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Preface

About This Document

This document describes the mapping of W3C XML Schema to the C++ programming language
as implemented by CodeSynthesis XSD - an XML Schema to C++ data binding compiler. The
mapping represents information stored in XML instance documents as a statically-typed, tree-like
in-memory data structure and is called C++/Tree. 

Revision 4.0.0
This revision of the manual describes the C++/Tree mapping as implemented by CodeSynthesis
XSD version 4.0.0. 

This document is available in the following formats: XHTML, PDF, and PostScript.

More Information

Beyond this manual, you may also find the following sources of information useful:

C++/Tree Mapping Getting Started Guide 
C++/Tree Mapping Customization Guide 
C++/Tree Mapping Frequently Asked Questions (FAQ) 
XSD Compiler Command Line Manual 
The examples/cxx/tree/  directory in the XSD distribution contains a collection of 
examples and a README file with an overview of each example. 
The README file in the XSD distribution explains how to compile the examples on various 
platforms. 
The xsd-users mailing list is a place to ask questions. Furthermore the archives may already
have answers to some of your questions. 

1 Introduction
C++/Tree is a W3C XML Schema to C++ mapping that represents the data stored in XML as a 
statically-typed, vocabulary-specific object model. Based on a formal description of an XML 
vocabulary (schema), the C++/Tree mapping produces a tree-like data structure suitable for
in-memory processing as well as XML parsing and serialization code.

A typical application that processes XML documents usually performs the following three steps:
it first reads (parses) an XML instance document to an object model, it then performs some useful 
computations on that model which may involve modification of the model, and finally it may
write (serialize) the modified object model back to XML. 
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The C++/Tree mapping consists of C++ types that represent the given vocabulary (Chapter 2,
"C++/Tree Mapping"), a set of parsing functions that convert XML documents to a tree-like
in-memory data structure (Chapter 3, "Parsing"), and a set of serialization functions that convert
the object model back to XML (Chapter 4, "Serialization"). Furthermore, the mapping provides a
number of additional features, such as DOM association and binary serialization, that can be
useful in some applications (Chapter 5, "Additional Functionality"). 

2 C++/Tree Mapping

2.1 Preliminary Information

2.1.1 C++ Standard

The C++/Tree mapping provides support for ISO/IEC C++ 1998/2003 (C++98) and ISO/IEC
C++ 2011 (C++11). To select the C++ standard for the generated code we use the --std  XSD
compiler command line option. While the majority of the examples in this manual use C++98,
support for the new functionality and library components introduced in C++11 are discussed 
throughout the document.

2.1.2 Identifiers

XML Schema names may happen to be reserved C++ keywords or contain characters that are
illegal in C++ identifiers. To avoid C++ compilation problems, such names are changed
(escaped) when mapped to C++. If an XML Schema name is a C++ keyword, the "_" suffix is
added to it. All character of an XML Schema name that are not allowed in C++ identifiers are
replaced with "_". 

For example, XML Schema name try  will be mapped to C++ identifier try_ . Similarly, XML
Schema name strange.na-me  will be mapped to C++ identifier strange_na_me . 

Furthermore, conflicts between type names and function names in the same scope are resolved
using name escaping. Such conflicts include both a global element (which is mapped to a set of
parsing and/or serialization functions or element types, see Section 2.9, "Mapping for Global 
Elements") and a global type sharing the same name as well as a local element or attribute inside
a type having the same name as the type itself.

For example, if we had a global type catalog  and a global element with the same name then
the type would be mapped to a C++ class with name catalog  while the parsing functions corre-
sponding to the global element would have their names escaped as catalog_ . 
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By default the mapping uses the so-called K&R (Kernighan and Ritchie) identifier naming 
convention which is also used throughout this manual. In this convention both type and function
names are in lower case and words are separated by underscores. If your application code or
schemas use a different notation, you may want to change the naming convention used by the
mapping for consistency. The compiler supports a set of widely-used naming conventions that
you can select with the --type-naming  and --function-naming  options. You can also
further refine one of the predefined conventions or create a completely custom naming scheme by
using the --*-regex  options. For more detailed information on these options refer to the
NAMING CONVENTION section in the XSD Compiler Command Line Manual.

2.1.3 Character Type and Encoding

The code that implements the mapping, depending on the --char-type  option, is generated
using either char  or wchar_t  as the character type. In this document code samples use symbol 
C to refer to the character type you have selected when translating your schemas, for example 
std::basic_string<C> . 

Another aspect of the mapping that depends on the character type is character encoding. For the 
char  character type the default encoding is UTF-8. Other supported encodings are ISO-8859-1,
Xerces-C++ Local Code Page (LPC), as well as custom encodings and can be selected with the 
--char-encoding  command line option.

For the wchar_t  character type the encoding is automatically selected between UTF-16 and
UTF-32/UCS-4 depending on the size of the wchar_t  type. On some platforms (for example,
Windows with Visual C++ and AIX with IBM XL C++) wchar_t  is 2 bytes long. For these 
platforms the encoding is UTF-16. On other platforms wchar_t  is 4 bytes long and
UTF-32/UCS-4 is used.

2.1.4 XML Schema Namespace

The mapping relies on some predefined types, classes, and functions that are logically defined in
the XML Schema namespace reserved for the XML Schema language 
(http://www.w3.org/2001/XMLSchema ). By default, this namespace is mapped to C++ 
namespace xml_schema . It is automatically accessible from a C++ compilation unit that
includes a header file generated from an XML Schema definition. 

Note that, if desired, the default mapping of this namespace can be changed as described in 
Section 2.4, "Mapping for Namespaces". 
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2.1.5 Anonymous Types

For the purpose of code generation, anonymous types defined in XML Schema are automatically
assigned names that are derived from enclosing attributes and elements. Otherwise, such types
follows standard mapping rules for simple and complex type definitions (see Section 2.6,
"Mapping for Simple Types" and Section 2.7, "Mapping for Complex Types"). For example, in
the following schema fragment: 

<element name="object">
  <complexType>
    ...
  </complexType>
</element>

The anonymous type defined inside element object  will be given name object . The compiler
has a number of options that control the process of anonymous type naming. For more informa-
tion refer to the XSD Compiler Command Line Manual.

