
C++/Tree Mapping

Getting Started Guide

Copyright © 2005-2014 CODE SYNTHESIS TOOLS CC

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, version 1.2; with no Invariant Sections, no Front-Cover Texts
and no Back-Cover Texts.

This document is available in the following formats: XHTML, PDF, and PostScript.

http://www.codesynthesis.com/licenses/fdl-1.2.txt
http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/
http://wiki.codesynthesis.com/Tree/Customization_guide
http://wiki.codesynthesis.com/Tree/FAQ

Table of Contents
................... 1Preface
............... 1About This Document
................ 1More Information
.................. 11 Introduction
.............. 11.1 Mapping Overview
................. 21.2 Benefits
............... 32 Hello World Example
.......... 32.1 Writing XML Document and Schema
............. 52.2 Translating Schema to C++
........... 72.3 Implementing Application Logic
............. 72.4 Compiling and Running
.............. 82.5 Adding Serialization
............ 112.6 Selecting Naming Convention
............. 132.7 Generating Documentation
............. 153 Overall Mapping Configuration
................ 163.1 C++ Standard
............ 163.2 Character Type and Encoding
............. 163.3 Support for Polymorphism
.............. 173.4 Namespace Mapping
................ 173.5 Thread Safety
.............. 184 Working with Object Models
........... 204.1 Attribute and Element Cardinalities
............ 234.2 Accessing the Object Model
............ 244.3 Modifying the Object Model
.......... 264.4 Creating the Object Model from Scratch
........ 294.5 Mapping for the Built-in XML Schema Types
................... 325 Parsing
.......... 335.1 XML Schema Validation and Searching
............... 355.2 Error Handling
................. 366 Serialization
........... 376.1 Namespace and Schema Information
............... 386.2 Error Handling

iJuly 2014 C++/Tree Mapping Getting Started Guide

Table of Contents

Preface

About This Document

The goal of this document is to provide you with an understanding of the C++/Tree programming
model and allow you to efficiently evaluate XSD against your project’s technical requirements.
As such, this document is intended for C++ developers and software architects who are looking
for an XML processing solution. For a more in-depth description of the C++/Tree mapping refer
to the C++/Tree Mapping User Manual.

Prior experience with XML and C++ is required to understand this document. Basic understand-
ing of XML Schema is advantageous but not expected or required.

More Information

Beyond this guide, you may also find the following sources of information useful:

C++/Tree Mapping User Manual
C++/Tree Mapping Customization Guide
C++/Tree Mapping Frequently Asked Questions (FAQ)
XSD Compiler Command Line Manual
The examples/cxx/tree/ directory in the XSD distribution contains a collection of
examples and a README file with an overview of each example.
The README file in the XSD distribution explains how to compile the examples on various
platforms.
The xsd-users mailing list is the place to ask technical questions about XSD and the
C++/Parser mapping. Furthermore, the archives may already have answers to some of your
questions.

1 Introduction
Welcome to CodeSynthesis XSD and the C++/Tree mapping. XSD is a cross-platform W3C
XML Schema to C++ data binding compiler. C++/Tree is a W3C XML Schema to C++ mapping
that represents the data stored in XML as a statically-typed, vocabulary-specific object model.

1.1 Mapping Overview

Based on a formal description of an XML vocabulary (schema), the C++/Tree mapping produces
a tree-like data structure suitable for in-memory processing. The core of the mapping consists of
C++ classes that constitute the object model and are derived from types defined in XML Schema
as well as XML parsing and serialization code.

1July 2014 C++/Tree Mapping Getting Started Guide

Preface

http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/
http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/
http://wiki.codesynthesis.com/Tree/Customization_guide
http://wiki.codesynthesis.com/Tree/FAQ
http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml
http://www.codesynthesis.com/mailman/listinfo/xsd-users
http://www.codesynthesis.com/pipermail/xsd-users/

Besides the core features, C++/Tree provide a number of additional mapping elements that can be
useful in some applications. These include serialization and extraction to/from formats others
than XML, such as unstructured text (useful for debugging) and binary representations such as
XDR and CDR for high-speed data processing as well as automatic documentation generation.
The C++/Tree mapping also provides a wide range of mechanisms for controlling and customiz-
ing the generated code.

A typical application that uses C++/Tree for XML processing usually performs the following
three steps: it first reads (parses) an XML document to an in-memory object model, it then
performs some useful computations on that object model which may involve modification of the
model, and finally it may write (serialize) the modified object model back to XML.

The next chapter presents a simple application that performs these three steps. The following
chapters show how to use the C++/Tree mapping in more detail.

1.2 Benefits

Traditional XML access APIs such as Document Object Model (DOM) or Simple API for XML
(SAX) have a number of drawbacks that make them less suitable for creating robust and main-
tainable XML processing applications. These drawbacks include:

Generic representation of XML in terms of elements, attributes, and text forces an applica-
tion developer to write a substantial amount of bridging code that identifies and transforms
pieces of information encoded in XML to a representation more suitable for consumption by
the application logic.
String-based flow control defers error detection to runtime. It also reduces code readability
and maintainability.
Lack of type safety because the data is represented as text.
Resulting applications are hard to debug, change, and maintain.

In contrast, statically-typed, vocabulary-specific object model produced by the C++/Tree
mapping allows you to operate in your domain terms instead of the generic elements, attributes,
and text. Static typing helps catch errors at compile-time rather than at run-time. Automatic code
generation frees you for more interesting tasks (such as doing something useful with the informa-
tion stored in the XML documents) and minimizes the effort needed to adapt your applications to
changes in the document structure. To summarize, the C++/Tree object model has the following
key advantages over generic XML access APIs:

Ease of use. The generated code hides all the complexity associated with parsing and serial-
izing XML. This includes navigating the structure and converting between the text represen-
tation and data types suitable for manipulation by the application logic.
Natural representation. The object representation allows you to access the XML data using
your domain vocabulary instead of generic elements, attributes, and text.

July 20142 C++/Tree Mapping Getting Started Guide

1.2 Benefits

Concise code. With the object representation the application implementation is simpler and
thus easier to read and understand.
Safety. The generated object model is statically typed and uses functions instead of strings
to access the information. This helps catch programming errors at compile-time rather than
at runtime.
Maintainability. Automatic code generation minimizes the effort needed to adapt the appli-
cation to changes in the document structure. With static typing, the C++ compiler can
pin-point the places in the client code that need to be changed.
Compatibility. Sequences of elements are represented in the object model as containers
conforming to the standard C++ sequence requirements. This makes it possible to use stan-
dard C++ algorithms on the object representation and frees you from learning yet another
container interface, as is the case with DOM.
Efficiency. If the application makes repetitive use of the data extracted from XML, then the
C++/Tree object model is more efficient because the navigation is performed using function
calls rather than string comparisons and the XML data is extracted only once. Furthermore,
the runtime memory usage is reduced due to more efficient data storage (for instance, storing
numeric data as integers instead of strings) as well as the static knowledge of cardinality
constraints.

2 Hello World Example
In this chapter we will examine how to parse, access, modify, and serialize a very simple XML
document using the XSD-generated C++/Tree object model. The code presented in this chapter is
based on the hello example which can be found in the examples/cxx/tree/ directory of
the XSD distribution.

