PATH_MAX]; +if (getcwd (cwd, PATH_MAX) == 0) +{ + // Buffer too small? +} + +xml_schema::properties props; + +props.no_namespace_schema_location ( + "file:///" + std::string (cwd) + "/people.xsd"); + +props.schema_location ( + "http://www.w3.org/XML/1998/namespace", + "file:///" + std::string (cwd) + "/xml.xsd"); + +auto_ptr<people_t> p (people ("people.xml", 0, props)); + </pre> + + <p>A third method is the most useful if you are planning to parse + several XML documents of the same vocabulary. In that case + it may be beneficial to pre-parse and cache the schemas in + the XML parser which can then be used to parse all documents + without re-parsing the schemas. For more information on + this method refer to the <code>caching</code> example in the + <code>examples/cxx/tree/</code> directory of the XSD + distribution. It is also possible to convert the schemas into + a pre-compiled binary representation and embed this representation + directly into the application executable. With this approach your + application can perform XML Schema validation without depending on + any external schema files. For more information on how to achieve + this refer to the <code>embedded</code> example in the + <code>examples/cxx/tree/</code> directory of the XSD distribution.</p> + + <p>When the XML parser cannot locate a schema for the + XML document, the validation fails and XML document + elements and attributes for which schema definitions could + not be located are reported in the diagnostics. For + example, if we remove the <code>noNamespaceSchemaLocation</code> + attribute in <code>people.xml</code> from the previous chapter, + then we will get the following diagnostics if we try to parse + this file with validation enabled:</p> + + <pre class="terminal"> +people.xml:2:63 error: no declaration found for element 'people' +people.xml:4:18 error: no declaration found for element 'person' +people.xml:4:18 error: attribute 'id' is not declared for element 'person' +people.xml:5:17 error: no declaration found for element 'first-name' +people.xml:6:18 error: no declaration found for element 'middle-name' +people.xml:7:16 error: no declaration found for element 'last-name' +people.xml:8:13 error: no declaration found for element 'gender' +people.xml:9:10 error: no declaration found for element 'age' + </pre> + + <h2><a name="5.2">5.2 Error Handling</a></h2> + + <p>The parsing functions offer a number of ways to handle error conditions + with the C++ exceptions being the most commonly used mechanism. All + C++/Tree exceptions derive from common base <code>xml_schema::exception</code> + which in turn derives from <code>std::exception</code>. The easiest + way to uniformly handle all possible C++/Tree exceptions and print + detailed information about the error is to catch and print + <code>xml_schema::exception</code>, as shown in the following + example:</p> + + <pre class="c++"> +try +{ + auto_ptr<people_t> p (people ("people.xml")); +} +catch (const xml_schema::exception& e) +{ + cerr << e << endl; +} + </pre> + + <p>Each individual C++/Tree exception also allows you to obtain + error details programmatically. For example, the + <code>xml_schema::parsing</code> exception is thrown when + the XML parsing and validation in the underlying XML parser + fails. It encapsulates various diagnostics information + such as the file name, line and column numbers, as well as the + error or warning message for each entry. For more information + about this and other exceptions that can be thrown during + parsing, refer to + <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#3.3">Section + 3.3, "Error Handling"</a> in the C++/Tree Mapping + User Manual.</p> + + <p>Note that if you are parsing <code>std::istream</code> on which + exceptions are not enabled, then you will need to check the + stream state after the call to the parsing function in order + to detect any possible stream failures, for example:</p> + + <pre class="c++"> +std::ifstream ifs ("people.xml"); + +if (ifs.fail ()) +{ + cerr << "people.xml: unable to open" << endl; + return 1; +} + +auto_ptr<people_t> p (people (ifs, "people.xml")); + +if (ifs.fail ()) +{ + cerr << "people.xml: read error" << endl; + return 1; +} + </pre> + + <p>The above example can be rewritten to use exceptions as + shown below:</p> + + <pre class="c++"> +try +{ + std::ifstream ifs; + ifs.exceptions (std::ifstream::badbit | std::ifstream::failbit); + ifs.open ("people.xml"); + + auto_ptr<people_t> p (people (ifs, "people.xml")); +} +catch (const std::ifstream::failure&) +{ + cerr << "people.xml: unable to open or read error" << endl; + return 1; +} + </pre> + + + <!