2.2 Error Handling

The mapping uses the C++ exception handling mechanism as a primary way of reporting error 
conditions. All exceptions that are specified in this mapping derive from 
xml_schema::exception  which itself is derived from std::exception : 

struct exception: virtual std::exception
{
  friend
  std::basic_ostream<C>&
  operator<< (std::basic_ostream<C>& os, const exception& e)
  {
    e.print (os);
    return os;
  }

protected:
  virtual void
  print (std::basic_ostream<C>&) const = 0;
};

The exception hierarchy supports "virtual" operator<<  which allows you to obtain diagnostics 
corresponding to the thrown exception using the base exception interface. For example:
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try
{
  ...
}
catch (const xml_schema::exception& e)
{
  cerr << e << endl;
}

The following sub-sections describe exceptions thrown by the types that constitute the object
model. Section 3.3, "Error Handling" of Chapter 3, "Parsing" describes exceptions and error
handling mechanisms specific to the parsing functions. Section 4.4, "Error Handling" of Chapter
4, "Serialization" describes exceptions and error handling mechanisms specific to the serialization 
functions. 

2.2.1 xml_schema::duplicate_id

struct duplicate_id: virtual exception
{
  duplicate_id (const std::basic_string<C>& id);

  const std::basic_string<C>&
  id () const;

  virtual const char*
  what () const throw ();
};

The xml_schema::duplicate_id  is thrown when a conflicting instance of 
xml_schema::id  (see Section 2.5, "Mapping for Built-in Data Types") is added to a tree. The 
offending ID value can be obtained using the id  function. 

2.3 Mapping for import and include

2.3.1 Import

The XML Schema import  element is mapped to the C++ Preprocessor #include  directive.
The value of the schemaLocation  attribute is used to derive the name of the header file that
appears in the #include  directive. For instance: 

<import namespace="http://www.codesynthesis.com/test"
        schemaLocation="test.xsd"/>

is mapped to:
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#include "test.hxx"

Note that you will need to compile imported schemas separately in order to produce correspond-
ing header files.

2.3.2 Inclusion with Target Namespace

The XML Schema include  element which refers to a schema with a target namespace or
appears in a schema without a target namespace follows the same mapping rules as the import
element, see Section 2.3.1, "Import". 

2.3.3 Inclusion without Target Namespace

For the XML Schema include  element which refers to a schema without a target namespace
and appears in a schema with a target namespace (such inclusion sometimes called "chameleon 
inclusion"), declarations and definitions from the included schema are generated in-line in the 
namespace of the including schema as if they were declared and defined there verbatim. For
example, consider the following two schemas: 

<-- common.xsd -->
<schema>
  <complexType name="type">
  ...
  </complexType>
</schema>

<-- test.xsd -->
<schema targetNamespace="http://www.codesynthesis.com/test">
  <include schemaLocation="common.xsd"/>
</schema>

The fragment of interest from the generated header file for text.xsd  would look like this:

// test.hxx
namespace test
{
  class type
  {
    ...
  };
}
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2.4 Mapping for Namespaces

An XML Schema namespace is mapped to one or more nested C++ namespaces. XML Schema 
namespaces are identified by URIs. By default, a namespace URI is mapped to a sequence of
C++ namespace names by removing the protocol and host parts and splitting the rest into a
sequence of names with ’/ ’ as the name separator. For instance: 

<schema targetNamespace="http://www.codesynthesis.com/system/test">
  ...
</schema>

is mapped to:

namespace system
{
  namespace test
  {
    ...
  }
}

The default mapping of namespace URIs to C++ namespace names can be altered using the 
--namespace-map  and --namespace-regex  options. See the XSD Compiler Command
Line Manual for more information. 

2.5 Mapping for Built-in Data Types

The mapping of XML Schema built-in data types to C++ types is summarized in the table below.

XML Schema type
Alias in the xml_schema 

namespace
C++ type 

anyType and anySimpleType types 

anyType type Section 2.5.2, "Mapping for anyType " 

anySimpleType simple_type
Section 2.5.3, "Mapping for anySimple-
Type " 

fixed-length integral types 

byte byte signed char  

unsignedByte unsigned_byte unsigned char  

short short_ short  

unsignedShort unsigned_short unsigned short  
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int int_ int  

unsignedInt unsigned_int unsigned int  

long long_ long long  

unsignedLong unsigned_long unsigned long long  

arbitrary-length integral types 

integer integer long long  

nonPositiveInteger non_positive_integer long long  

nonNegativeInteger non_negative_integer unsigned long long  

positiveInteger positive_integer unsigned long long  

negativeInteger negative_integer long long  

boolean types 

boolean boolean bool  

fixed-precision floating-point types 

float float_ float  

double double_ double  

arbitrary-precision floating-point types 

decimal decimal double  

string types 

string string type derived from std::basic_string  

normalizedString normalized_string type derived from string  

token token type derived from normalized_string  

Name name type derived from token  

NMTOKEN nmtoken type derived from token  

NMTOKENS nmtokens type derived from sequence<nmtoken>  

NCName ncname type derived from name 

language language type derived from token  

qualified name 

QName qname Section 2.5.4, "Mapping for QName" 

ID/IDREF types 
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ID id type derived from ncname 

IDREF idref Section 2.5.5, "Mapping for IDREF" 

IDREFS idrefs type derived from sequence<idref>  

URI types 

anyURI uri type derived from std::basic_string  

binary types 

base64Binary base64_binary Section 2.5.6, "Mapping for 
base64Binary  and hexBinary " hexBinary hex_binary  

date/time types 

date date Section 2.5.8, "Mapping for date " 

dateTime date_time Section 2.5.9, "Mapping for dateTime " 

duration duration Section 2.5.10, "Mapping for duration " 

gDay gday Section 2.5.11, "Mapping for gDay" 

gMonth gmonth Section 2.5.12, "Mapping for gMonth " 

gMonthDay gmonth_day
Section 2.5.13, "Mapping for gMonth-
Day" 

gYear gyear Section 2.5.14, "Mapping for gYear " 

gYearMonth gyear_month
Section 2.5.15, "Mapping for gYear-
Month " 

time time Section 2.5.16, "Mapping for time " 

entity types 

ENTITY entity type derived from name 

ENTITIES entities type derived from sequence<entity>  

All XML Schema built-in types are mapped to C++ classes that are derived from the 
xml_schema::simple_type  class except where the mapping is to a fundamental C++ type.

The sequence  class template is defined in an implementation-specific namespace. It conforms
to the sequence interface as defined by the ISO/ANSI Standard for C++ (ISO/IEC 14882:1998,
Section 23.1.1, "Sequences"). Practically, this means that you can treat such a sequence as if it
was std::vector . One notable extension to the standard interface that is available only for
sequences of non-fundamental C++ types is the addition of the overloaded push_back  and 
insert  member functions which instead of the constant reference to the element type accept 
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automatic pointer (std::auto_ptr  or std::unique_ptr , depending on the C++ standard
selected) to the element type. These functions assume ownership of the pointed to object and
reset the passed automatic pointer. 

