From bada6666c70977a058755ccf232e7d67b24adeed Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?J=C3=B6rg=20Frings-F=C3=BCrst?= Date: Wed, 23 Jul 2014 15:21:29 +0200 Subject: New upstream release --- .../details/boost/regex/v4/basic_regex_creator.hpp | 1571 ++++++++++++++++++++ 1 file changed, 1571 insertions(+) create mode 100644 libcutl/cutl/details/boost/regex/v4/basic_regex_creator.hpp (limited to 'libcutl/cutl/details/boost/regex/v4/basic_regex_creator.hpp') diff --git a/libcutl/cutl/details/boost/regex/v4/basic_regex_creator.hpp b/libcutl/cutl/details/boost/regex/v4/basic_regex_creator.hpp new file mode 100644 index 0000000..375d29b --- /dev/null +++ b/libcutl/cutl/details/boost/regex/v4/basic_regex_creator.hpp @@ -0,0 +1,1571 @@ +/* + * + * Copyright (c) 2004 + * John Maddock + * + * Use, modification and distribution are subject to the + * Boost Software License, Version 1.0. (See accompanying file + * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) + * + */ + + /* + * LOCATION: see http://www.boost.org for most recent version. + * FILE basic_regex_creator.cpp + * VERSION see + * DESCRIPTION: Declares template class basic_regex_creator which fills in + * the data members of a regex_data object. + */ + +#ifndef BOOST_REGEX_V4_BASIC_REGEX_CREATOR_HPP +#define BOOST_REGEX_V4_BASIC_REGEX_CREATOR_HPP + +#ifdef BOOST_MSVC +#pragma warning(push) +#pragma warning(disable: 4103) +#endif +#ifdef BOOST_HAS_ABI_HEADERS +# include BOOST_ABI_PREFIX +#endif +#ifdef BOOST_MSVC +#pragma warning(pop) +#endif + +#ifdef BOOST_MSVC +# pragma warning(push) +# pragma warning(disable: 4800) +#endif + +namespace cutl_details_boost{ + +namespace re_detail{ + +template +struct digraph : public std::pair +{ + digraph() : std::pair(0, 0){} + digraph(charT c1) : std::pair(c1, 0){} + digraph(charT c1, charT c2) : std::pair(c1, c2) + {} +#if !BOOST_WORKAROUND(BOOST_MSVC, < 1300) + digraph(const digraph& d) : std::pair(d.first, d.second){} +#endif + template + digraph(const Seq& s) : std::pair() + { + BOOST_ASSERT(s.size() <= 2); + BOOST_ASSERT(s.size()); + this->first = s[0]; + this->second = (s.size() > 1) ? s[1] : 0; + } +}; + +template +class basic_char_set +{ +public: + typedef digraph digraph_type; + typedef typename traits::string_type string_type; + typedef typename traits::char_class_type m_type; + + basic_char_set() + { + m_negate = false; + m_has_digraphs = false; + m_classes = 0; + m_negated_classes = 0; + m_empty = true; + } + + void add_single(const digraph_type& s) + { + m_singles.insert(m_singles.end(), s); + if(s.second) + m_has_digraphs = true; + m_empty = false; + } + void add_range(const digraph_type& first, const digraph_type& end) + { + m_ranges.insert(m_ranges.end(), first); + m_ranges.insert(m_ranges.end(), end); + if(first.second) + { + m_has_digraphs = true; + add_single(first); + } + if(end.second) + { + m_has_digraphs = true; + add_single(end); + } + m_empty = false; + } + void add_class(m_type m) + { + m_classes |= m; + m_empty = false; + } + void add_negated_class(m_type m) + { + m_negated_classes |= m; + m_empty = false; + } + void add_equivalent(const digraph_type& s) + { + m_equivalents.insert(m_equivalents.end(), s); + if(s.second) + { + m_has_digraphs = true; + add_single(s); + } + m_empty = false; + } + void negate() + { + m_negate = true; + //m_empty = false; + } + + // + // accessor functions: + // + bool has_digraphs()const + { + return m_has_digraphs; + } + bool is_negated()const + { + return m_negate; + } + typedef typename std::vector::const_iterator list_iterator; + list_iterator singles_begin()const + { + return m_singles.begin(); + } + list_iterator singles_end()const + { + return m_singles.end(); + } + list_iterator ranges_begin()const + { + return m_ranges.begin(); + } + list_iterator ranges_end()const + { + return m_ranges.end(); + } + list_iterator equivalents_begin()const + { + return m_equivalents.begin(); + } + list_iterator equivalents_end()const + { + return m_equivalents.end(); + } + m_type classes()const + { + return m_classes; + } + m_type negated_classes()const + { + return m_negated_classes; + } + bool empty()const + { + return m_empty; + } +private: + std::vector m_singles; // a list of single characters to match + std::vector m_ranges; // a list of end points of our ranges + bool m_negate; // true if the set is to be negated + bool m_has_digraphs; // true if we have digraphs present + m_type m_classes; // character classes to match + m_type m_negated_classes; // negated character classes to match + bool m_empty; // whether we've added anything yet + std::vector m_equivalents; // a list of equivalence classes +}; + +template +class basic_regex_creator +{ +public: + basic_regex_creator(regex_data* data); + std::ptrdiff_t getoffset(void* addr) + { + return getoffset(addr, m_pdata->m_data.data()); + } + std::ptrdiff_t getoffset(const void* addr, const void* base) + { + return static_cast(addr) - static_cast(base); + } + re_syntax_base* getaddress(std::ptrdiff_t off) + { + return getaddress(off, m_pdata->m_data.data()); + } + re_syntax_base* getaddress(std::ptrdiff_t off, void* base) + { + return static_cast(static_cast(static_cast(base) + off)); + } + void init(unsigned l_flags) + { + m_pdata->m_flags = l_flags; + m_icase = l_flags & regex_constants::icase; + } + regbase::flag_type flags() + { + return