-- Chapater 6 --> + + + <h1><a name="6">6 Serialization</a></h1> + + <p>We have already seen how to serialize an object model back to XML + in this guide before. In this chapter we will discuss the + serialization topic in more detail.</p> + + <p>By default, the C++/Tree mapping provides a total of 8 overloaded + serialization functions. They differ in the output methods used to write + XML as well as the error reporting mechanisms. It is also possible to + generate types for root elements instead of parsing and serialization + functions. This may be useful if your XML vocabulary has multiple + root elements. For more information on element types refer to + <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.9">Section + 2.9, "Mapping for Global Elements"</a> in the C++/Tree Mapping User + Manual.</p> + + + <p>In this section we will discuss the most commonly + used version of serialization functions. For a comprehensive description + of serialization refer to + <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#4">Chapter + 4, "Serialization"</a> in the C++/Tree Mapping User Manual. For the + <code>people</code> global element from our person record vocabulary, + we will concentrate on the following serialization function:</p> + + <pre class="c++"> +void +people (std::ostream& os, + const people_t& x, + const xml_schema::namespace_infomap& map = + xml_schema::namespace_infomap (), + const std::string& encoding = "UTF-8", + xml_schema::flags f = 0); + </pre> + + <p>This function serializes the object model passed as the second + argument to the standard output stream passed as the first + argument. The third argument is a namespace information map + which we will discuss in more detail in the next section. + The fourth argument is a character encoding that the resulting + XML document should be in. Possible valid values for this + argument are "US-ASCII", "ISO8859-1", "UTF-8", "UTF-16BE", + "UTF-16LE", "UCS-4BE", and "UCS-4LE". Finally, the flags + argument allows fine-tuning of the serialization process. + The following example shows how we can use the above serialization + function:</p> + + <pre class="c++"> +people_t& p = ... + +xml_schema::namespace_infomap map; +map[""].schema = "people.xsd"; + +// Serialize to stdout. +// +people (std::cout, p, map); + +// Serialize to a file. +// +std::ofstream ofs ("people.xml"); +people (ofs, p, map); + +// Serialize to a string. +// +std::ostringstream oss; +people (oss, p, map); +std::string xml (oss.str ()); + </pre> + + + <h2><a name="6.1">6.1 Namespace and Schema Information</a></h2> + + <p>While XML serialization can be done just from the object + model alone, it is often desirable to assign meaningful + prefixes to XML namespaces used in the vocabulary as + well as to provide the schema location information. + This is accomplished by passing the namespace information + map to the serialization function. The key in this map is + a namespace prefix that should be assigned to an XML namespace + specified in the <code>name</code> variable of the + map value. You can also assign an optional schema location for + this namespace in the <code>schema</code> variable. Based + on each key-value entry in this map, the serialization + function adds two attributes to the resulting XML document: + the namespace-prefix mapping attribute and schema location + attribute. The empty prefix indicates that the namespace + should be mapped without a prefix. For example, the following + map:</p> + + <pre class="c++"> +xml_schema::namespace_infomap map; + +map[""].name = "http://www.example.com/example"; +map[""].schema = "example.xsd"; + +map["x"].name = "http://www.w3.org/XML/1998/namespace"; +map["x"].schema = "xml.xsd"; + </pre> + + <p>Results in the following XML document:</p> + + <pre class="xml"> +<?xml version="1.0" ?