2.5.1 Inheritance from Built-in Data Types

In cases where the mapping calls for an inheritance from a built-in type which is mapped to a 
fundamental C++ type, a proxy type is used instead of the fundamental C++ type (C++ does not
allow inheritance from fundamental types). For instance:

<simpleType name="my_int">
  <restriction base="int"/>
</simpleType>

is mapped to:

class my_int: public fundamental_base<int>
{
  ...
};

The fundamental_base  class template provides a close emulation (though not exact) of a 
fundamental C++ type. It is defined in an implementation-specific namespace and has the follow-
ing interface:

template <typename X>
class fundamental_base: public simple_type
{
public:
  fundamental_base ();
  fundamental_base (X)
  fundamental_base (const fundamental_base&)

public:
  fundamental_base&
  operator= (const X&);

public:
  operator const X & () const;
  operator X& ();

  template <typename Y>
  operator Y () const;

  template <typename Y>
  operator Y ();
};
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2.5.2 Mapping for anyType

The XML Schema anyType  built-in data type is mapped to the xml_schema::type  C++ 
class:

class type
{
public:
  virtual
  ~type ();

  type ();
  type (const type&);

  type&
  operator= (const type&);

  virtual type*
  _clone () const;

  // anyType DOM content.
  //
public:
  typedef element_optional dom_content_optional;

  const dom_content_optional&
  dom_content () const;

  dom_content_optional&
  dom_content ();

  void
  dom_content (const xercesc::DOMElement&);

  void
  dom_content (xercesc::DOMElement*);

  void
  dom_content (const dom_content_optional&);

  const xercesc::DOMDocument&
  dom_content_document () const;

  xercesc::DOMDocument&
  dom_content_document ();

  bool
  null_content () const;

  // DOM association.

11July 2014 C++/Tree Mapping User Manual, v4.0.0

2.5.2 Mapping for anyType



  //
public:
  const xercesc::DOMNode*
  _node () const;

  xercesc::DOMNode*
  _node ();
};

When xml_schema::type  is used to create an instance (as opposed to being a base of a
derived type), it represents the XML Schema anyType  type. anyType  allows any attributes
and any content in any order. In the C++/Tree mapping this content can be represented as a DOM 
fragment, similar to XML Schema wildcards (Section 2.12, "Mapping for any  and anyAt-
tribute ").

To enable automatic extraction of anyType  content during parsing, the --gener-
ate-any-type  option must be specified. Because the DOM API is used to access such
content, the Xerces-C++ runtime should be initialized by the application prior to parsing and
should remain initialized for the lifetime of objects with the DOM content. For more information
on the Xerces-C++ runtime initialization see Section 3.1, "Initializing the Xerces-C++ Runtime".

The DOM content is stored as the optional DOM element container and the DOM content acces-
sors and modifiers presented above are identical to those generated for an optional element wild-
card. Refer to Section 2.12.2, "Mapping for any  with the Optional Cardinality Class" for details
on their semantics.

The dom_content_document()  function returns the DOM document used to store the raw
XML content corresponding to the anyType  instance. It is equivalent to the dom_docu-
ment()  function generated for types with wildcards.

The null_content()  accessor is an optimization function that allows us to check for the lack
of content without actually creating its empty representation, that is, empty DOM document for 
anyType  or empty string for anySimpleType  (see the following section for details on 
anySimpleType ).

For more information on DOM association refer to Section 5.1, "DOM Association".

2.5.3 Mapping for anySimpleType

The XML Schema anySimpleType  built-in data type is mapped to the 
xml_schema::simple_type  C++ class:

class simple_type: public type
{
public:
  simple_type ();
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  simple_type (const C*);
  simple_type (const std::basic_string<C>&);

  simple_type (const simple_type&);

  simple_type&
  operator= (const simple_type&);

  virtual simple_type*
  _clone () const;

  // anySimpleType text content.
  //
public:
  const std::basic_string<C>&
  text_content () const;

  std::basic_string<C>&
  text_content ();

  void
  text_content (const std::basic_string<C>&);
};

When xml_schema::simple_type  is used to create an instance (as opposed to being a base
of a derived type), it represents the XML Schema anySimpleType  type. anySimpleType
allows any simple content. In the C++/Tree mapping this content can be represented as a string
and accessed or modified with the text_content()  functions shown above.

2.5.4 Mapping for QName

The XML Schema QName built-in data type is mapped to the xml_schema::qname  C++ 
class:

class qname: public simple_type
{
public:
  qname (const ncname&);
  qname (const uri&, const ncname&);
  qname (const qname&);

public:
  qname&
  operator= (const qname&);

public:
  virtual qname*
  _clone () const;

public:
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  bool
  qualified () const;

  const uri&
  namespace_ () const;

  const ncname&
  name () const;
};

The qualified  accessor function can be used to determine if the name is qualified.

2.5.5 Mapping for IDREF

The XML Schema IDREF built-in data type is mapped to the xml_schema::idref  C++
class. This class implements the smart pointer C++ idiom:

class idref: public ncname
{
public:
  idref (const C* s);
  idref (const C* s, std::size_t n);
  idref (std::size_t n, C c);
  idref (const std::basic_string<C>&);
  idref (const std::basic_string<C>&,
         std::size_t pos,
         std::size_t n = npos);

public:
  idref (const idref&);

public:
  virtual idref*
  _clone () const;

public:
  idref&
  operator= (C c);

  idref&
  operator= (const C* s);

  idref&
  operator= (const std::basic_string<C>&)

  idref&
  operator= (const idref&);

public:
  const type*
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  operator-> () const;

  type*
  operator-> ();

  const type&
  operator* () const;

  type&
  operator* ();

  const type*
  get () const;

  type*
  get ();

  // Conversion to bool.
  //
public:
  typedef void (idref::*bool_convertible)();
  operator bool_convertible () const;
};

The object, idref  instance refers to, is the immediate container of the matching id  instance.
For example, with the following instance document and schema: 

<!-- test.xml -->
<root>
  <object id="obj-1" text="hello"/>
  <reference>obj-1</reference>
</root>

<!-- test.xsd -->
<schema>
  <complexType name="object_type">
    <attribute name="id" type="ID"/>
    <attribute name="text" type="string"/>
  </complexType>

  <complexType name="root_type">
    <sequence>
      <element name="object" type="object_type"/>
      <element name="reference" type="IDREF"/>
    </sequence>
  </complexType>

  <element name="root" type="root_type"/>
</schema>
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The ref  instance in the code below will refer to an object of type object_type :

root_type& root = ...;
xml_schema::idref& ref (root.reference ());
object_type& obj (dynamic_cast<object_type&> (*ref));
cout << obj.text () << endl;

The smart pointer interface of the idref  class always returns a pointer or reference to 
xml_schema::type . This means that you will need to manually cast such pointer or reference
to its real (dynamic) type before you can use it (unless all you need is the base interface provided
by xml_schema::type ). As a special extension to the XML Schema language, the mapping
supports static typing of idref  references by employing the refType  extension attribute. The 
following example illustrates this mechanism: 

<!-- test.xsd -->
<schema
  xmlns:xse="http://www.codesynthesis.com/xmlns/xml-schema-extension">

  ...