m_pdata->m_flags; + } + void flags(regbase::flag_type f) + { + m_pdata->m_flags = f; + if(m_icase != static_cast(f & regbase::icase)) + { + m_icase = static_cast(f & regbase::icase); + } + } + re_syntax_base* append_state(syntax_element_type t, std::size_t s = sizeof(re_syntax_base)); + re_syntax_base* insert_state(std::ptrdiff_t pos, syntax_element_type t, std::size_t s = sizeof(re_syntax_base)); + re_literal* append_literal(charT c); + re_syntax_base* append_set(const basic_char_set& char_set); + re_syntax_base* append_set(const basic_char_set& char_set, mpl::false_*); + re_syntax_base* append_set(const basic_char_set& char_set, mpl::true_*); + void finalize(const charT* p1, const charT* p2); +protected: + regex_data* m_pdata; // pointer to the basic_regex_data struct we are filling in + const ::cutl_details_boost::regex_traits_wrapper& + m_traits; // convenience reference to traits class + re_syntax_base* m_last_state; // the last state we added + bool m_icase; // true for case insensitive matches + unsigned m_repeater_id; // the state_id of the next repeater + bool m_has_backrefs; // true if there are actually any backrefs + unsigned m_backrefs; // bitmask of permitted backrefs + cutl_details_boost::uintmax_t m_bad_repeats; // bitmask of repeats we can't deduce a startmap for; + bool m_has_recursions; // set when we have recursive expresisons to fixup + std::vector m_recursion_checks; // notes which recursions we've followed while analysing this expression + typename traits::char_class_type m_word_mask; // mask used to determine if a character is a word character + typename traits::char_class_type m_mask_space; // mask used to determine if a character is a word character + typename traits::char_class_type m_lower_mask; // mask used to determine if a character is a lowercase character + typename traits::char_class_type m_upper_mask; // mask used to determine if a character is an uppercase character + typename traits::char_class_type m_alpha_mask; // mask used to determine if a character is an alphabetic character +private: + basic_regex_creator& operator=(const basic_regex_creator&); + basic_regex_creator(const basic_regex_creator&); + + void fixup_pointers(re_syntax_base* state); + void fixup_recursions(re_syntax_base* state); + void create_startmaps(re_syntax_base* state); + int calculate_backstep(re_syntax_base* state); + void create_startmap(re_syntax_base* state, unsigned char* l_map, unsigned int* pnull, unsigned char mask); + unsigned get_restart_type(re_syntax_base* state); + void set_all_masks(unsigned char* bits, unsigned char); + bool is_bad_repeat(re_syntax_base* pt); + void set_bad_repeat(re_syntax_base* pt); + syntax_element_type get_repeat_type(re_syntax_base* state); + void probe_leading_repeat(re_syntax_base* state); +}; + +template +basic_regex_creator::basic_regex_creator(regex_data* data) + : m_pdata(data), m_traits(*(data->m_ptraits)), m_last_state(0), m_repeater_id(0), m_has_backrefs(false), m_backrefs(0), m_has_recursions(false) +{ + m_pdata->m_data.clear(); + m_pdata->m_status = ::cutl_details_boost::regex_constants::error_ok; + static const charT w = 'w'; + static const charT s = 's'; + static const charT l[5] = { 'l', 'o', 'w', 'e', 'r', }; + static const charT u[5] = { 'u', 'p', 'p', 'e', 'r', }; + static const charT a[5] = { 'a', 'l', 'p', 'h', 'a', }; + m_word_mask = m_traits.lookup_classname(&w, &w +1); + m_mask_space = m_traits.lookup_classname(&s, &s +1); + m_lower_mask = m_traits.lookup_classname(l, l + 5); + m_upper_mask = m_traits.lookup_classname(u, u + 5); + m_alpha_mask = m_traits.lookup_classname(a, a + 5); + m_pdata->m_word_mask = m_word_mask; + BOOST_ASSERT(m_word_mask != 0); + BOOST_ASSERT(m_mask_space != 0); + BOOST_ASSERT(m_lower_mask != 0); + BOOST_ASSERT(m_upper_mask != 0); + BOOST_ASSERT(m_alpha_mask != 0); +} + +template +re_syntax_base* basic_regex_creator::append_state(syntax_element_type t, std::size_t s) +{ + // if the state is a backref then make a note of it: + if(t == syntax_element_backref) + this->m_has_backrefs = true; + // append a new state, start by aligning our last one: + m_pdata->m_data.align(); + // set the offset to the next state in our last one: + if(m_last_state) + m_last_state->next.i = m_pdata->m_data.size() - getoffset(m_last_state); + // now actually extent our data: + m_last_state = static_cast(m_pdata->m_data.extend(s)); + // fill in boilerplate options in the new state: + m_last_state->next.i = 0; + m_last_state->type = t; + return m_last_state; +} + +template +re_syntax_base* basic_regex_creator::insert_state(std::ptrdiff_t pos, syntax_element_type t, std::size_t s) +{ + // append a new state, start by aligning our last one: + m_pdata->m_data.align(); + // set the offset to the next state in our last one: + if(m_last_state) + m_last_state->next.i = m_pdata->m_data.size() - getoffset(m_last_state); + // remember the last state position: + std::ptrdiff_t off = getoffset(m_last_state) + s; + // now actually insert our data: + re_syntax_base* new_state = static_cast(m_pdata->m_data.insert(pos, s)); + // fill in boilerplate options in the new state: + new_state->next.i = s; + new_state->type = t; + m_last_state = getaddress(off); + return new_state; +} + +template +re_literal* basic_regex_creator::append_literal(charT c) +{ + re_literal* result; + // start by seeing