2.1 Writing XML Document and Schema

First, we need to get an idea about the structure of the XML documents we are going to process.
Our hello.xml , for example, could look like this:

<?xml version="1.0"?>
<hello>

 <greeting>Hello</greeting>

 <name>sun</name>
 <name>moon</name>
 <name>world</name>

</hello>

3July 2014 C++/Tree Mapping Getting Started Guide

2 Hello World Example

Then we can write a description of the above XML in the XML Schema language and save it into
hello.xsd :

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:complexType name="hello_t">
 <xs:sequence>
 <xs:element name="greeting" type="xs:string"/>
 <xs:element name="name" type="xs:string" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:element name="hello" type="hello_t"/>

</xs:schema>

Even if you are not familiar with XML Schema, it should be easy to connect declarations in
hello.xsd to elements in hello.xml . The hello_t type is defined as a sequence of the
nested greeting and name elements. Note that the term sequence in XML Schema means that
elements should appear in a particular order as opposed to appearing multiple times. The name
element has its maxOccurs property set to unbounded which means it can appear multiple
times in an XML document. Finally, the globally-defined hello element prescribes the root
element for our vocabulary. For an easily-approachable introduction to XML Schema refer to
XML Schema Part 0: Primer.

The above schema is a specification of our XML vocabulary; it tells everybody what valid docu-
ments of our XML-based language should look like. We can also update our hello.xml to
include the information about the schema so that XML parsers can validate our document:

<?xml version="1.0"?>
<hello xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="hello.xsd">

 <greeting>Hello</greeting>

 <name>sun</name>
 <name>moon</name>
 <name>world</name>

</hello>

The next step is to compile the schema to generate the object model and parsing functions.

July 20144 C++/Tree Mapping Getting Started Guide

2.1 Writing XML Document and Schema

http://www.w3.org/TR/xmlschema-0/

2.2 Translating Schema to C++

Now we are ready to translate our hello.xsd to C++. To do this we invoke the XSD compiler
from a terminal (UNIX) or a command prompt (Windows):

$ xsd cxx-tree hello.xsd

The XSD compiler produces two C++ files: hello.hxx and hello.cxx . The following code
fragment is taken from hello.hxx ; it should give you an idea about what gets generated:

class hello_t
{
public:
 // greeting
 //
 typedef xml_schema::string greeting_type;

 const greeting_type&
 greeting () const;

 greeting_type&
 greeting ();

 void
 greeting (const greeting_type& x);

 // name
 //
 typedef xml_schema::string name_type;
 typedef xsd::sequence<name_type> name_sequence;
 typedef name_sequence::iterator name_iterator;
 typedef name_sequence::const_iterator name_const_iterator;

 const name_sequence&
 name () const;

 name_sequence&
 name ();

 void
 name (const name_sequence& s);

 // Constructor.
 //
 hello_t (const greeting_type&);

 ...

};

5July 2014 C++/Tree Mapping Getting Started Guide

2.2 Translating Schema to C++

std::auto_ptr<hello_t>
hello (const std::string& uri);

std::auto_ptr<hello_t>
hello (std::istream&);

The hello_t C++ class corresponds to the hello_t XML Schema type. For each element in
this type a set of C++ type definitions as well as accessor and modifier functions are generated
inside the hello_t class. Note that the type definitions and member functions for the greet-
ing and name elements are different because of the cardinality differences between these two
elements (greeting is a required single element and name is a sequence of elements).

The xml_schema::string type used in the type definitions is a C++ class provided by the
XSD runtime that corresponds to built-in XML Schema type string . The
xml_schema::string is based on std::string and can be used as such. Similarly, the
sequence class template that is used in the name_sequence type definition is based on and
has the same interface as std::vector . The mapping between the built-in XML Schema types
and C++ types is described in more detail in Section 4.5, "Mapping for the Built-in XML Schema
Types". The hello_t class also includes a constructor with an initializer for the required
greeting element as its argument.

The hello overloaded global functions correspond to the hello global element in XML
Schema. A global element in XML Schema is a valid document root. By default XSD generated a
set of parsing functions for each global element defined in XML Schema (this can be overridden
with the --root-element-* options). Parsing functions return a dynamically allocated object
model as an automatic pointer. The actual pointer used depends on the C++ standard selected. For
C++98 it is std::auto_ptr as shown above. For C++11 it is std::unique_ptr . For
example, if we modify our XSD compiler invocation to select C++11:

$ xsd cxx-tree --std c++11 hello.xsd

Then the parsing function signatures will become:

std::unique_ptr<hello_t>
hello (const std::string& uri);

std::unique_ptr<hello_t>
hello (std::istream&);

For more information on parsing functions see Chapter 5, "Parsing".

July 20146 C++/Tree Mapping Getting Started Guide

2.2 Translating Schema to C++

2.3 Implementing Application Logic

At this point we have all the parts we need to do something useful with the information stored in
our XML document:

#include <iostream>
#include "hello.hxx"

using namespace std;

int
main (int argc, char* argv[])
{
 try
 {
 auto_ptr<hello_t> h (hello (argv[1]));

 for (hello_t::name_const_iterator i (h->name ().begin ());
 i != h->name ().end ();
 ++i)
 {
 cerr << h->greeting () << ", " << *i << "!" << endl;
 }
 }
 catch (const xml_schema::exception& e)
 {
 cerr << e << endl;
 return 1;
 }
}

The first part of our application calls one of the parsing functions to parser an XML file specified
in the command line. We then use the returned object model to iterate over names and print a
greeting line for each of them. Finally, we catch and print the xml_schema::exception
exception in case something goes wrong. This exception is the root of the exception hierarchy
used by the XSD-generated code.

2.4 Compiling and Running

After saving our application from the previous section in driver.cxx , we are ready to compile
our first program and run it on the test XML document. On a UNIX system this can be done with
the following commands:

7July 2014 C++/Tree Mapping Getting Started Guide

2.3 Implementing Application Logic

$ c++ -I.../libxsd -c driver.cxx hello.cxx
$ c++ -o driver driver.o hello.o -lxerces-c
$./driver hello.xml
Hello, sun!
Hello, moon!
Hello, world!

Here .../libxsd represents the path to the libxsd directory in the XSD distribution. Note
also that we are required to link our application with the Xerces-C++ library because the gener-
ated code uses it as the underlying XML parser.

2.5 Adding Serialization

While parsing and accessing the XML data may be everything you need, there are applications
that require creating new or modifying existing XML documents. By default XSD does not
produce serialization code. We will need to request it with the --generate-serializa-
tion options:

$ xsd cxx-tree --generate-serialization hello.xsd

If we now examine the generated hello.hxx file, we will find a set of overloaded serialization
functions, including the following version:

void
hello (std::ostream&,
 const hello_t&,
 const xml_schema::namespace_infomap& =
 xml_schema::namespace_infomap ());

Just like with parsing functions, XSD generates serialization functions for each global element
unless instructed otherwise with one of the --root-element-* options. For more informa-
tion on serialization functions see Chapter 6, "Serialization".

We first examine an application that modifies an existing object model and serializes it back to
XML:

#include <iostream>
#include "hello.hxx"

using namespace std;

int
main (int argc, char* argv[])
{
 try
 {
 auto_ptr<hello_t> h (hello (argv[1]));

July 20148 C++/Tree Mapping Getting Started Guide

2.5 Adding Serialization

 // Change the greeting phrase.
 //
 h->greeting ("Hi");

 // Add another entry to the name sequence.
 //
 h->name ().push_back ("mars");

 // Serialize the modified object model to XML.
 //
 xml_schema::namespace_infomap map;
 map[""].name = "";
 map[""].schema = "hello.xsd";

 hello (cout, *h, map);
 }
 catch (const xml_schema::exception& e)
 {
 cerr << e << endl;
 return 1;
 }
}

First, our application parses an XML document and obtains its object model as in the previous
example. Then it changes the greeting string and adds another entry to the list of names. Finally,
it serializes the object model back to XML by calling the serialization function.