      <element name="reference" type="IDREF" xse:refType="object_type"/>

  ...

</schema>

With this modification we do not need to do manual casting anymore: 

root_type& root = ...;
root_type::reference_type& ref (root.reference ());
object_type& obj (*ref);
cout << ref->text () << endl;

2.5.6 Mapping for base64Binary and hexBinary

The XML Schema base64Binary  and hexBinary  built-in data types are mapped to the 
xml_schema::base64_binary  and xml_schema::hex_binary  C++ classes, respec-
tively. The base64_binary  and hex_binary  classes support a simple buffer abstraction by 
inheriting from the xml_schema::buffer  class: 

class bounds: public virtual exception
{
public:
  virtual const char*
  what () const throw ();
};

class buffer
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{
public:
  typedef std::size_t size_t;

public:
  buffer (size_t size = 0);
  buffer (size_t size, size_t capacity);
  buffer (const void* data, size_t size);
  buffer (const void* data, size_t size, size_t capacity);
  buffer (void* data,
          size_t size,
          size_t capacity,
          bool assume_ownership);

public:
  buffer (const buffer&);

  buffer&
  operator= (const buffer&);

  void
  swap (buffer&);

public:
  size_t
  capacity () const;

  bool
  capacity (size_t);

public:
  size_t
  size () const;

  bool
  size (size_t);

public:
  const char*
  data () const;

  char*
  data ();

  const char*
  begin () const;

  char*
  begin ();

  const char*
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  end () const;

  char*
  end ();
};

The last overloaded constructor reuses an existing data buffer instead of making a copy. If the 
assume_ownership  argument is true , the instance assumes ownership of the memory block
pointed to by the data  argument and will eventually release it by calling operator delete .
The capacity  and size  modifier functions return true  if the underlying buffer has moved. 

The bounds  exception is thrown if the constructor arguments violate the (size <= capac-
ity)  constraint.

The base64_binary  and hex_binary  classes support the buffer  interface and perform 
automatic decoding/encoding from/to the Base64 and Hex formats, respectively: 

class base64_binary: public simple_type, public buffer
{
public:
  base64_binary (size_t size = 0);
  base64_binary (size_t size, size_t capacity);
  base64_binary (const void* data, size_t size);
  base64_binary (const void* data, size_t size, size_t capacity);
  base64_binary (void* data,
                 size_t size,
                 size_t capacity,
                 bool assume_ownership);

public:
  base64_binary (const base64_binary&);

  base64_binary&
  operator= (const base64_binary&);

  virtual base64_binary*
  _clone () const;

public:
  std::basic_string<C>
  encode () const;
};

class hex_binary: public simple_type, public buffer
{
public:
  hex_binary (size_t size = 0);
  hex_binary (size_t size, size_t capacity);
  hex_binary (const void* data, size_t size);
  hex_binary (const void* data, size_t size, size_t capacity);
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  hex_binary (void* data,
              size_t size,
              size_t capacity,
              bool assume_ownership);

public:
  hex_binary (const hex_binary&);

  hex_binary&
  operator= (const hex_binary&);

  virtual hex_binary*
  _clone () const;

public:
  std::basic_string<C>
  encode () const;
};

2.5.7 Time Zone Representation

The date , dateTime , gDay, gMonth , gMonthDay , gYear , gYearMonth , and time
XML Schema built-in types all include an optional time zone component. The following 
xml_schema::time_zone  base class is used to represent this information:

class time_zone
{
public:
  time_zone ();
  time_zone (short hours, short minutes);

  bool
  zone_present () const;

  void
  zone_reset ();

  short
  zone_hours () const;

  void
  zone_hours (short);

  short
  zone_minutes () const;

  void
  zone_minutes (short);
};
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bool
operator== (const time_zone&, const time_zone&);

bool
operator!= (const time_zone&, const time_zone&);

The zone_present()  accessor function returns true  if the time zone is specified. The 
zone_reset()  modifier function resets the time zone object to the not specified state. If the
time zone offset is negative then both hours and minutes components are represented as negative 
integers.

2.5.8 Mapping for date

The XML Schema date  built-in data type is mapped to the xml_schema::date  C++ class
which represents a year, a day, and a month with an optional time zone. Its interface is presented
below. For more information on the base xml_schema::time_zone  class refer to Section
2.5.7, "Time Zone Representation".

class date: public simple_type, public time_zone
{
public:
  date (int year, unsigned short month, unsigned short day);
  date (int year, unsigned short month, unsigned short day,
        short zone_hours, short zone_minutes);

public:
  date (const date&);

  date&
  operator= (const date&);

  virtual date*
  _clone () const;

public:
  int
  year () const;

  void
  year (int);

  unsigned short
  month () const;

  void
  month (unsigned short);

  unsigned short
  day () const;
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  void
  day (unsigned short);
};

bool
operator== (const date&, const date&);

bool
operator!= (const date&, const date&);

2.5.9 Mapping for dateTime

The XML Schema dateTime  built-in data type is mapped to the 
xml_schema::date_time  C++ class which represents a year, a month, a day, hours,
minutes, and seconds with an optional time zone. Its interface is presented below. For more infor-
mation on the base xml_schema::time_zone  class refer to Section 2.5.7, "Time Zone 
Representation".

class date_time: public simple_type, public time_zone
{
public:
  date_time (int year, unsigned short month, unsigned short day,
             unsigned short hours, unsigned short minutes,
             double seconds);

  date_time (int year, unsigned short month, unsigned short day,
             unsigned short hours, unsigned short minutes,
             double seconds, short zone_hours, short zone_minutes);
public:
  date_time (const date_time&);

  date_time&
  operator= (const date_time&);

  virtual date_time*
  _clone () const;

public:
  int
  year () const;

  void
  year (int);

  unsigned short
  month () const;

  void
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  month (unsigned short);

  unsigned short
  day () const;

  void
  day (unsigned short);

  unsigned short
  hours () const;

  void
  hours (unsigned short);

  unsigned short
  minutes () const;

  void
  minutes (unsigned short);

  double
  seconds () const;

  void
  seconds (double);
};

bool
operator== (const date_time&, const date_time&);

bool
operator!= (const date_time&, const date_time&);