> +<example + xmlns="http://www.example.com/example" + xmlns:x="http://www.w3.org/XML/1998/namespace" + xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" + xsi:schemaLocation="http://www.example.com/example example.xsd + http://www.w3.org/XML/1998/namespace xml.xsd"> + </pre> + + <p>The empty namespace indicates that the vocabulary has no target + namespace. For example, the following map results in only the + <code>noNamespaceSchemaLocation</code> attribute being added:</p> + + <pre class="c++"> +xml_schema::namespace_infomap map; + +map[""].name = ""; +map[""].schema = "example.xsd"; + </pre> + + <h2><a name="6.2">6.2 Error Handling</a></h2> + + <p>Similar to the parsing functions, the serialization functions offer a + number of ways to handle error conditions with the C++ exceptions being + the most commonly used mechanisms. As with parsing, the easiest way to + uniformly handle all possible serialization exceptions and print + detailed information about the error is to catch and print + <code>xml_schema::exception</code>:</p> + + <pre class="c++"> +try +{ + people_t& p = ... + + xml_schema::namespace_infomap map; + map[""].schema = "people.xsd"; + + people (std::cout, p, map)); +} +catch (const xml_schema::exception& e) +{ + cerr << e << endl; +} + </pre> + + <p>The most commonly encountered serialization exception is + <code>xml_schema::serialization</code>. It is thrown + when the XML serialization in the underlying XML writer + fails. It encapsulates various diagnostics information + such as the file name, line and column numbers, as well as the + error or warning message for each entry. For more information + about this and other exceptions that can be thrown during + serialization, refer to + <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#4.4">Section + 4.4, "Error Handling"</a> in the C++/Tree Mapping + User Manual.</p> + + <p>Note that if you are serializing to <code>std::ostream</code> on + which exceptions are not enabled, then you will need to check the + stream state after the call to the serialization function in order + to detect any possible stream failures, for example:</p> + + <pre class="c++"> +std::ofstream ofs ("people.xml"); + +if (ofs.fail ()) +{ + cerr << "people.xml: unable to open" << endl; + return 1; +} + +people (ofs, p, map)); + +if (ofs.fail ()) +{ + cerr << "people.xml: write error" << endl; + return 1; +} + </pre> + + <p>The above example can be rewritten to use exceptions as + shown below:</p> + + <pre class="c++"> +try +{ + std::ofstream ofs; + ofs.exceptions (std::ofstream::badbit | std::ofstream::failbit); + ofs.open ("people.xml"); + + people (ofs, p, map)); +} +catch (const std::ofstream::failure&) +{ + cerr << "people.xml: unable to open or write error" << endl; + return 1; +} + </pre> + + </div> +</div> + +</body> +</html> diff --git a/xsd/doc/cxx/tree/guide/makefile b/xsd/doc/cxx/tree/guide/makefile new file mode 100644 index 0000000..3e6fba2 --- /dev/null +++ b/xsd/doc/cxx/tree/guide/makefile @@ -0,0 +1,54 @@ +# file : doc/cxx/tree/guide/makefile +# copyright : Copyright (c) 2006-2014 Code Synthesis Tools CC +# license : GNU GPL v2 + exceptions; see accompanying LICENSE file + +include $(dir $(lastword $(MAKEFILE_LIST)))../../../../build/bootstrap.make + +default := $(out_base)/ +install := $(out_base)/.install +dist := $(out_base)/.dist +dist-win := $(out_base)/.dist-win +clean := $(out_base)/.clean + +# Build. +# +$(default): $(out_base)/cxx-tree-guide.ps $(out_base)/cxx-tree-guide.pdf + + +$(out_base)/cxx-tree-guide.ps: $(src_base)/index.xhtml \ + $(src_base)/guide.html2ps \ + | $(out_base)/. + $(call message,html2ps $<,html2ps -f $(src_base)/guide.html2ps -o $@ $<) + +$(out_base)/cxx-tree-guide.pdf: $(out_base)/cxx-tree-guide.ps | $(out_base)/. + $(call message,ps2pdf $<,ps2pdf14 $< $@) + +# Install & Dist. +# +$(install): path := $(subst $(src_root)/doc/,,$(src_base)) +$(dist): path := $(subst $(src_root)/,,$(src_base)) + +$(install): $(out_base)/cxx-tree-guide.ps $(out_base)/cxx-tree-guide.pdf + $(call install-data,$(src_base)/index.xhtml,$(install_doc_dir)/xsd/$(path)/index.xhtml) + $(call install-data,$(out_base)/cxx-tree-guide.ps,$(install_doc_dir)/xsd/$(path)/cxx-tree-guide.ps) + $(call install-data,$(out_base)/cxx-tree-guide.pdf,$(install_doc_dir)/xsd/$(path)/cxx-tree-guide.pdf) + +$(dist): $(out_base)/cxx-tree-guide.ps $(out_base)/cxx-tree-guide.pdf + $(call install-data,$(src_base)/index.xhtml,$(dist_prefix)/$(path)/index.xhtml) + $(call install-data,$(out_base)/cxx-tree-guide.ps,$(dist_prefix)/$(path)/cxx-tree-guide.ps) + $(call install-data,$(out_base)/cxx-tree-guide.pdf,$(dist_prefix)/$(path)/cxx-tree-guide.pdf) + +$(dist-win): $(dist) + + +# Clean +# +$(clean): +ifneq ($(xsd_clean_gen),n) + $(call message,rm $$1,rm -f $$1,$(out_base)/cxx-tree-guide.ps) + $(call message,rm $$1,rm -f $$1,$(out_base)/cxx-tree-guide.pdf) +endif + +# How to. +# +$(call include,$(bld_root)/install.make) |