The first argument we pass to the serialization function is cout which results in the XML being
written to the standard output for us to inspect. We could have also written the result to a file or
memory buffer by creating an instance of std::ofstream or std::ostringstream and
passing it instead of cout . The second argument is the object model we want to serialize. The
final argument is an optional namespace information map for our vocabulary. It captures informa-
tion such as namespaces, namespace prefixes to which they should be mapped, and schemas asso-
ciated with these namespaces. If we don’t provide this argument then generic namespace prefixes
(p1 , p2 , etc.) will be automatically assigned to XML namespaces and no schema information
will be added to the resulting document (see Chapter 6, "Serialization" for details). In our case,
the prefix (map key) and namespace name are empty because our vocabulary does not use XML
namespaces.

If we now compile and run this application we will see the output as shown in the following
listing:

<?xml version="1.0"?>
<hello xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="hello.xsd">

 <greeting>Hi</greeting>

9July 2014 C++/Tree Mapping Getting Started Guide

2.5 Adding Serialization

 <name>sun</name>
 <name>moon</name>
 <name>world</name>
 <name>mars</name>

</hello>

We can also create and serialize an object model from scratch as shown in the following example:

#include <iostream>
#include <fstream>
#include "hello.hxx"

using namespace std;

int
main (int argc, char* argv[])
{
 try
 {
 hello_t h ("Hi");

 hello_t::name_sequence& ns (h.name ());

 ns.push_back ("Jane");
 ns.push_back ("John");

 // Serialize the object model to XML.
 //
 xml_schema::namespace_infomap map;
 map[""].name = "";
 map[""].schema = "hello.xsd";

 std::ofstream ofs (argv[1]);
 hello (ofs, h, map);
 }
 catch (const xml_schema::exception& e)
 {
 cerr << e << endl;
 return 1;
 }
}

In this example we used the generated constructor to create an instance of type hello_t . To
reduce typing, we obtained a reference to the name sequence which we then used to add a few
names. The serialization part is identical to the previous example except this time we are writing
to a file. If we compile and run this program, it produces the following XML file:

July 201410 C++/Tree Mapping Getting Started Guide

2.5 Adding Serialization

<?xml version="1.0"?>
<hello xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="hello.xsd">

 <greeting>Hi</greeting>

 <name>Jane</name>
 <name>John</name>

</hello>

2.6 Selecting Naming Convention

By default XSD uses the so-called K&R (Kernighan and Ritchie) identifier naming convention in
the generated code. In this convention both type and function names are in lower case and words
are separated by underscores. If your application code or schemas use a different notation, you
may want to change the naming convention used in the generated code for consistency. XSD
supports a set of widely-used naming conventions that you can select with the --type-naming
and --function-naming options. You can also further refine one of the predefined conven-
tions or create a completely custom naming scheme by using the --*-regex options.

As an example, let’s assume that our "Hello World" application uses the so-called
upper-camel-case naming convention for types (that is, each word in a type name is capitalized)
and the K&R convention for function names. Since K&R is the default convention for both type
and function names, we only need to change the type naming scheme:

$ xsd cxx-tree --type-naming ucc hello.xsd

The ucc argument to the --type-naming options stands for upper-camel-case. If we now
examine the generated hello.hxx , we will see the following changes compared to the declara-
tions shown in the previous sections:

class Hello_t
{
public:
 // greeting
 //
 typedef xml_schema::String GreetingType;

 const GreetingType&
 greeting () const;

 GreetingType&
 greeting ();

 void
 greeting (const GreetingType& x);

11July 2014 C++/Tree Mapping Getting Started Guide

2.6 Selecting Naming Convention

 // name
 //
 typedef xml_schema::String NameType;
 typedef xsd::sequence<NameType> NameSequence;
 typedef NameSequence::iterator NameIterator;
 typedef NameSequence::const_iterator NameConstIterator;

 const NameSequence&
 name () const;

 NameSequence&
 name ();

 void
 name (const NameSequence& s);

 // Constructor.
 //
 Hello_t (const GreetingType&);

 ...

};

std::auto_ptr<Hello_t>
hello (const std::string& uri);

std::auto_ptr<Hello_t>
hello (std::istream&);

Notice that the type names in the xml_schema namespace, for example
xml_schema::String , now also use the upper-camel-case naming convention. The only
thing that we may be unhappy about in the above code is the _t suffix in Hello_t . If we are
not in a position to change the schema, we can touch-up the ucc convention with a custom trans-
lation rule using the --type-regex option:

$ xsd cxx-tree --type-naming ucc --type-regex ’/ (.+)_t/\u$1/’ hello.xsd

This results in the following changes to the generated code:

class Hello
{
public:
 // greeting
 //
 typedef xml_schema::String GreetingType;

 const GreetingType&
 greeting () const;

July 201412 C++/Tree Mapping Getting Started Guide

2.6 Selecting Naming Convention

 GreetingType&
 greeting ();

 void
 greeting (const GreetingType& x);

 // name
 //
 typedef xml_schema::String NameType;
 typedef xsd::sequence<NameType> NameSequence;
 typedef NameSequence::iterator NameIterator;
 typedef NameSequence::const_iterator NameConstIterator;

 const NameSequence&
 name () const;

 NameSequence&
 name ();

 void
 name (const NameSequence& s);

 // Constructor.
 //
 Hello (const GreetingType&);

 ...

};

std::auto_ptr<Hello>
hello (const std::string& uri);

std::auto_ptr<Hello>
hello (std::istream&);

For more detailed information on the --type-naming , --function-naming ,
--type-regex , and other --*-regex options refer to the NAMING CONVENTION section
in the XSD Compiler Command Line Manual.

2.7 Generating Documentation

While our object model is quite simple, real-world vocabularies can be quite complex with
hundreds of types, elements, and attributes. For such vocabularies figuring out which types
provide which member functions by studying the generated source code or schemas can be a
daunting task. To provide application developers with a more accessible way of understanding
the generated object models, the XSD compiler can be instructed to produce source code with
documentation comments in the Doxygen format. Then the source code can be processed with the

13July 2014 C++/Tree Mapping Getting Started Guide

2.7 Generating Documentation

http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml

Doxygen documentation system to extract this information and produce documentation in various
formats.

In this section we will see how to generate documentation for our "Hello World" vocabulary. To
showcase the full power of the XSD documentation facilities, we will first document our schema.
The XSD compiler will then transfer this information from the schema to the generated code and
then to the object model documentation. Note that the documentation in the schema is not
required for XSD to generate useful documentation. Below you will find our hello.xsd with
added documentation:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:complexType name="hello_t">

 <xs:annotation>
 <xs:documentation>
 The hello_t type consists of a greeting phrase and a
 collection of names to which this greeting applies.
 </xs:documentation>
 </xs:annotation>

 <xs:sequence>

 <xs:element name="greeting" type="xs:string">
 <xs:annotation>
 <xs:documentation>
 The greeting element contains the greeting phrase
 for this hello object.
 </xs:documentation>
 </xs:annotation>
 </xs:element>

 <xs:element name="name" type="xs:string" maxOccurs="unbounded">
 <xs:annotation>
 <xs:documentation>
 The name elements contains names to be greeted.
 </xs:documentation>
 </xs:annotation>
 </xs:element>

 </xs:sequence>
 </xs:complexType>

 <xs:element name="hello" type="hello_t">
 <xs:annotation>
 <xs:documentation>
 The hello element is a root of the Hello XML vocabulary.
 Every conforming document should start with this element.
 </xs:documentation>

July 201414 C++/Tree Mapping Getting Started Guide

2.7 Generating Documentation

http://www.doxygen.org/

 </xs:annotation>
 </xs:element>

</xs:schema>

The first step in obtaining the documentation is to recompile our schema with the --gener-
ate-doxygen option:

$ xsd cxx-tree --generate-serialization --generate-doxygen hello.xsd

Now the generated hello.hxx file contains comments in the Doxygen format. The next step is
to process this file with the Doxygen documentation system. If your project does not use
Doxygen then you first need to create a configuration file for your project:

$ doxygen -g hello.doxygen

You only need to perform this step once. Now we can generate the documentation by executing
the following command in the directory with the generated source code:

$ doxygen hello.doxygen

While the generated documentation can be useful as is, we can go one step further and link (using
the Doxygen tags mechanism) the documentation for our object model with the documentation
for the XSD runtime library which defines C++ classes for the built-in XML Schema types. This
way we can seamlessly browse between documentation for the hello_t class which is gener-
ated by the XSD compiler and the xml_schema::string class which is defined in the XSD
runtime library. The Doxygen configuration file for the XSD runtime is provided with the XSD
distribution.