2.5.10 Mapping for duration

The XML Schema duration  built-in data type is mapped to the xml_schema::duration
C++ class which represents a potentially negative duration in the form of years, months, days,
hours, minutes, and seconds. Its interface is presented below.

class duration: public simple_type
{
public:
  duration (bool negative,
            unsigned int years, unsigned int months, unsigned int days,
            unsigned int hours, unsigned int minutes, double seconds);
public:
  duration (const duration&);

  duration&
  operator= (const duration&);
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  virtual duration*
  _clone () const;

public:
  bool
  negative () const;

  void
  negative (bool);

  unsigned int
  years () const;

  void
  years (unsigned int);

  unsigned int
  months () const;

  void
  months (unsigned int);

  unsigned int
  days () const;

  void
  days (unsigned int);

  unsigned int
  hours () const;

  void
  hours (unsigned int);

  unsigned int
  minutes () const;

  void
  minutes (unsigned int);

  double
  seconds () const;

  void
  seconds (double);
};

bool
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operator== (const duration&, const duration&);

bool
operator!= (const duration&, const duration&);

2.5.11 Mapping for gDay

The XML Schema gDay built-in data type is mapped to the xml_schema::gday  C++ class
which represents a day of the month with an optional time zone. Its interface is presented below.
For more information on the base xml_schema::time_zone  class refer to Section 2.5.7,
"Time Zone Representation".

class gday: public simple_type, public time_zone
{
public:
  explicit
  gday (unsigned short day);
  gday (unsigned short day, short zone_hours, short zone_minutes);

public:
  gday (const gday&);

  gday&
  operator= (const gday&);

  virtual gday*
  _clone () const;

public:
  unsigned short
  day () const;

  void
  day (unsigned short);
};

bool
operator== (const gday&, const gday&);

bool
operator!= (const gday&, const gday&);

2.5.12 Mapping for gMonth

The XML Schema gMonth  built-in data type is mapped to the xml_schema::gmonth  C++
class which represents a month of the year with an optional time zone. Its interface is presented
below. For more information on the base xml_schema::time_zone  class refer to Section
2.5.7, "Time Zone Representation".
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class gmonth: public simple_type, public time_zone
{
public:
  explicit
  gmonth (unsigned short month);
  gmonth (unsigned short month,
          short zone_hours, short zone_minutes);

public:
  gmonth (const gmonth&);

  gmonth&
  operator= (const gmonth&);

  virtual gmonth*
  _clone () const;

public:
  unsigned short
  month () const;

  void
  month (unsigned short);
};

bool
operator== (const gmonth&, const gmonth&);

bool
operator!= (const gmonth&, const gmonth&);

2.5.13 Mapping for gMonthDay

The XML Schema gMonthDay  built-in data type is mapped to the 
xml_schema::gmonth_day  C++ class which represents a day and a month of the year with
an optional time zone. Its interface is presented below. For more information on the base 
xml_schema::time_zone  class refer to Section 2.5.7, "Time Zone Representation".

class gmonth_day: public simple_type, public time_zone
{
public:
  gmonth_day (unsigned short month, unsigned short day);
  gmonth_day (unsigned short month, unsigned short day,
              short zone_hours, short zone_minutes);

public:
  gmonth_day (const gmonth_day&);

  gmonth_day&
  operator= (const gmonth_day&);
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  virtual gmonth_day*
  _clone () const;

public:
  unsigned short
  month () const;

  void
  month (unsigned short);

  unsigned short
  day () const;

  void
  day (unsigned short);
};

bool
operator== (const gmonth_day&, const gmonth_day&);

bool
operator!= (const gmonth_day&, const gmonth_day&);

2.5.14 Mapping for gYear

The XML Schema gYear  built-in data type is mapped to the xml_schema::gyear  C++
class which represents a year with an optional time zone. Its interface is presented below. For
more information on the base xml_schema::time_zone  class refer to Section 2.5.7, "Time
Zone Representation".

class gyear: public simple_type, public time_zone
{
public:
  explicit
  gyear (int year);
  gyear (int year, short zone_hours, short zone_minutes);

public:
  gyear (const gyear&);

  gyear&
  operator= (const gyear&);

  virtual gyear*
  _clone () const;

public:
  int
  year () const;
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  void
  year (int);
};

bool
operator== (const gyear&, const gyear&);

bool
operator!= (const gyear&, const gyear&);

2.5.15 Mapping for gYearMonth

The XML Schema gYearMonth  built-in data type is mapped to the 
xml_schema::gyear_month  C++ class which represents a year and a month with an
optional time zone. Its interface is presented below. For more information on the base 
xml_schema::time_zone  class refer to Section 2.5.7, "Time Zone Representation".

class gyear_month: public simple_type, public time_zone
{
public:
  gyear_month (int year, unsigned short month);
  gyear_month (int year, unsigned short month,
               short zone_hours, short zone_minutes);
public:
  gyear_month (const gyear_month&);

  gyear_month&
  operator= (const gyear_month&);

  virtual gyear_month*
  _clone () const;

public:
  int
  year () const;

  void
  year (int);

  unsigned short
  month () const;

  void
  month (unsigned short);
};

bool
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operator== (const gyear_month&, const gyear_month&);

bool
operator!= (const gyear_month&, const gyear_month&);

2.5.16 Mapping for time

The XML Schema time  built-in data type is mapped to the xml_schema::time  C++ class
which represents hours, minutes, and seconds with an optional time zone. Its interface is
presented below. For more information on the base xml_schema::time_zone  class refer to 
Section 2.5.7, "Time Zone Representation".

class time: public simple_type, public time_zone
{
public:
  time (unsigned short hours, unsigned short minutes, double seconds);
  time (unsigned short hours, unsigned short minutes, double seconds,
        short zone_hours, short zone_minutes);

public:
  time (const time&);

  time&
  operator= (const time&);

  virtual time*
  _clone () const;

public:
  unsigned short
  hours () const;

  void
  hours (unsigned short);

  unsigned short
  minutes () const;

  void
  minutes (unsigned short);

  double
  seconds () const;

  void
  seconds (double);
};

bool
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operator== (const time&, const time&);

bool
operator!= (const time&, const time&);

2.6 Mapping for Simple Types

An XML Schema simple type is mapped to a C++ class with the same name as the simple type.
The class defines a public copy constructor, a public copy assignment operator, and a public
virtual _clone  function. The _clone  function is declared const , does not take any argu-
ments, and returns a pointer to a complete copy of the instance allocated in the free store. The 
_clone  function shall be used to make copies when static type and dynamic type of the instance
may differ (see Section 2.11, "Mapping for xsi:type  and Substitution Groups"). For instance:

<simpleType name="object">
  ...
</simpleType>

is mapped to:

class object: ...
{
public:
  object (const object&);

public:
  object&
  operator= (const object&);

public:
  virtual object*
  _clone () const;

  ...