if we have an existing re_literal we can extend: + if((0 == m_last_state) || (m_last_state->type != syntax_element_literal)) + { + // no existing re_literal, create a new one: + result = static_cast(append_state(syntax_element_literal, sizeof(re_literal) + sizeof(charT))); + result->length = 1; + *static_cast(static_cast(result+1)) = m_traits.translate(c, m_icase); + } + else + { + // we have an existing re_literal, extend it: + std::ptrdiff_t off = getoffset(m_last_state); + m_pdata->m_data.extend(sizeof(charT)); + m_last_state = result = static_cast(getaddress(off)); + charT* characters = static_cast(static_cast(result+1)); + characters[result->length] = m_traits.translate(c, m_icase); + ++(result->length); + } + return result; +} + +template +inline re_syntax_base* basic_regex_creator::append_set( + const basic_char_set& char_set) +{ + typedef mpl::bool_< (sizeof(charT) == 1) > truth_type; + return char_set.has_digraphs() + ? append_set(char_set, static_cast(0)) + : append_set(char_set, static_cast(0)); +} + +template +re_syntax_base* basic_regex_creator::append_set( + const basic_char_set& char_set, mpl::false_*) +{ + typedef typename traits::string_type string_type; + typedef typename basic_char_set::list_iterator item_iterator; + typedef typename traits::char_class_type m_type; + + re_set_long* result = static_cast*>(append_state(syntax_element_long_set, sizeof(re_set_long))); + // + // fill in the basics: + // + result->csingles = static_cast(::cutl_details_boost::re_detail::distance(char_set.singles_begin(), char_set.singles_end())); + result->cranges = static_cast(::cutl_details_boost::re_detail::distance(char_set.ranges_begin(), char_set.ranges_end())) / 2; + result->cequivalents = static_cast(::cutl_details_boost::re_detail::distance(char_set.equivalents_begin(), char_set.equivalents_end())); + result->cclasses = char_set.classes(); + result->cnclasses = char_set.negated_classes(); + if(flags() & regbase::icase) + { + // adjust classes as needed: + if(((result->cclasses & m_lower_mask) == m_lower_mask) || ((result->cclasses & m_upper_mask) == m_upper_mask)) + result->cclasses |= m_alpha_mask; + if(((result->cnclasses & m_lower_mask) == m_lower_mask) || ((result->cnclasses & m_upper_mask) == m_upper_mask)) + result->cnclasses |= m_alpha_mask; + } + + result->isnot = char_set.is_negated(); + result->singleton = !char_set.has_digraphs(); + // + // remember where the state is for later: + // + std::ptrdiff_t offset = getoffset(result); + // + // now extend with all the singles: + // + item_iterator first, last; + first = char_set.singles_begin(); + last = char_set.singles_end(); + while(first != last) + { + charT* p = static_cast(this->m_pdata->m_data.extend(sizeof(charT) * (first->second ? 3 : 2))); + p[0] = m_traits.translate(first->first, m_icase); + if(first->second) + { + p[1] = m_traits.translate(first->second, m_icase); + p[2] = 0; + } + else + p[1] = 0; + ++first; + } + // + // now extend with all the ranges: + // + first = char_set.ranges_begin(); + last = char_set.ranges_end(); + while(first != last) + { + // first grab the endpoints of the range: + digraph c1 = *first; + c1.first = this->m_traits.translate(c1.first, this->m_icase); + c1.second = this->m_traits.translate(c1.second, this->m_icase); + ++first; + digraph c2 = *first; + c2.first = this->m_traits.translate(c2.first, this->m_icase); + c2.second = this->m_traits.translate(c2.second, this->m_icase); + ++first; + string_type s1, s2; + // different actions now depending upon whether collation is turned on: + if(flags() & regex_constants::collate) + { + // we need to transform our range into sort keys: +#if BOOST_WORKAROUND(__GNUC__, < 3) + string_type in(3, charT(0)); + in[0] = c1.first; + in[1] = c1.second; + s1 = this->m_traits.transform(in.c_str(), (in[1] ? in.c_str()+2 : in.c_str()+1)); + in[0] = c2.first; + in[1] = c2.second; + s2 = this->m_traits.transform(in.c_str(), (in[1] ? in.c_str()+2 : in.c_str()+1)); +#else + charT a1[3] = { c1.first, c1.second, charT(0), }; + charT a2[3] = { c2.first, c2.second, charT(0), }; + s1 = this->m_traits.transform(a1, (a1[1] ? a1+2 : a1+1)); + s2 = this->m_traits.transform(a2, (a2[1] ? a2+2 : a2+1)); +#endif + if(s1.size() == 0) + s1 = string_type(1, charT(0)); + if(s2.size() == 0) + s2 = string_type(1, charT(0)); + } + else + { + if(c1.second) + { + s1.insert(s1.end(), c1.first); + s1.insert(s1.end(), c1.second); + } + else + s1 = string_type(1, c1.first); + if(c2.second) + { + s2.insert(s2.end(), c2.first); + s2.insert(s2.end(), c2.second); + } + else + s2.insert(s2.end(), c2.first); + } + if(s1 > s2) + { + // Oops error: + return 0; + } + charT* p = static_cast(this->m_pdata->m_data.extend(sizeof(charT) * (s1.size() + s2.size() + 2) ) ); + re_detail::copy(s1.begin(), s1.end(), p); + p[s1.size()] = charT(0); + p += s1.size() + 1; + re_detail::copy(s2.begin(), s2.end(), p); + p[s2.size()] = charT(0); + } + // + // now process the equivalence classes: + // + first = char_set.equivalents_begin(); + last = char_set.equivalents_end(); + while(first != last) + { + string_type s; + if(first->second) + { +#if BOOST_WORKAROUND(__GNUC__, < 3) + string_type in(3, charT(0)); + in[0] = first->first; + in[1] = first->second; + s = m_traits.transform_primary(in.c_str(), in.c_str()+2); +#else + charT cs[3] = { first->first, first->second, charT(0), }; + s = m_traits.transform_primary(cs, cs+2); +#endif + } + else + s = m_traits.transform_primary(&first->first, &first->first+1); + if(s.empty()) + return 0; // invalid or unsupported equivalence class + charT* p = static_cast(this->m_pdata->m_data.extend(sizeof(charT) * (s.size()+1) ) ); + re_detail::copy(s.begin(), s.end(), p); + p[s.size()] = charT(0); + ++first; + } + // + // finally reset the address of our last state: + // + m_last_state = result = static_cast*>(getaddress(offset)); + return result; +} + +template +inline bool char_less(T t1, T t2) +{ + return t1 < t2; +} +inline bool char_less(char t1, char t2) +{ + return static_cast(t1) < static_cast(t2); +} +inline bool char_less(signed char t1, signed char t2) +{ + return static_cast(t1) < static_cast(t2); +} + +template +re_syntax_base* basic_regex_creator::append_set( + const basic_char_set& char_set, mpl::true_*) +{ + typedef typename traits::string_type string_type; + typedef typename basic_char_set::list_iterator item_iterator; + + re_set* result = static_cast(append_state(syntax_element_set, sizeof(re_set))); + bool negate = char_set.is_negated(); + std::memset(result->_map, 0, sizeof(result->_map)); + // + // handle singles first: + // + item_iterator first, last; + first = char_set.singles_begin(); + last = char_set.singles_end(); + while(first != last) + { + for(unsigned int i = 0; i < (1 << CHAR_BIT); ++i) + { + if(this->m_traits.translate(static_cast(i), this->m_icase) + == this->m_traits.translate(first->first, this->m_icase)) + result->_map[i] = true; + } + ++first; + } + // + // OK now handle ranges: + // + first = char_set.ranges_begin(); + last = char_set.ranges_end(); + while(first != last) + { + // first grab the endpoints of the range: + charT c1 = this->m_traits.translate(first->first, this->m_icase); + ++first; + charT c2 = this->m_traits.translate(first->first, this->m_icase); + ++first; + // different actions now depending upon whether collation is turned on: + if(flags() & regex_constants::collate) + { + // we need to transform our range into sort keys: + charT c3[2] = { c1, charT(0), }; + string_type s1 = this->m_traits.transform(c3, c3+1); + c3[0] = c2; + string_type s2 = this->m_traits.transform(c3, c3+1); + if(s1 > s2) + { + // Oops error: + return 0; + } + BOOST_ASSERT(c3[1] == charT(0)); + for(unsigned i = 0; i < (1u << CHAR_BIT); ++i) + { + c3[0] = static_cast(i); + string_type s3 = this->m_traits.transform(c3, c3 +1); + if((s1 <= s3) && (s3 <= s2)) + result->_map[i] = true; + } + } + else + { + if(char_less(c2, c1)) + { + // Oops error: + return 0; + } + // everything in range matches: + std::memset(result->_map + static_cast(c1), true, 1 + static_cast(c2) - static_cast(c1)); + } + } + // + // and now the classes: + // + typedef typename traits::char_class_type m_type; + m_type m = char_set.classes(); + if(flags() & regbase::icase) + { + // adjust m as needed: + if(((m & m_lower_mask) == m_lower_mask) || ((m & m_upper_mask) == m_upper_mask)) + m |= m_alpha_mask; + } + if(m != 0) + { + for(unsigned i = 0; i < (1u << CHAR_BIT); ++i) + { + if(this->m_traits.isctype(static_cast(i), m)) + result->_map[i] = true; + } + } + // + // and now the negated classes: + // + m = char_set.negated_classes(); + if(flags() & regbase::icase) + { + // adjust m as needed: + if(((m & m_lower_mask) == m_lower_mask) || ((m & m_upper_mask) == m_upper_mask)) + m |= m_alpha_mask; + } + if(m != 0) + { + for(unsigned i = 0; i < (1u << CHAR_BIT); ++i) + { + if(0 == this->m_traits.isctype(static_cast(i), m)) + result->_map[i] = true; + } + } + // + // now process the equivalence classes: + // + first = char_set.equivalents_begin(); + last = char_set.equivalents_end(); + while(first != last) + { + string_type s; + BOOST_ASSERT(static_cast(0) == first->second); + s = m_traits.transform_primary(&first->first, &first->first+1); + if(s.empty()) + return 0; // invalid or unsupported equivalence class + for(unsigned i = 0; i < (1u << CHAR_BIT); ++i) + { + charT c[2] = { (static_cast(i)), charT(0), }; + string_type s2 = this->m_traits.transform_primary(c, c+1); + if(s == s2) + result->_map[i] = true; + } + ++first; + } + if(negate) + { + for(unsigned i = 0; i < (1u << CHAR_BIT); ++i) + { + result->_map[i] = !(result->_map[i]); + } + } + return result; +} + +template +void basic_regex_creator::finalize(const charT* p1, const charT* p2) +{ + if(this->m_pdata->m_status) + return; + // we've added all the states we need, now finish things off. + // start by adding a terminating state: + append_state(syntax_element_match); + // extend storage to store original expression: + std::ptrdiff_t len = p2 - p1; + m_pdata->m_expression_len = len; + charT* ps = static_cast(m_pdata->m_data.extend(sizeof(charT) * (1 + (p2 - p1)))); + m_pdata->m_expression = ps; + re_detail::copy(p1, p2, ps); + ps[p2 - p1] = 0; + // fill in our other data... + // successful parsing implies a zero status: + m_pdata->m_status = 0; + // get the first state of the machine: + m_pdata->m_first_state = static_cast(m_pdata->m_data.data()); + // fixup pointers in the machine: + fixup_pointers(m_pdata->m_first_state); + if(m_has_recursions) + { + m_pdata->m_has_recursions = true; + fixup_recursions(m_pdata->m_first_state); + if(this->m_pdata->m_status) + return; + } + else + m_pdata->m_has_recursions = false; + // create nested