You can view the result of the steps described in this section on the Hello Example Documenta-
tion page.

3 Overall Mapping Configuration
The C++/Tree mapping has a number of configuration parameters that determine the overall
properties and behavior of the generated code. Configuration parameters are specified with the
XSD command line options. This chapter describes configuration aspects that are most
commonly encountered by application developers. These include: the C++ standard, the character
type that is used by the generated code, handling of vocabularies that use XML Schema polymor-
phism, XML Schema to C++ namespace mapping, and thread safety. For more ways to configure
the generated code refer to the XSD Compiler Command Line Manual.

15July 2014 C++/Tree Mapping Getting Started Guide

3 Overall Mapping Configuration

http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/hello/html/annotated.html
http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/hello/html/annotated.html
http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml

3.1 C++ Standard

The C++/Tree mapping provides support for ISO/IEC C++ 1998/2003 (C++98) and ISO/IEC
C++ 2011 (C++11). To select the C++ standard for the generated code we use the --std XSD
compiler command line option. While the majority of the examples in this guide use C++98,
support for the new functionality and library components introduced in C++11 are discussed
throughout the document.

3.2 Character Type and Encoding

The C++/Tree mapping has built-in support for two character types: char and wchar_t . You
can select the character type with the --char-type command line option. The default charac-
ter type is char . The character type affects all string and string-based types that are used in the
mapping. These include the string-based built-in XML Schema types, exception types, stream
types, etc.

Another aspect of the mapping that depends on the character type is character encoding. For the
char character type the default encoding is UTF-8. Other supported encodings are ISO-8859-1,
Xerces-C++ Local Code Page (LPC), as well as custom encodings. You can select which encod-
ing should be used in the object model with the --char-encoding command line option.

For the wchar_t character type the encoding is automatically selected between UTF-16 and
UTF-32/UCS-4 depending on the size of the wchar_t type. On some platforms (for example,
Windows with Visual C++ and AIX with IBM XL C++) wchar_t is 2 bytes long. For these
platforms the encoding is UTF-16. On other platforms wchar_t is 4 bytes long and
UTF-32/UCS-4 is used.

Note also that the character encoding that is used in the object model is independent of the encod-
ings used in input and output XML. In fact, all three (object mode, input XML, and output XML)
can have different encodings.

3.3 Support for Polymorphism

By default XSD generates non-polymorphic code. If your vocabulary uses XML Schema poly-
morphism in the form of xsi:type and/or substitution groups, then you will need to compile
your schemas with the --generate-polymorphic option to produce polymorphism-aware
code. For more information on working with polymorphic object models, refer to Section 2.11,
"Mapping for xsi:type and Substitution Groups" in the C++/Tree Mapping User Manual.

July 201416 C++/Tree Mapping Getting Started Guide

3.1 C++ Standard

http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.11
http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.11

3.4 Namespace Mapping

XSD maps XML namespaces specified in the targetNamespace attribute in XML Schema to
one or more nested C++ namespaces. By default, a namespace URI is mapped to a sequence of
C++ namespace names by removing the protocol and host parts and splitting the rest into a
sequence of names with ’/’ as the name separator.

The default mapping of namespace URIs to C++ namespaces can be altered using the
--namespace-map and --namespace-regex compiler options. For example, to map
namespace URI http://www.codesynthesis.com/my to C++ namespace cs::my , we
can use the following option:

--namespace-map http://www.codesynthesis.com/my=cs::my

A vocabulary without a namespace is mapped to the global scope. This also can be altered with
the above options by using an empty name for the XML namespace:

--namespace-map =cs

3.5 Thread Safety

XSD-generated code is thread-safe in the sense that you can use different instantiations of the
object model in several threads concurrently. This is possible due to the generated code not
relying on any writable global variables. If you need to share the same object between several
threads then you will need to provide some form of synchronization. One approach would be to
use the generated code customization mechanisms to embed synchronization primitives into the
generated C++ classes. For more information on generated code customization refer to the
C++/Tree Mapping Customization Guide.

If you also would like to call parsing and/or serialization functions from several threads poten-
tially concurrently, then you will need to make sure the Xerces-C++ runtime is initialized and
terminated only once. The easiest way to do this is to initialize/terminate Xerces-C++ from
main() when there are no threads yet/anymore:

#include <xercesc/util/PlatformUtils.hpp>

int
main ()
{
 xercesc::XMLPlatformUtils::Initialize ();

 {
 // Start/terminate threads and parse/serialize here.

17July 2014 C++/Tree Mapping Getting Started Guide

3.4 Namespace Mapping

http://wiki.codesynthesis.com/Tree/Customization_guide

 }

 xercesc::XMLPlatformUtils::Terminate ();
}

Because you initialize the Xerces-C++ runtime yourself you should also pass the
xml_schema::flags::dont_initialize flag to parsing and serialization functions. See
Chapter 5, "Parsing" and Chapter 6, "Serialization" for more information.

4 Working with Object Models
As we have seen in the previous chapters, the XSD compiler generates a C++ class for each type
defined in XML Schema. Together these classes constitute an object model for an XML vocabu-
lary. In this chapter we will take a closer look at different elements that comprise an object model
class as well as how to create, access, and modify object models.

In this and subsequent chapters we will use the following schema that describes a collection of
person records. We save it in people.xsd :

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:simpleType name="gender_t">
 <xs:restriction base="xs:string">
 <xs:enumeration value="male"/>
 <xs:enumeration value="female"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="person_t">
 <xs:sequence>
 <xs:element name="first-name" type="xs:string"/>
 <xs:element name="middle-name" type="xs:string" minOccurs="0"/>
 <xs:element name="last-name" type="xs:string"/>
 <xs:element name="gender" type="gender_t"/>
 <xs:element name="age" type="xs:short"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:unsignedInt" use="required"/>
 </xs:complexType>

 <xs:complexType name="people_t">
 <xs:sequence>
 <xs:element name="person" type="person_t" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

July 201418 C++/Tree Mapping Getting Started Guide

4 Working with Object Models

 <xs:element name="people" type="people_t"/>

</xs:schema>

A sample XML instance to go along with this schema is saved in people.xml :

<?xml version="1.0"?>
<people xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="people.xsd">

 <person id="1">
 <first-name>John</first-name>
 <last-name>Doe</last-name>
 <gender>male</gender>
 <age>32</age>
 </person>

 <person id="2">
 <first-name>Jane</first-name>
 <middle-name>Mary</middle-name>
 <last-name>Doe</last-name>
 <gender>female</gender>
 <age>28</age>
 </person>

</people>

Compiling people.xsd with the XSD compiler results in three generated C++ classes:
gender_t , person_t , and people_t . The gender_t class is modelled after the C++
enum type. Its definition is presented below:

class gender_t: public xml_schema::string
{
public:
 enum value
 {
 male,
 female
 };

 gender_t (value);
 gender_t (const xml_schema::string&);

 gender_t&
 operator= (value);

 operator value () const;
};

19July 2014 C++/Tree Mapping Getting Started Guide

4 Working with Object Models

The following listing shows how we can use this type:

gender_t m (gender_t::male);
gender_t f ("female");

if (m == "female" || f == gender_t::male)
{
 ...
}

switch (m)
{
case gender_t::male:
 {
 ...
 }
case gender_t::female:
 {
 ...
 }
}

The other two classes will be examined in detail in the subsequent sections.