};

The base class specification and the rest of the class definition depend on the type of derivation
used to define the simple type. 

2.6.1 Mapping for Derivation by Restriction

XML Schema derivation by restriction is mapped to C++ public inheritance. The base type of the 
restriction becomes the base type for the resulting C++ class. In addition to the members
described in Section 2.6, "Mapping for Simple Types", the resulting C++ class defines a public 
constructor with the base type as its single argument. For instance:
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<simpleType name="object">
  <restriction base="base">
    ...
  </restriction>
</simpleType>

is mapped to:

class object: public base
{
public:
  object (const base&);
  object (const object&);

public:
  object&
  operator= (const object&);

public:
  virtual object*
  _clone () const;
};

2.6.2 Mapping for Enumerations

XML Schema restriction by enumeration is mapped to a C++ class with semantics similar to C++ 
enum. Each XML Schema enumeration element is mapped to a C++ enumerator with the name
derived from the value  attribute and defined in the class scope. In addition to the members
described in Section 2.6, "Mapping for Simple Types", the resulting C++ class defines a public 
constructor that can be called with one of the enumerators as its single argument, a public 
constructor that can be called with enumeration’s base value as its single argument, a public 
assignment operator that can be used to assign the value of one of the enumerators, and a public
implicit conversion operator to the underlying C++ enum type.

Furthermore, for string-based enumeration types, the resulting C++ class defines a public 
constructor with a single argument of type const C*  and a public constructor with a single 
argument of type const std::basic_string<C>& . For instance:

<simpleType name="color">
  <restriction base="string">
    <enumeration value="red"/>
    <enumeration value="green"/>
    <enumeration value="blue"/>
  </restriction>
</simpleType>
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is mapped to:

class color: public xml_schema::string
{
public:
  enum value
  {
    red,
    green,
    blue
  };

public:
  color (value);
  color (const C*);
  color (const std::basic_string<C>&);
  color (const xml_schema::string&);
  color (const color&);

public:
  color&
  operator= (value);

  color&
  operator= (const color&);

public:
  virtual color*
  _clone () const;

public:
  operator value () const;
};

2.6.3 Mapping for Derivation by List

XML Schema derivation by list is mapped to C++ public inheritance from 
xml_schema::simple_type  (Section 2.5.3, "Mapping for anySimpleType ") and a suit-
able sequence type. The list item type becomes the element type of the sequence. In addition to
the members described in Section 2.6, "Mapping for Simple Types", the resulting C++ class
defines a public default constructor, a public constructor with the first argument of type 
size_type  and the second argument of list item type that creates a list object with the specified
number of copies of the specified element value, and a public constructor with the two arguments
of an input iterator type that creates a list object from an iterator range. For instance: 

<simpleType name="int_list">
  <list itemType="int"/>
</simpleType>
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is mapped to:

class int_list: public simple_type,
                public sequence<int>
{
public:
  int_list ();
  int_list (size_type n, int x);

  template <typename I>
  int_list (const I& begin, const I& end);
  int_list (const int_list&);

public:
  int_list&
  operator= (const int_list&);

public:
  virtual int_list*
  _clone () const;
};

The sequence  class template is defined in an implementation-specific namespace. It conforms
to the sequence interface as defined by the ISO/ANSI Standard for C++ (ISO/IEC 14882:1998,
Section 23.1.1, "Sequences"). Practically, this means that you can treat such a sequence as if it
was std::vector . One notable extension to the standard interface that is available only for
sequences of non-fundamental C++ types is the addition of the overloaded push_back  and 
insert  member functions which instead of the constant reference to the element type accept 
automatic pointer (std::auto_ptr  or std::unique_ptr , depending on the C++ standard
selected) to the element type. These functions assume ownership of the pointed to object and
reset the passed automatic pointer. 

2.6.4 Mapping for Derivation by Union

XML Schema derivation by union is mapped to C++ public inheritance from 
xml_schema::simple_type  (Section 2.5.3, "Mapping for anySimpleType ") and 
std::basic_string<C> . In addition to the members described in Section 2.6, "Mapping for
Simple Types", the resulting C++ class defines a public constructor with a single argument of
type const C*  and a public constructor with a single argument of type const 
std::basic_string<C>& . For instance: 

<simpleType name="int_string_union">
  <xsd:union memberTypes="xsd:int xsd:string"/>
</simpleType>
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is mapped to:

class int_string_union: public simple_type,
                        public std::basic_string<C>
{
public:
  int_string_union (const C*);
  int_string_union (const std::basic_string<C>&);
  int_string_union (const int_string_union&);

public:
  int_string_union&
  operator= (const int_string_union&);

public:
  virtual int_string_union*
  _clone () const;
};

2.7 Mapping for Complex Types

An XML Schema complex type is mapped to a C++ class with the same name as the complex
type. The class defines a public copy constructor, a public copy assignment operator, and a public
virtual _clone  function. The _clone  function is declared const , does not take any argu-
ments, and returns a pointer to a complete copy of the instance allocated in the free store. The 
_clone  function shall be used to make copies when static type and dynamic type of the instance
may differ (see Section 2.11, "Mapping for xsi:type  and Substitution Groups").

Additionally, the resulting C++ class defines two public constructors that take an initializer for
each member of the complex type and all its base types that belongs to the One cardinality class
(see Section 2.8, "Mapping for Local Elements and Attributes"). In the first constructor, the argu-
ments are passed as constant references and the newly created instance is initialized with copies
of the passed objects. In the second constructor, arguments that are complex types (that is, they 
themselves contain elements or attributes) are passed as either std::auto_ptr  (C++98) or 
std::unique_ptr  (C++11), depending on the C++ standard selected. In this case the newly
created instance is directly initialized with and assumes ownership of the pointed to objects and
the std::[auto|unique]_ptr  arguments are reset to 0. For instance:

<complexType name="complex">
  <sequence>
    <element name="a" type="int"/>
    <element name="b" type="string"/>
  </sequence>
</complexType>

<complexType name="object">
  <sequence>

33July 2014 C++/Tree Mapping User Manual, v4.0.0

2.7 Mapping for Complex Types



    <element name="s-one" type="boolean"/>
    <element name="c-one" type="complex"/>
    <element name="optional" type="int" minOccurs="0"/>
    <element name="sequence" type="string" maxOccurs="unbounded"/>
  </sequence>
</complexType>

is mapped to:

class complex: public xml_schema::type
{
public:
  object (const int& a, const xml_schema::string& b);
  object (const complex&);

public:
  object&
  operator= (const complex&);

public:
  virtual complex*
  _clone () const;

  ...