startmaps: + create_startmaps(m_pdata->m_first_state); + // create main startmap: + std::memset(m_pdata->m_startmap, 0, sizeof(m_pdata->m_startmap)); + m_pdata->m_can_be_null = 0; + + m_bad_repeats = 0; + if(m_has_recursions) + m_recursion_checks.assign(1 + m_pdata->m_mark_count, false); + create_startmap(m_pdata->m_first_state, m_pdata->m_startmap, &(m_pdata->m_can_be_null), mask_all); + // get the restart type: + m_pdata->m_restart_type = get_restart_type(m_pdata->m_first_state); + // optimise a leading repeat if there is one: + probe_leading_repeat(m_pdata->m_first_state); +} + +template +void basic_regex_creator::fixup_pointers(re_syntax_base* state) +{ + while(state) + { + switch(state->type) + { + case syntax_element_recurse: + m_has_recursions = true; + if(state->next.i) + state->next.p = getaddress(state->next.i, state); + else + state->next.p = 0; + break; + case syntax_element_rep: + case syntax_element_dot_rep: + case syntax_element_char_rep: + case syntax_element_short_set_rep: + case syntax_element_long_set_rep: + // set the state_id of this repeat: + static_cast(state)->state_id = m_repeater_id++; + BOOST_FALLTHROUGH; + case syntax_element_alt: + std::memset(static_cast(state)->_map, 0, sizeof(static_cast(state)->_map)); + static_cast(state)->can_be_null = 0; + BOOST_FALLTHROUGH; + case syntax_element_jump: + static_cast(state)->alt.p = getaddress(static_cast(state)->alt.i, state); + BOOST_FALLTHROUGH; + default: + if(state->next.i) + state->next.p = getaddress(state->next.i, state); + else + state->next.p = 0; + } + state = state->next.p; + } +} + +template +void basic_regex_creator::fixup_recursions(re_syntax_base* state) +{ + re_syntax_base* base = state; + while(state) + { + switch(state->type) + { + case syntax_element_assert_backref: + { + // just check that the index is valid: + int idx = static_cast(state)->index; + if(idx < 0) + { + idx = -idx-1; + if(idx >= 10000) + { + idx = m_pdata->get_id(idx); + if(idx <= 0) + { + // check of sub-expression that doesn't exist: + if(0 == this->m_pdata->m_status) // update the error code if not already set + this->m_pdata->m_status = cutl_details_boost::regex_constants::error_bad_pattern; + // + // clear the expression, we should be empty: + // + this->m_pdata->m_expression = 0; + this->m_pdata->m_expression_len = 0; + // + // and throw if required: + // + if(0 == (this->flags() & regex_constants::no_except)) + { + std::string message = "Encountered a forward reference to a marked sub-expression that does not exist."; + cutl_details_boost::regex_error e(message, cutl_details_boost::regex_constants::error_bad_pattern, 0); + e.raise(); + } + } + } + } + } + break; + case syntax_element_recurse: + { + bool ok = false; + re_syntax_base* p = base; + std::ptrdiff_t idx = static_cast(state)->alt.i; + if(idx > 10000) + { + // + // There may be more than one capture group with this hash, just do what Perl + // does and recurse to the leftmost: + // + idx = m_pdata->get_id(static_cast(idx)); + } + while(p) + { + if((p->type == syntax_element_startmark) && (static_cast(p)->index == idx)) + { + // + // We've found the target of the recursion, set the jump target: + // + static_cast(state)->alt.p = p; + ok = true; + // + // Now scan the target for nested repeats: + // + p = p->next.p; + int next_rep_id = 0; + while(p) + { + switch(p->type) + { + case syntax_element_rep: + case syntax_element_dot_rep: + case syntax_element_char_rep: + case syntax_element_short_set_rep: + case syntax_element_long_set_rep: + next_rep_id = static_cast(p)->state_id; + break; + case syntax_element_endmark: + if(static_cast(p)->index == idx) + next_rep_id = -1; + break; + default: + break; + } + if(next_rep_id) + break; + p = p->next.p; + } + if(next_rep_id > 0) + { + static_cast(state)->state_id = next_rep_id - 1; + } + + break; + } + p = p->next.p; + } + if(!ok) + { + // recursion to sub-expression that doesn't exist: + if(0 == this->m_pdata->m_status) // update the error code if not already set + this->m_pdata->m_status = cutl_details_boost::regex_constants::error_bad_pattern; + // + // clear the expression, we should be empty: + // + this->m_pdata->m_expression = 0; + this->m_pdata->m_expression_len = 0; + // + // and throw if required: + // + if(0 == (this->flags() & regex_constants::no_except)) + { + std::string message = "Encountered a forward reference to a recursive sub-expression that does not exist."; + cutl_details_boost::regex_error e(message, cutl_details_boost::regex_constants::error_bad_pattern, 0); + e.raise(); + } + } + } + break; + default: + break; + } + state = state->next.p; + } +} + +template +void basic_regex_creator::create_startmaps(re_syntax_base* state) +{ + // non-recursive implementation: + // create the last map in the machine first, so that earlier maps + // can make use of the result... + // + // This was originally a recursive implementation, but that caused stack + // overflows with complex expressions on small stacks (think COM+). + + // start by saving the case setting: + bool l_icase = m_icase; + std::vector > v; + + while(state) + { + switch(state->type) + { + case syntax_element_toggle_case: + // we need to track case changes here: + m_icase = static_cast(state)->icase; + state = state->next.p; + continue; + case syntax_element_alt: + case syntax_element_rep: + case syntax_element_dot_rep: + case syntax_element_char_rep: + case syntax_element_short_set_rep: + case syntax_element_long_set_rep: + // just push the state onto our stack for now: + v.push_back(std::pair(m_icase, state)); + state = state->next.p; + break; + case syntax_element_backstep: + // we need to calculate how big the backstep is: + static_cast(state)->index + = this->calculate_backstep(state->next.p); + if(static_cast(state)->index < 0) + { + // Oops error: + if(0 == this->m_pdata->m_status) // update the error code if not already set + this->m_pdata->m_status = cutl_details_boost::regex_constants::error_bad_pattern; + // + // clear the expression, we should be empty: + // + this->m_pdata->m_expression = 0; + this->m_pdata->m_expression_len = 0; + // + // and throw if required: + // + if(0 == (this->flags() & regex_constants::no_except)) + { + std::string message = "Invalid lookbehind assertion encountered in the regular expression."; + cutl_details_boost::regex_error e(message, cutl_details_boost::regex_constants::error_bad_pattern, 0); + e.raise(); + } + } + BOOST_FALLTHROUGH; + default: + state = state->next.p; + } + } + + // now work through our list, building all the maps as we go: + while(v.size()) + { + // Initialize m_recursion_checks if we need it: + if(m_has_recursions) + m_recursion_checks.assign(1 + m_pdata->m_mark_count, false); + + const std::pair& p = v.back(); + m_icase = p.first; + state = p.second; + v.pop_back(); + + // Build maps: + m_bad_repeats = 0; + create_startmap(state->next.p, static_cast(state)->_map, &static_cast(state)->can_be_null, mask_take); + m_bad_repeats = 0; + + if(m_has_recursions) + m_recursion_checks.assign(1 + m_pdata->m_mark_count, false); + create_startmap(static_cast(state)->alt.p, static_cast(state)->_map, &static_cast(state)->can_be_null, mask_skip); + // adjust the type of the state to allow for faster matching: + state->type = this->get_repeat_type(state); + } + // restore case sensitivity: + m_icase = l_icase; +} + +template +int basic_regex_creator::calculate_backstep(re_syntax_base* state) +{ + typedef typename traits::char_class_type m_type; + int result = 0; + while(state) + { + switch(state->type) + { + case syntax_element_startmark: + if((static_cast(state)->index == -1) + || (static_cast(state)->index == -2)) + { + state = static_cast(state->next.p)->alt.p->next.p; + continue; + } + else if(static_cast(state)->index == -3) + { + state = state->next.p->next.p; + continue; + } + break; + case syntax_element_endmark: + if((static_cast(state)->index == -1) + || (static_cast(state)->index == -2)) + return result; + break; + case syntax_element_literal: + result += static_cast(state)->length; + break; + case syntax_element_wild: + case syntax_element_set: + result += 1; + break; + case syntax_element_dot_rep: + case syntax_element_char_rep: + case syntax_element_short_set_rep: + case syntax_element_backref: + case syntax_element_rep: + case syntax_element_combining: + case syntax_element_long_set_rep: + case syntax_element_backstep: + { + re_repeat* rep = static_cast(state); + // adjust the type of the state to allow for faster matching: + state->type = this->get_repeat_type(state); + if((state->type == syntax_element_dot_rep) + || (state->type == syntax_element_char_rep) + || (state->type == syntax_element_short_set_rep)) + { + if(rep->max != rep->min) + return -1; + result += static_cast(rep->min); + state = rep->alt.p; + continue; + } + else if(state->type == syntax_element_long_set_rep) + { + BOOST_ASSERT(rep->next.p->type == syntax_element_long_set); + if(static_cast*>(rep->next.p)->singleton == 0) + return -1; + if(rep->max != rep->min) + return -1; + result += static_cast(rep->min); + state = rep->alt.p; + continue; + } + } + return -1; + case syntax_element_long_set: + if(static_cast*>(state)->singleton == 0) + return -1; + result += 1; + break; + case syntax_element_jump: + state = static_cast(state)->alt.p; + continue; + case syntax_element_alt: + { + int r1 = calculate_backstep(state->next.p); + int r2 = calculate_backstep(static_cast(state)->alt.p); + if((r1 < 0) || (r1 != r2)) + return -1; + return result + r1; + } + default: + break; + } + state = state->next.p; + } + return -1; +} + +template +void basic_regex_creator::create_startmap(re_syntax_base* state, unsigned char* l_map, unsigned int* pnull, unsigned char mask) +{ + int not_last_jump = 1; + re_syntax_base* recursion_start = 0; + int recursion_sub = 0; + re_syntax_base* recursion_restart = 0; + + // track case sensitivity: + bool l_icase = m_icase; + + while(state) + { + switch(state->type) + { + case syntax_element_toggle_case: + l_icase = static_cast(state)->icase; + state = state->next.p; + break; + case syntax_element_literal: + { + // don't set anything in *pnull, set each element in l_map + // that could match the first character in the literal: + if(l_map) + { + l_map[0] |= mask_init; + charT first_char = *static_cast(static_cast(static_cast(state) + 1)); + for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i) + { + if(m_traits.translate(static_cast(i), l_icase) == first_char) + l_map[i] |= mask; + } + } + return; + } + case syntax_element_end_line: + { + // next character must be a line separator (if there is one): + if(l_map) + { + l_map[0] |= mask_init; + l_map[static_cast('\n')] |= mask; + l_map[static_cast('\r')] |= mask; + l_map[static_cast('\f')] |= mask; + l_map[0x85] |= mask; + } + // now