4.1 Attribute and Element Cardinalities

As we have seen in the previous chapters, XSD generates a different set of type definitions and
member functions for elements with different cardinalities. The C++/Tree mapping divides all the
possible element and attribute cardinalities into three cardinality classes: one, optional, and
sequence.

The one cardinality class covers all elements that should occur exactly once as well as required
attributes. In our example, the first-name , last-name , gender , and age elements as well
as the id attribute belong to this cardinality class. The following code fragment shows type defi-
nitions as well as the accessor and modifier functions that are generated for the gender element
in the person_t class:

class person_t
{
 // gender
 //
 typedef gender_t gender_type;

 const gender_type&
 gender () const;

 gender_type&
 gender ();

July 201420 C++/Tree Mapping Getting Started Guide

4.1 Attribute and Element Cardinalities

 void
 gender (const gender_type&);
};

The gender_type type is an alias for the element’s type. The first two accessor functions
return read-only (constant) and read-write references to the element’s value, respectively. The
modifier function sets the new value for the element.

The optional cardinality class covers all elements that can occur zero or one time as well as
optional attributes. In our example, the middle-name element belongs to this cardinality class.
The following code fragment shows the type definitions as well as the accessor and modifier
functions that are generated for this element in the person_t class:

class person_t
{
 // middle-name
 //
 typedef xml_schema::string middle_name_type;
 typedef xsd::optional<middle_name_type> middle_name_optional;

 const middle_name_optional&
 middle_name () const;

 middle_name_optional&
 middle_name ();

 void
 middle_name (const middle_name_type&);

 void
 middle_name (const middle_name_optional&);
};

As with the gender element, middle_name_type is an alias for the element’s type. The
middle_name_optional type is a container for the element’s optional value. It can be
queried for the presence of the value using the present() function. The value itself can be
retrieved using the get() accessor and set using the set() modifier. The container can be
reverted to the value not present state with the call to the reset() function. The following
example shows how we can use this container:

21July 2014 C++/Tree Mapping Getting Started Guide

4.1 Attribute and Element Cardinalities

person_t::middle_name_optional n ("John");

if (n.present ())
{
 cout << n.get () << endl;
}

n.set ("Jane");
n.reset ();

Unlike the one cardinality class, the accessor functions for the optional class return read-only
(constant) and read-write references to the container instead of the element’s value directly. The
modifier functions set the new value for the element.

Finally, the sequence cardinality class covers all elements that can occur more than once. In our
example, the person element in the people_t type belongs to this cardinality class. The
following code fragment shows the type definitions as well as the accessor and modifier functions
that are generated for this element in the people_t class:

class people_t
{
 // person
 //
 typedef person_t person_type;
 typedef xsd::sequence<person_type> person_sequence;
 typedef person_sequence::iterator person_iterator;
 typedef person_sequence::const_iterator person_const_iterator;

 const person_sequence&
 person () const;

 person_sequence&
 person ();

 void
 person (const person_sequence&);
};

Identical to the other cardinality classes, person_type is an alias for the element’s type. The
person_sequence type is a sequence container for the element’s values. It is based on and
has the same interface as std::vector and therefore can be used in similar ways. The
person_iterator and person_const_iterator types are read-only (constant) and
read-write iterators for the person_sequence container.

Similar to the optional cardinality class, the accessor functions for the sequence class return
read-only (constant) and read-write references to the sequence container. The modifier functions
copies the entries from the passed sequence.

July 201422 C++/Tree Mapping Getting Started Guide

4.1 Attribute and Element Cardinalities

C++/Tree is a "flattening" mapping in a sense that many levels of nested compositors (choice
and sequence), all potentially with their own cardinalities, are in the end mapped to a flat set of
elements with one of the three cardinality classes discussed above. While this results in a simple
and easy to use API for most types, in certain cases, the order of elements in the actual XML
documents is not preserved once parsed into the object model. To overcome this limitation we
can mark certain schema types, for which content order is not sufficiently preserved, as ordered.
For more information on this functionality refer to Section 2.8.4, "Element Order" in the
C++/Tree Mapping User Manual.

For complex schemas with many levels of nested compositors (choice and sequence) it can
also be hard to deduce the cardinality class of a particular element. The generated Doxygen docu-
mentation can greatly help with this task. For each element and attribute the documentation
clearly identifies its cardinality class. Alternatively, you can study the generated header files to
find out the cardinality class of a particular attribute or element.

In the next sections we will examine how to access and modify information stored in an object
model using accessor and modifier functions described in this section.

4.2 Accessing the Object Model

In this section we will learn how to get to the information stored in the object model for our
person records vocabulary. The following application accesses and prints the contents of the
people.xml file:

#include <iostream>
#include "people.hxx"

using namespace std;

int
main ()
{
 auto_ptr<people_t> ppl (people ("people.xml"));

 // Iterate over individual person records.
 //
 people_t::person_sequence& ps (ppl->person ());

 for (people_t::person_iterator i (ps.begin ()); i != ps.end (); ++i)
 {
 person_t& p (*i);

 // Print names: first-name and last-name are required elements,
 // middle-name is optional.
 //
 cout << "name: " << p.first_name () << " ";

23July 2014 C++/Tree Mapping Getting Started Guide

4.2 Accessing the Object Model

http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.8.4

 if (p.middle_name ().present ())
 cout << p.middle_name ().get () << " ";

 cout << p.last_name () << endl;

 // Print gender, age, and id which are all required.
 //
 cout << "gender: " << p.gender () << endl
 << "age: " << p.age () << endl
 << "id: " << p.id () << endl
 << endl;
 }
}

This code shows common patterns of accessing elements and attributes with different cardinality
classes. For the sequence element (person in people_t) we first obtain a reference to the
container and then iterate over individual records. The values of elements and attributes with the
one cardinality class (first-name , last-name , gender , age , and id) can be obtained
directly by calling the corresponding accessor functions. For the optional element
middle-name we first check if the value is present and only then call get() to retrieve it.

Note that when we want to reduce typing by creating a variable representing a fragment of the
object model that we are currently working with (ps and p above), we obtain a reference to that
fragment instead of making a potentially expensive copy. This is generally a good rule to follow
when creating high-performance applications.

If we run the above application on our sample people.xml , the output looks as follows:

name: John Doe
gender: male
age: 32
id: 1

name: Jane Mary Doe
gender: female
age: 28
id: 2

4.3 Modifying the Object Model

In this section we will learn how to modify the information stored in the object model for our
person records vocabulary. The following application changes the contents of the people.xml
file:

#include <iostream>
#include "people.hxx"

using namespace std;

July 201424 C++/Tree Mapping Getting Started Guide

4.3 Modifying the Object Model

int
main ()
{
 auto_ptr<people_t> ppl (people ("people.xml"));

 // Iterate over individual person records and increment
 // the age.
 //
 people_t::person_sequence& ps (ppl->person ());

 for (people_t::person_iterator i (ps.begin ()); i != ps.end (); ++i)
 {
 // Alternative way: i->age ()++;
 //
 i->age (i->age () + 1);
 }

 // Add middle-name to the first record and remove it from
 // the second.
 //
 person_t& john (ps[0]);
 person_t& jane (ps[1]);

 john.middle_name ("Mary");
 jane.middle_name ().reset ();

 // Add another John record.
 //
 ps.push_back (john);

 // Serialize the modified object model to XML.
 //
 xml_schema::namespace_infomap map;
 map[""].name = "";
 map[""].schema = "people.xsd";

 people (cout, *ppl, map);
}

The first modification the above application performs is iterating over person records and incre-
menting the age value. This code fragment shows how to modify the value of a required attribute
or element. The next modification shows how to set a new value for the optional middle-name
element as well as clear its value. Finally the example adds a copy of the John Doe record to the
person element sequence.