};

class object: public xml_schema::type
{
public:
  object (const bool& s_one, const complex& c_one);
  object (const bool& s_one, std::[auto|unique]_ptr<complex> c_one);
  object (const object&);

public:
  object&
  operator= (const object&);

public:
  virtual object*
  _clone () const;

  ...

};

Notice that the generated complex  class does not have the second 
(std::[auto|unique]_ptr ) version of the constructor since all its required members are of
simple types.
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If an XML Schema complex type has an ultimate base which is an XML Schema simple type
then the resulting C++ class also defines a public constructor that takes an initializer for the base
type as well as for each member of the complex type and all its base types that belongs to the One 
cardinality class. For instance:

<complexType name="object">
  <simpleContent>
    <extension base="date">
      <attribute name="lang" type="language" use="required"/>
    </extension>
  </simpleContent>
</complexType>

is mapped to:

class object: public xml_schema::string
{
public:
  object (const xml_schema::language& lang);

  object (const xml_schema::date& base,
          const xml_schema::language& lang);

  ...

};

Furthermore, for string-based XML Schema complex types, the resulting C++ class also defines
two public constructors with the first arguments of type const C*  and 
std::basic_string<C>& , respectively, followed by arguments for each member of the
complex type and all its base types that belongs to the One cardinality class. For enumera-
tion-based complex types the resulting C++ class also defines a public constructor with the first 
arguments of the underlying enum type followed by arguments for each member of the complex
type and all its base types that belongs to the One cardinality class. For instance:

<simpleType name="color">
  <restriction base="string">
    <enumeration value="red"/>
    <enumeration value="green"/>
    <enumeration value="blue"/>
  </restriction>
</simpleType>

<complexType name="object">
  <simpleContent>
    <extension base="color">
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      <attribute name="lang" type="language" use="required"/>
    </extension>
  </simpleContent>
</complexType>

is mapped to:

class color: public xml_schema::string
{
public:
  enum value
  {
    red,
    green,
    blue
  };

public:
  color (value);
  color (const C*);
  color (const std::basic_string<C>&);

  ...

};

class object: color
{
public:
  object (const color& base,
          const xml_schema::language& lang);

  object (const color::value& base,
          const xml_schema::language& lang);

  object (const C* base,
          const xml_schema::language& lang);

  object (const std::basic_string<C>& base,
          const xml_schema::language& lang);

  ...

};

Additional constructors can be requested with the --generate-default-ctor  and 
--generate-from-base-ctor  options. See the XSD Compiler Command Line Manual for 
details.
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If an XML Schema complex type is not explicitly derived from any type, the resulting C++ class
is derived from xml_schema::type . In cases where an XML Schema complex type is
defined using derivation by extension or restriction, the resulting C++ base class specification
depends on the type of derivation and is described in the subsequent sections. 

The mapping for elements and attributes that are defined in a complex type is described in 
Section 2.8, "Mapping for Local Elements and Attributes". 

2.7.1 Mapping for Derivation by Extension

XML Schema derivation by extension is mapped to C++ public inheritance. The base type of the 
extension becomes the base type for the resulting C++ class. 

2.7.2 Mapping for Derivation by Restriction

XML Schema derivation by restriction is mapped to C++ public inheritance. The base type of the 
restriction becomes the base type for the resulting C++ class. XML Schema elements and
attributes defined within restriction do not result in any definitions in the resulting C++ class.
Instead, corresponding (unrestricted) definitions are inherited from the base class. In the future
versions of this mapping, such elements and attributes may result in redefinitions of accessors and 
modifiers to reflect their restricted semantics. 

2.8 Mapping for Local Elements and Attributes

XML Schema element and attribute definitions are called local if they appear within a complex
type definition, an element group definition, or an attribute group definitions. 

Local XML Schema element and attribute definitions have the same C++ mapping. Therefore, in
this section, local elements and attributes are collectively called members. 

While there are many different member cardinality combinations (determined by the use
attribute for attributes and the minOccurs  and maxOccurs  attributes for elements), the
mapping divides all possible cardinality combinations into three cardinality classes: 

one 
attributes: use == "required"  
attributes: use == "optional"  and has default or fixed value 
elements: minOccurs == "1"  and maxOccurs == "1"  

optional 
attributes: use == "optional"  and doesn’t have default or fixed value 
elements: minOccurs == "0"  and maxOccurs == "1"  
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sequence 
elements: maxOccurs > "1"  

An optional attribute with a default or fixed value acquires this value if the attribute hasn’t been 
specified in an instance document (see Appendix A, "Default and Fixed Values"). This mapping
places such optional attributes to the One cardinality class.

A member is mapped to a set of public type definitions (typedef s) and a set of public accessor
and modifier functions. Type definitions have names derived from the member’s name. The 
accessor and modifier functions have the same name as the member. For example: 

<complexType name="object">
  <sequence>
    <element name="member" type="string"/>
  </sequence>
</complexType>

is mapped to:

class object: public xml_schema::type
{
public:
  typedef xml_schema::string member_type;

  const member_type&
  member () const;

  ...

};

In addition, if a member has a default or fixed value, a static accessor function is generated that
returns this value. For example:

<complexType name="object">
  <attribute name="data" type="string" default="test"/>
</complexType>

is mapped to:

class object: public xml_schema::type
{
public:
  typedef xml_schema::string data_type;

  const data_type&
  data () const;

  static const data_type&
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  data_default_value ();

  ...

};

Names and semantics of type definitions for the member as well as signatures of the accessor and 
modifier functions depend on the member’s cardinality class and are described in the following
sub-sections. 

2.8.1 Mapping for Members with the One Cardinality Class

For the One cardinality class, the type definitions consist of an alias for the member’s type with
the name created by appending the _type  suffix to the member’s name. 

The accessor functions come in constant and non-constant versions. The constant accessor func-
tion returns a constant reference to the member and can be used for read-only access. The
non-constant version returns an unrestricted reference to the member and can be used for
read-write access. 

The first modifier function expects an argument of type reference to constant of the member’s
type. It makes a deep copy of its argument. Except for member’s types that are mapped to funda-
mental C++ types, the second modifier function is provided that expects an argument of type 
automatic pointer (std::auto_ptr  or std::unique_ptr , depending on the C++ standard
selected) to the member’s type. It assumes ownership of the pointed to object and resets the
passed automatic pointer. For instance:

<complexType name="object">
  <sequence>
    <element name="member" type="string"/>
  </sequence>
</complexType>

is mapped to:

class object: public xml_schema::type
{
public:
  // Type definitions.
  //
  typedef xml_schema::string member_type;

  // Accessors.
  //
  const member_type&
  member () const;

  member_type&
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  member ();

  // Modifiers.
  //
  void
  member (const member_type&);

  void
  member (std::[auto|unique]_ptr<member_type>);
  ...