figure out if we can match a NULL string at this point: + if(pnull) + create_startmap(state->next.p, 0, pnull, mask); + return; + } + case syntax_element_recurse: + { + if(state->type == syntax_element_startmark) + recursion_sub = static_cast(state)->index; + else + recursion_sub = 0; + if(m_recursion_checks[recursion_sub]) + { + // Infinite recursion!! + if(0 == this->m_pdata->m_status) // update the error code if not already set + this->m_pdata->m_status = cutl_details_boost::regex_constants::error_bad_pattern; + // + // clear the expression, we should be empty: + // + this->m_pdata->m_expression = 0; + this->m_pdata->m_expression_len = 0; + // + // and throw if required: + // + if(0 == (this->flags() & regex_constants::no_except)) + { + std::string message = "Encountered an infinite recursion."; + cutl_details_boost::regex_error e(message, cutl_details_boost::regex_constants::error_bad_pattern, 0); + e.raise(); + } + } + else if(recursion_start == 0) + { + recursion_start = state; + recursion_restart = state->next.p; + state = static_cast(state)->alt.p; + m_recursion_checks[recursion_sub] = true; + break; + } + m_recursion_checks[recursion_sub] = true; + // can't handle nested recursion here... + BOOST_FALLTHROUGH; + } + case syntax_element_backref: + // can be null, and any character can match: + if(pnull) + *pnull |= mask; + BOOST_FALLTHROUGH; + case syntax_element_wild: + { + // can't be null, any character can match: + set_all_masks(l_map, mask); + return; + } + case syntax_element_match: + { + // must be null, any character can match: + set_all_masks(l_map, mask); + if(pnull) + *pnull |= mask; + return; + } + case syntax_element_word_start: + { + // recurse, then AND with all the word characters: + create_startmap(state->next.p, l_map, pnull, mask); + if(l_map) + { + l_map[0] |= mask_init; + for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i) + { + if(!m_traits.isctype(static_cast(i), m_word_mask)) + l_map[i] &= static_cast(~mask); + } + } + return; + } + case syntax_element_word_end: + { + // recurse, then AND with all the word characters: + create_startmap(state->next.p, l_map, pnull, mask); + if(l_map) + { + l_map[0] |= mask_init; + for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i) + { + if(m_traits.isctype(static_cast(i), m_word_mask)) + l_map[i] &= static_cast(~mask); + } + } + return; + } + case syntax_element_buffer_end: + { + // we *must be null* : + if(pnull) + *pnull |= mask; + return; + } + case syntax_element_long_set: + if(l_map) + { + typedef typename traits::char_class_type m_type; + if(static_cast*>(state)->singleton) + { + l_map[0] |= mask_init; + for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i) + { + charT c = static_cast(i); + if(&c != re_is_set_member(&c, &c + 1, static_cast*>(state), *m_pdata, l_icase)) + l_map[i] |= mask; + } + } + else + set_all_masks(l_map, mask); + } + return; + case syntax_element_set: + if(l_map) + { + l_map[0] |= mask_init; + for(unsigned int i = 0; i < (1u << CHAR_BIT); ++i) + { + if(static_cast(state)->_map[ + static_cast(m_traits.translate(static_cast(i), l_icase))]) + l_map[i] |= mask; + } + } + return; + case syntax_element_jump: + // take the jump: + state = static_cast(state)->alt.p; + not_last_jump = -1; + break; + case syntax_element_alt: + case syntax_element_rep: + case syntax_element_dot_rep: + case syntax_element_char_rep: + case syntax_element_short_set_rep: + case syntax_element_long_set_rep: + { + re_alt* rep = static_cast(state); + if(rep->_map[0] & mask_init) + { + if(l_map) + { + // copy previous results: + l_map[0] |= mask_init; + for(unsigned int i = 0; i <= UCHAR_MAX; ++i) + { + if(rep->_map[i] & mask_any) + l_map[i] |= mask; + } + } + if(pnull) + { + if(rep->can_be_null & mask_any) + *pnull |= mask; + } + } + else + { + // we haven't created a startmap for this alternative yet + // so take the union of the two options: + if(is_bad_repeat(state)) + { + set_all_masks(l_map, mask); + if(pnull) + *pnull |= mask; + return; + } + set_bad_repeat(state); + create_startmap(state->next.p, l_map, pnull, mask); + if((state->type == syntax_element_alt) + || (static_cast(state)->min == 0) + || (not_last_jump == 0)) + create_startmap(rep->alt.p, l_map, pnull, mask); + } + } + return; + case syntax_element_soft_buffer_end: + // match newline or null: + if(l_map) + { + l_map[0] |= mask_init; + l_map[static_cast('\n')] |= mask; + l_map[static_cast('\r')] |= mask; + } + if(pnull) + *pnull |= mask; + return; + case syntax_element_endmark: + // need to handle independent subs as a special case: + if(static_cast(state)->index < 0) + { + // can be null, any character can match: + set_all_masks(l_map, mask); + if(pnull) + *pnull |= mask; + return; + } + else if(recursion_start && (recursion_sub != 0) && (recursion_sub == static_cast(state)->index)) + { + // recursion termination: + recursion_start = 0; + state = recursion_restart; + break; + } + + // + // Normally we just go to the next state... but if this sub-expression is + // the target of a recursion, then we might be ending a recursion, in which + // case we should check whatever follows that recursion, as well as whatever + // follows this state: + // + if(m_pdata->m_has_recursions && static_cast(state)->index) + { + bool ok = false; + re_syntax_base* p = m_pdata->m_first_state; + while(p) + { + if(p->type == syntax_element_recurse) + { + re_brace* p2 = static_cast(static_cast(p)->alt.p); + if((p2->type == syntax_element_startmark) && (p2->index == static_cast(state)->index)) + { + ok = true; + break; + } + } + p = p->next.p; + } + if(ok) + { + create_startmap(p->next.p, l_map, pnull, mask); + } + } + state = state->next.p; + break; + + case syntax_element_startmark: + // need to handle independent subs as a special case: + if(static_cast(state)->index == -3) + { + state = state->next.p->next.p; + break; + } + BOOST_FALLTHROUGH; + default: + state = state->next.p; + } + ++not_last_jump; + } +} + +template +unsigned basic_regex_creator::get_restart_type(re_syntax_base* state) +{ + // + // find out how the machine starts, so we can optimise the search: + // + while(state) + { + switch(state->type) + { + case syntax_element_startmark: + case syntax_element_endmark: + state = state->next.p; + continue; + case syntax_element_start_line: + return regbase::restart_line; + case syntax_element_word_start: + return regbase::restart_word; + case syntax_element_buffer_start: + return regbase::restart_buf; + case syntax_element_restart_continue: + return regbase::restart_continue; + default: + state = 0; + continue; + } + } + return regbase::restart_any; +} + +template +void basic_regex_creator::set_all_masks(unsigned char* bits, unsigned char mask) +{ + // + // set mask in all of bits elements, + // if bits[0] has mask_init not set then we can + // optimise this to a call to memset: + // + if(bits) + { + if(bits[0] == 0) + (std::memset)(bits, mask, 1u << CHAR_BIT); + else + { + for(unsigned i = 0; i < (1u << CHAR_BIT); ++i) + bits[i] |= mask; + } + bits[0] |= mask_init; + } +} + +template +bool basic_regex_creator::is_bad_repeat(re_syntax_base* pt) +{ + switch(pt->type) + { + case syntax_element_rep: + case syntax_element_dot_rep: + case syntax_element_char_rep: + case syntax_element_short_set_rep: + case syntax_element_long_set_rep: + { + unsigned state_id = static_cast(pt)->state_id; + if(state_id > sizeof(m_bad_repeats) * CHAR_BIT) + return true; // run out of bits, assume we can't traverse this one. + static const cutl_details_boost::uintmax_t one = 1uL; + return m_bad_repeats & (one << state_id); + } + default: + return false; + } +} + +template +void basic_regex_creator::set_bad_repeat(re_syntax_base* pt) +{ + switch(pt->type) + { + case syntax_element_rep: + case syntax_element_dot_rep: + case syntax_element_char_rep: + case syntax_element_short_set_rep: + case syntax_element_long_set_rep: + { + unsigned state_id = static_cast(pt)->state_id; + static const cutl_details_boost::uintmax_t one = 1uL; + if(state_id <= sizeof(m_bad_repeats) * CHAR_BIT) + m_bad_repeats |= (one << state_id); + } + break; + default: + break; + } +} + +template +syntax_element_type basic_regex_creator::get_repeat_type(re_syntax_base* state) +{ + typedef typename traits::char_class_type m_type; + if(state->type == syntax_element_rep) + { + // check to see if we are repeating a single state: + if(state->next.p->next.p->next.p == static_cast(state)->alt.p) + { + switch(state->next.p->type) + { + case re_detail::syntax_element_wild: + return re_detail::syntax_element_dot_rep; + case re_detail::syntax_element_literal: + return re_detail::syntax_element_char_rep; + case re_detail::syntax_element_set: + return re_detail::syntax_element_short_set_rep; + case re_detail::syntax_element_long_set: + if(static_cast*>(state->next.p)->singleton) + return re_detail::syntax_element_long_set_rep; + break; + default: + break; + } + } + } + return state->type; +} + +template +void basic_regex_creator::probe_leading_repeat(re_syntax_base* state) +{ + // enumerate our states, and see if we have a leading repeat + // for which failed search restarts can be optimised; + do + { + switch(state->type) + { + case syntax_element_startmark: + if(static_cast(state)->index >= 0) + { + state = state->next.p; + continue; + } + if((static_cast(state)->index == -1) + || (static_cast(state)->index == -2)) + { + // skip past the zero width assertion: + state = static_cast(state->next.p)->alt.p->next.p; + continue; + } + if(static_cast(state)->index == -3) + { + // Have to skip the leading jump state: + state = state->next.p->next.p; + continue; + } + return; + case syntax_element_endmark: + case syntax_element_start_line: + case syntax_element_end_line: + case syntax_element_word_boundary: + case syntax_element_within_word: + case syntax_element_word_start: + case syntax_element_word_end: + case syntax_element_buffer_start: + case syntax_element_buffer_end: + case syntax_element_restart_continue: + state = state->next.p; + break; + case syntax_element_dot_rep: + case syntax_element_char_rep: + case syntax_element_short_set_rep: + case syntax_element_long_set_rep: + if(this->m_has_backrefs == 0) + static_cast(state)->leading = true; + BOOST_FALLTHROUGH; + default: + return; + } + }while(state); +} + + +} // namespace re_detail + +} // namespace cutl_details_boost + +#ifdef BOOST_MSVC +# pragma warning(pop) +#endif + +#ifdef BOOST_MSVC +#pragma warning(push) +#pragma warning(disable: 4103) +#endif +#ifdef BOOST_HAS_ABI_HEADERS +# include BOOST_ABI_SUFFIX +#endif +#ifdef BOOST_MSVC +#pragma warning(pop) +#endif + +#endif + -- cgit v1.2.3