Note that in this case using references for the ps , john , and jane variables is no longer a
performance improvement but a requirement for the application to function correctly. If we
hadn’t used references, all our changes would have been made on copies without affecting the

25July 2014 C++/Tree Mapping Getting Started Guide

4.3 Modifying the Object Model

object model.

If we run the above application on our sample people.xml , the output looks as follows:

<?xml version="1.0"?>
<people xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="people.xsd">

 <person id="1">
 <first-name>John</first-name>
 <middle-name>Mary</middle-name>
 <last-name>Doe</last-name>
 <gender>male</gender>
 <age>33</age>
 </person>

 <person id="2">
 <first-name>Jane</first-name>
 <last-name>Doe</last-name>
 <gender>female</gender>
 <age>29</age>
 </person>

 <person id="1">
 <first-name>John</first-name>
 <middle-name>Mary</middle-name>
 <last-name>Doe</last-name>
 <gender>male</gender>
 <age>33</age>
 </person>

</people>

4.4 Creating the Object Model from Scratch

In this section we will learn how to create a new object model for our person records vocabulary.
The following application recreates the content of the original people.xml file:

#include <iostream>
#include "people.hxx"

using namespace std;

int
main ()
{
 people_t ppl;
 people_t::person_sequence& ps (ppl.person ());

 // Add the John Doe record.

July 201426 C++/Tree Mapping Getting Started Guide

4.4 Creating the Object Model from Scratch

 //
 ps.push_back (
 person_t ("John", // first-name
 "Doe", // last-name
 gender_t::male, // gender
 32, // age
 1));

 // Add the Jane Doe record.
 //
 ps.push_back (
 person_t ("Jane", // first-name
 "Doe", // last-name
 gender_t::female, // gender
 28, // age
 2)); // id

 // Add middle name to the Jane Doe record.
 //
 person_t& jane (ps.back ());
 jane.middle_name ("Mary");

 // Serialize the object model to XML.
 //
 xml_schema::namespace_infomap map;
 map[""].name = "";
 map[""].schema = "people.xsd";

 people (cout, ppl, map);
}

The only new part in the above application is the calls to the people_t and person_t
constructors. As a general rule, for each C++ class XSD generates a constructor with initializers
for each element and attribute belonging to the one cardinality class. For our vocabulary, the
following constructors are generated:

class person_t
{
 person_t (const first_name_type&,
 const last_name_type&,
 const gender_type&,
 const age_type&,
 const id_type&);
};

class people_t
{
 people_t ();
};

27July 2014 C++/Tree Mapping Getting Started Guide

4.4 Creating the Object Model from Scratch

Note also that we set the middle-name element on the Jane Doe record by obtaining a refer-
ence to that record in the object model and setting the middle-name value on it. This is a
general rule that should be followed in order to obtain the best performance: if possible, direct
modifications to the object model should be preferred to modifications on temporaries with
subsequent copying. The following code fragment shows a semantically equivalent but slightly
slower version:

// Add the Jane Doe record.
//
person_t jane ("Jane", // first-name
 "Doe", // last-name
 gender_t::female, // gender
 28, // age
 2); // id

jane.middle_name ("Mary");

ps.push_back (jane);

We can also go one step further to reduce copying and improve the performance of our applica-
tion by using the non-copying push_back() function which assumes ownership of the passed
objects:

// Add the John Doe record. C++98 version.
//
auto_ptr<person_t> john_p (
 new person_t ("John", // first-name
 "Doe", // last-name
 gender_t::male, // gender
 32, // age
 1));
ps.push_back (john_p); // assumes ownership

// Add the Jane Doe record. C++11 version
//
unique_ptr<person_t> jane_p (
 new person_t ("Jane", // first-name
 "Doe", // last-name
 gender_t::female, // gender
 28, // age
 2)); // id
ps.push_back (std::move (jane_p)); // assumes ownership

For more information on the non-copying modifier functions refer to Section 2.8, "Mapping for
Local Elements and Attributes" in the C++/Tree Mapping User Manual. The above application
produces the following output:

July 201428 C++/Tree Mapping Getting Started Guide

4.4 Creating the Object Model from Scratch

http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.8
http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.8

<?xml version="1.0" ?>
<people xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="people.xsd">

 <person id="1">
 <first-name>John</first-name>
 <last-name>Doe</last-name>
 <gender>male</gender>
 <age>32</age>
 </person>

 <person id="2">
 <first-name>Jane</first-name>
 <middle-name>Mary</middle-name>
 <last-name>Doe</last-name>
 <gender>female</gender>
 <age>28</age>
 </person>

</people>

4.5 Mapping for the Built-in XML Schema Types

Our person record vocabulary uses several built-in XML Schema types: string , short , and
unsignedInt . Until now we haven’t talked about the mapping of built-in XML Schema types
to C++ types and how to work with them. This section provides an overview of the built-in types.
For more detailed information refer to Section 2.5, "Mapping for Built-in Data Types" in the
C++/Tree Mapping User Manual.

In XML Schema, built-in types are defined in the XML Schema namespace. By default, the
C++/Tree mapping maps this namespace to C++ namespace xml_schema (this mapping can be
altered with the --namespace-map option). The following table summarizes the mapping of
XML Schema built-in types to C++ types:

XML Schema type
Alias in the xml_schema

namespace
C++ type

fixed-length integral types

byte byte signed char

unsignedByte unsigned_byte unsigned char

short short_ short

unsignedShort unsigned_short unsigned short

int int_ int

29July 2014 C++/Tree Mapping Getting Started Guide

4.5 Mapping for the Built-in XML Schema Types

http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.5

unsignedInt unsigned_int unsigned int

long long_ long long

unsignedLong unsigned_long unsigned long long

arbitrary-length integral types

integer integer long long

nonPositiveInteger non_positive_integer long long

nonNegativeInteger non_negative_integer unsigned long long

positiveInteger positive_integer unsigned long long

negativeInteger negative_integer long long

boolean types

boolean boolean bool

fixed-precision floating-point types

float float_ float

double double_ double

arbitrary-precision floating-point types

decimal decimal double

string types

string string type derived from std::basic_string

normalizedString normalized_string type derived from string

token token type derived from normalized_string

Name name type derived from token

NMTOKEN nmtoken type derived from token

NMTOKENS nmtokens type derived from sequence<nmtoken>

NCName ncname type derived from name

language language type derived from token

qualified name

QName qname xml_schema::qname

ID/IDREF types

ID id type derived from ncname

July 201430 C++/Tree Mapping Getting Started Guide

4.5 Mapping for the Built-in XML Schema Types

IDREF idref type derived from ncname

IDREFS idrefs type derived from sequence<idref>

URI types

anyURI uri type derived from std::basic_string

binary types

base64Binary base64_binary xml_schema::base64_binary

hexBinary hex_binary xml_schema::hex_binary

date/time types

date date xml_schema::date

dateTime date_time xml_schema::date_time

duration duration xml_schema::duration

gDay gday xml_schema::gday

gMonth gmonth xml_schema::gmonth

gMonthDay gmonth_day xml_schema::gmonth_day

gYear gyear xml_schema::gyear

gYearMonth gyear_month xml_schema::gyear_month

time time xml_schema::time

entity types

ENTITY entity type derived from name

ENTITIES entities type derived from sequence<entity>

As you can see from the table above a number of built-in XML Schema types are mapped to
fundamental C++ types such as int or bool . All string-based XML Schema types are mapped
to C++ types that are derived from either std::string or std::wstring , depending on the
character type selected. For access and modification purposes these types can be treated as
std::string . A number of built-in types, such as qname, the binary types, and the date/time
types do not have suitable fundamental or standard C++ types to map to. As a result, these types
are implemented from scratch in the XSD runtime. For more information on their interfaces refer
to Section 2.5, "Mapping for Built-in Data Types" in the C++/Tree Mapping User Manual.

31July 2014 C++/Tree Mapping Getting Started Guide

4.5 Mapping for the Built-in XML Schema Types

http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.5

5 Parsing
We have already seen how to parse XML to an object model in this guide before. In this chapter
we will discuss the parsing topic in more detail.

By default, the C++/Tree mapping provides a total of 14 overloaded parsing functions. They
differ in the input methods used to read XML as well as the error reporting mechanisms. It is also
possible to generate types for root elements instead of parsing and serialization functions. This
may be useful if your XML vocabulary has multiple root elements. For more information on
element types refer to Section 2.9, "Mapping for Global Elements" in the C++/Tree Mapping
User Manual.

In this section we will discuss the most commonly used versions of the parsing functions. For a
comprehensive description of parsing refer to Chapter 3, "Parsing" in the C++/Tree Mapping
User Manual. For the people global element from our person record vocabulary, we will
concentrate on the following three parsing functions:

std::[auto|unique]_ptr<people_t>
people (const std::string& uri,
 xml_schema::flags f = 0,
 const xml_schema::properties& p = xml_schema::properties ());

std::[auto|unique]_ptr<people_t>
people (std::istream& is,
 xml_schema::flags f = 0,
 const xml_schema::properties& p = xml_schema::properties ());

std::[auto|unique]_ptr<people_t>
people (std::istream& is,
 const std::string& resource_id,
 xml_schema::flags f = 0,
 const xml_schema::properties& p = ::xml_schema::properties ());

The first function parses a local file or a URI. We have already used this parsing function in the
previous chapters. The second and third functions read XML from a standard input stream. The
last function also requires a resource id. This id is used to identify the XML document being
parser in diagnostics messages as well as to resolve relative paths to other documents (for
example, schemas) that might be referenced from the XML document.

The last two arguments to all three parsing functions are parsing flags and properties. The flags
argument provides a number of ways to fine-tune the parsing process. The properties argument
allows to pass additional information to the parsing functions. We will use these two arguments
in Section 5.1, "XML Schema Validation and Searching" below. All three functions return the
object model as either std::auto_ptr (C++98) or std::unique_ptr (C++11), depend-
ing on the C++ standard selected (--std XSD compiler option). The following example shows
how we can use the above parsing functions:

July 201432 C++/Tree Mapping Getting Started Guide

5 Parsing

http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.9
http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#3

using std::auto_ptr;

// Parse a local file or URI.
//
auto_ptr<people_t> p1 (people ("people.xml"));
auto_ptr<people_t> p2 (people ("http://example.com/people.xml"));

// Parse a local file via ifstream.
//
std::ifstream ifs ("people.xml");
auto_ptr<people_t> p3 (people (ifs, "people.xml"));

// Parse an XML string.
//
std::string str ("..."); // XML in a string.
std::istringstream iss (str);
auto_ptr<people_t> p4 (people (iss));

5.1 XML Schema Validation and Searching

The C++/Tree mapping relies on the underlying Xerces-C++ XML parser for full XML document
validation. The XML Schema validation is enabled by default and can be disabled by passing the
xml_schema::flags::dont_validate flag to the parsing functions, for example:

auto_ptr<people_t> p (
 people ("people.xml", xml_schema::flags::dont_validate));

Even when XML Schema validation is disabled, the generated code still performs a number of
checks to prevent construction of an inconsistent object model (for example, an object model with
missing required attributes or elements).

When XML Schema validation is enabled, the XML parser needs to locate a schema to validate
against. There are several methods to provide the schema location information to the parser. The
easiest and most commonly used method is to specify schema locations in the XML document
itself with the schemaLocation or noNamespaceSchemaLocation attributes, for
example:

<?xml version="1.0" ?>
<people xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="people.xsd"
 xsi:schemaLocation="http://www.w3.org/XML/1998/namespace xml.xsd">

As you might have noticed, we used this method in all the sample XML documents presented in
this guide up until now. Note that the schema locations specified with these two attributes are
relative to the document’s path unless they are absolute URIs (that is start with http:// ,
file:// , etc.). In particular, if you specify just file names as your schema locations, as we did
above, then the schemas should reside in the same directory as the XML document itself.

33July 2014 C++/Tree Mapping Getting Started Guide

5.1 XML Schema Validation and Searching

Another method of providing the schema location information is via the xml_schema::prop-
erties argument, as shown in the following example:

xml_schema::properties props;
props.no_namespace_schema_location ("people.xsd");
props.schema_location ("http://www.w3.org/XML/1998/namespace", "xml.xsd");

auto_ptr<people_t> p (people ("people.xml", 0, props));

The schema locations provided with this method overrides those specified in the XML document.
As with the previous method, the schema locations specified this way are relative to the docu-
ment’s path unless they are absolute URIs. In particular, if you want to use local schemas that are
not related to the document being parsed, then you will need to use the file:// URI. The
following example shows how to use schemas that reside in the current working directory:

#include <unistd.h> // getcwd
#include <limits.h> // PATH_MAX

char cwd[PATH_MAX];
if (getcwd (cwd, PATH_MAX) == 0)
{
 // Buffer too small?
}

xml_schema::properties props;

props.no_namespace_schema_location (
 "file:///" + std::string (cwd) + "/people.xsd");

props.schema_location (
 "http://www.w3.org/XML/1998/namespace",
 "file:///" + std::string (cwd) + "/xml.xsd");

auto_ptr<people_t> p (people ("people.xml", 0, props));

A third method is the most useful if you are planning to parse several XML documents of the
same vocabulary. In that case it may be beneficial to pre-parse and cache the schemas in the
XML parser which can then be used to parse all documents without re-parsing the schemas. For
more information on this method refer to the caching example in the exam-
ples/cxx/tree/ directory of the XSD distribution. It is also possible to convert the schemas
into a pre-compiled binary representation and embed this representation directly into the applica-
tion executable. With this approach your application can perform XML Schema validation
without depending on any external schema files. For more information on how to achieve this
refer to the embedded example in the examples/cxx/tree/ directory of the XSD distribu-
tion.

July 201434 C++/Tree Mapping Getting Started Guide

5.1 XML Schema Validation and Searching

When the XML parser cannot locate a schema for the XML document, the validation fails and
XML document elements and attributes for which schema definitions could not be located are
reported in the diagnostics. For example, if we remove the noNamespaceSchemaLocation
attribute in people.xml from the previous chapter, then we will get the following diagnostics
if we try to parse this file with validation enabled:

people.xml:2:63 error: no declaration found for element ’people’
people.xml:4:18 error: no declaration found for element ’person’
people.xml:4:18 error: attribute ’id’ is not declared for element ’person’
people.xml:5:17 error: no declaration found for element ’first-name’
people.xml:6:18 error: no declaration found for element ’middle-name’
people.xml:7:16 error: no declaration found for element ’last-name’
people.xml:8:13 error: no declaration found for element ’gender’
people.xml:9:10 error: no declaration found for element ’age’

5.2 Error Handling

The parsing functions offer a number of ways to handle error conditions with the C++ exceptions
being the most commonly used mechanism. All C++/Tree exceptions derive from common base
xml_schema::exception which in turn derives from std::exception . The easiest way
to uniformly handle all possible C++/Tree exceptions and print detailed information about the
error is to catch and print xml_schema::exception , as shown in the following example:

try
{
 auto_ptr<people_t> p (people ("people.xml"));
}
catch (const xml_schema::exception& e)
{
 cerr << e << endl;
}

Each individual C++/Tree exception also allows you to obtain error details programmatically. For
example, the xml_schema::parsing exception is thrown when the XML parsing and valida-
tion in the underlying XML parser fails. It encapsulates various diagnostics information such as
the file name, line and column numbers, as well as the error or warning message for each entry.
For more information about this and other exceptions that can be thrown during parsing, refer to
Section 3.3, "Error Handling" in the C++/Tree Mapping User Manual.

Note that if you are parsing std::istream on which exceptions are not enabled, then you will
need to check the stream state after the call to the parsing function in order to detect any possible
stream failures, for example:

std::ifstream ifs ("people.xml");

if (ifs.fail ())
{

35July 2014 C++/Tree Mapping Getting Started Guide

5.2 Error Handling

http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#3.3

 cerr << "people.xml: unable to open" << endl;
 return 1;
}

auto_ptr<people_t> p (people (ifs, "people.xml"));

if (ifs.fail ())
{
 cerr << "people.xml: read error" << endl;
 return 1;
}

The above example can be rewritten to use exceptions as shown below:

try
{
 std::ifstream ifs;
 ifs.exceptions (std::ifstream::badbit | std::ifstream::failbit);
 ifs.open ("people.xml");

 auto_ptr<people_t> p (people (ifs, "people.xml"));
}
catch (const std::ifstream::failure&)
{
 cerr << "people.xml: unable to open or read error" << endl;
 return 1;
}

6 Serialization
We have already seen how to serialize an object model back to XML in this guide before. In this
chapter we will discuss the serialization topic in more detail.

By default, the C++/Tree mapping provides a total of 8 overloaded serialization functions. They
differ in the output methods used to write XML as well as the error reporting mechanisms. It is
also possible to generate types for root elements instead of parsing and serialization functions.
This may be useful if your XML vocabulary has multiple root elements. For more information on
element types refer to Section 2.9, "Mapping for Global Elements" in the C++/Tree Mapping
User Manual.

In this section we will discuss the most commonly used version of serialization functions. For a
comprehensive description of serialization refer to Chapter 4, "Serialization" in the C++/Tree
Mapping User Manual. For the people global element from our person record vocabulary, we
will concentrate on the following serialization function:

July 201436 C++/Tree Mapping Getting Started Guide

6 Serialization

http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.9
http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#4

void
people (std::ostream& os,
 const people_t& x,
 const xml_schema::namespace_infomap& map =
 xml_schema::namespace_infomap (),
 const std::string& encoding = "UTF-8",
 xml_schema::flags f = 0);

This function serializes the object model passed as the second argument to the standard output
stream passed as the first argument. The third argument is a namespace information map which
we will discuss in more detail in the next section. The fourth argument is a character encoding
that the resulting XML document should be in. Possible valid values for this argument are
"US-ASCII", "ISO8859-1", "UTF-8", "UTF-16BE", "UTF-16LE", "UCS-4BE", and "UCS-4LE".
Finally, the flags argument allows fine-tuning of the serialization process. The following example
shows how we can use the above serialization function:

people_t& p = ...

xml_schema::namespace_infomap map;
map[""].schema = "people.xsd";

// Serialize to stdout.
//
people (std::cout, p, map);

// Serialize to a file.
//
std::ofstream ofs ("people.xml");
people (ofs, p, map);

// Serialize to a string.
//
std::ostringstream oss;
people (oss, p, map);
std::string xml (oss.str ());

6.1 Namespace and Schema Information

While XML serialization can be done just from the object model alone, it is often desirable to
assign meaningful prefixes to XML namespaces used in the vocabulary as well as to provide the
schema location information. This is accomplished by passing the namespace information map to
the serialization function. The key in this map is a namespace prefix that should be assigned to an
XML namespace specified in the name variable of the map value. You can also assign an
optional schema location for this namespace in the schema variable. Based on each key-value
entry in this map, the serialization function adds two attributes to the resulting XML document:
the namespace-prefix mapping attribute and schema location attribute. The empty prefix indicates
that the namespace should be mapped without a prefix. For example, the following map:

37July 2014 C++/Tree Mapping Getting Started Guide

6.1 Namespace and Schema Information

xml_schema::namespace_infomap map;

map[""].name = "http://www.example.com/example";
map[""].schema = "example.xsd";

map["x"].name = "http://www.w3.org/XML/1998/namespace";
map["x"].schema = "xml.xsd";

Results in the following XML document:

<?xml version="1.0" ?>
<example
 xmlns="http://www.example.com/example"
 xmlns:x="http://www.w3.org/XML/1998/namespace"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.example.com/example example.xsd
 http://www.w3.org/XML/1998/namespace xml.xsd">

The empty namespace indicates that the vocabulary has no target namespace. For example, the
following map results in only the noNamespaceSchemaLocation attribute being added:

xml_schema::namespace_infomap map;

map[""].name = "";
map[""].schema = "example.xsd";

6.2 Error Handling

Similar to the parsing functions, the serialization functions offer a number of ways to handle error
conditions with the C++ exceptions being the most commonly used mechanisms. As with
parsing, the easiest way to uniformly handle all possible serialization exceptions and print
detailed information about the error is to catch and print xml_schema::exception :

try
{
 people_t& p = ...

 xml_schema::namespace_infomap map;
 map[""].schema = "people.xsd";

 people (std::cout, p, map));
}
catch (const xml_schema::exception& e)
{
 cerr << e << endl;
}

July 201438 C++/Tree Mapping Getting Started Guide

6.2 Error Handling

The most commonly encountered serialization exception is xml_schema::serialization .
It is thrown when the XML serialization in the underlying XML writer fails. It encapsulates
various diagnostics information such as the file name, line and column numbers, as well as the
error or warning message for each entry. For more information about this and other exceptions
that can be thrown during serialization, refer to Section 4.4, "Error Handling" in the C++/Tree
Mapping User Manual.

Note that if you are serializing to std::ostream on which exceptions are not enabled, then
you will need to check the stream state after the call to the serialization function in order to detect
any possible stream failures, for example:

std::ofstream ofs ("people.xml");

if (ofs.fail ())
{
 cerr << "people.xml: unable to open" << endl;
 return 1;
}

people (ofs, p, map));

if (ofs.fail ())
{
 cerr << "people.xml: write error" << endl;
 return 1;
}

The above example can be rewritten to use exceptions as shown below:

try
{
 std::ofstream ofs;
 ofs.exceptions (std::ofstream::badbit | std::ofstream::failbit);
 ofs.open ("people.xml");

 people (ofs, p, map));
}
catch (const std::ofstream::failure&)
{
 cerr << "people.xml: unable to open or write error" << endl;
 return 1;
}

39July 2014 C++/Tree Mapping Getting Started Guide

6.2 Error Handling

http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#4.4

	Preface
	About This Document
	More Information

	1 Introduction
	1.1 Mapping Overview
	1.2 Benefits

	2 Hello World Example
	2.1 Writing XML Document and Schema
	2.2 Translating Schema to C++
	2.3 Implementing Application Logic
	2.4 Compiling and Running
	2.5 Adding Serialization
	2.6 Selecting Naming Convention
	2.7 Generating Documentation

	3 Overall Mapping Configuration
	3.1 C++ Standard
	3.2 Character Type and Encoding
	3.3 Support for Polymorphism
	3.4 Namespace Mapping
	3.5 Thread Safety

	4 Working with Object Models
	4.1 Attribute and Element Cardinalities
	4.2 Accessing the Object Model
	4.3 Modifying the Object Model
	4.4 Creating the Object Model from Scratch
	4.5 Mapping for the Built-in XML Schema Types

	5 Parsing
	5.1 XML Schema Validation and Searching
	5.2 Error Handling

	6 Serialization
	6.1 Namespace and Schema Information
	6.2 Error Handling