};

In addition, if requested by specifying the --generate-detach  option and only for members
of non-fundamental C++ types, the mapping provides a detach function that returns an automatic
pointer to the member’s type, for example:

class object: public xml_schema::type
{
public:
  ...

  std::[auto|unique]_ptr<member_type>
  detach_member ();
  ...

};

This function detaches the value from the tree leaving the member value uninitialized. Accessing
such an uninitialized value prior to re-initializing it results in undefined behavior.

The following code shows how one could use this mapping:

void
f (object& o)
{
  using xml_schema::string;

  string s (o.member ());                // get
  object::member_type& sr (o.member ()); // get

  o.member ("hello");           // set, deep copy
  o.member () = "hello";        // set, deep copy

  // C++98 version.
  //
  std::auto_ptr<string> p (new string ("hello"));
  o.member (p);                 // set, assumes ownership
  p = o.detach_member ();       // detach, member is uninitialized
  o.member (p);                 // re-attach
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  // C++11 version.
  //
  std::unique_ptr<string> p (new string ("hello"));
  o.member (std::move (p));     // set, assumes ownership
  p = o.detach_member ();       // detach, member is uninitialized
  o.member (std::move (p));     // re-attach
}

2.8.2 Mapping for Members with the Optional Cardinality Class

For the Optional cardinality class, the type definitions consist of an alias for the member’s type
with the name created by appending the _type  suffix to the member’s name and an alias for the
container type with the name created by appending the _optional  suffix to the member’s
name. 

Unlike accessor functions for the One cardinality class, accessor functions for the Optional cardi-
nality class return references to corresponding containers rather than directly to members. The 
accessor functions come in constant and non-constant versions. The constant accessor function
returns a constant reference to the container and can be used for read-only access. The
non-constant version returns an unrestricted reference to the container and can be used for
read-write access. 

The modifier functions are overloaded for the member’s type and the container type. The first 
modifier function expects an argument of type reference to constant of the member’s type. It
makes a deep copy of its argument. Except for member’s types that are mapped to fundamental
C++ types, the second modifier function is provided that expects an argument of type automatic
pointer (std::auto_ptr  or std::unique_ptr , depending on the C++ standard selected)
to the member’s type. It assumes ownership of the pointed to object and resets the passed auto-
matic pointer. The last modifier function expects an argument of type reference to constant of the
container type. It makes a deep copy of its argument. For instance: 

<complexType name="object">
  <sequence>
    <element name="member" type="string" minOccurs="0"/>
  </sequence>
</complexType>

is mapped to:

class object: public xml_schema::type
{
public:
  // Type definitions.
  //
  typedef xml_schema::string member_type;
  typedef optional<member_type> member_optional;
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  // Accessors.
  //
  const member_optional&
  member () const;

  member_optional&
  member ();

  // Modifiers.
  //
  void
  member (const member_type&);

  void
  member (std::[auto|unique]_ptr<member_type>);

  void
  member (const member_optional&);

  ...

};

The optional  class template is defined in an implementation-specific namespace and has the 
following interface. The [auto|unique]_ptr -based constructor and modifier function are
only available if the template argument is not a fundamental C++ type. 

template <typename X>
class optional
{
public:
  optional ();

  // Makes a deep copy.
  //
  explicit
  optional (const X&);

  // Assumes ownership.
  //
  explicit
  optional (std::[auto|unique]_ptr<X>);

  optional (const optional&);

public:
  optional&
  operator= (const X&);

  optional&
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  operator= (const optional&);

  // Pointer-like interface.
  //
public:
  const X*
  operator-> () const;

  X*
  operator-> ();

  const X&
  operator* () const;

  X&
  operator* ();

  typedef void (optional::*bool_convertible) ();
  operator bool_convertible () const;

  // Get/set interface.
  //
public:
  bool
  present () const;

  const X&
  get () const;

  X&
  get ();

  // Makes a deep copy.
  //
  void
  set (const X&);

  // Assumes ownership.
  //
  void
  set (std::[auto|unique]_ptr<X>);

  // Detach and return the contained value.
  //
  std::[auto|unique]_ptr<X>
  detach ();

  void
  reset ();
};
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template <typename X>
bool
operator== (const optional<X>&, const optional<X>&);

template <typename X>
bool
operator!= (const optional<X>&, const optional<X>&);

template <typename X>
bool
operator< (const optional<X>&, const optional<X>&);

template <typename X>
bool
operator> (const optional<X>&, const optional<X>&);

template <typename X>
bool
operator<= (const optional<X>&, const optional<X>&);

template <typename X>
bool
operator>= (const optional<X>&, const optional<X>&);

The following code shows how one could use this mapping:

void
f (object& o)
{
  using xml_schema::string;

  if (o.member ().present ())       // test
  {
    string& s (o.member ().get ()); // get
    o.member ("hello");             // set, deep copy
    o.member ().set ("hello");      // set, deep copy
    o.member ().reset ();           // reset
  }

  // Same as above but using pointer notation:
  //
  if (o.member ())                  // test
  {
    string& s (*o.member ());       // get
    o.member ("hello");             // set, deep copy
    *o.member () = "hello";         // set, deep copy
    o.member ().reset ();           // reset
  }

  // C++98 version.
  //
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  std::auto_ptr<string> p (new string ("hello"));
  o.member (p);                     // set, assumes ownership

  p = new string ("hello");
  o.member ().set (p);              // set, assumes ownership

  p = o.member ().detach ();        // detach, member is reset
  o.member ().set (p);              // re-attach

  // C++11 version.
  //
  std::unique_ptr<string> p (new string ("hello"));
  o.member (std::move (p));         // set, assumes ownership

  p.reset (new string ("hello"));
  o.member ().set (std::move (p));  // set, assumes ownership

  p = o.member ().detach ();        // detach, member is reset
  o.member ().set (std::move (p));  // re-attach
}

2.8.3 Mapping for Members with the Sequence Cardinality Class

For the Sequence cardinality class, the type definitions consist of an alias for the member’s type
with the name created by appending the _type  suffix to the member’s name, an alias of the
container type with the name created by appending the _sequence  suffix to the member’s
name, an alias of the iterator type with the name created by appending the _iterator  suffix to
the member’s name, and an alias of the constant iterator type with the name created by appending
the _const_iterator  suffix to the member’s name. 

The accessor functions come in constant and non-constant versions. The constant accessor func-
tion returns a constant reference to the container and can be used for read-only access. The
non-constant version returns an unrestricted reference to the container and can be used for
read-write access. 

The modifier function expects an argument of type reference to constant of the container type.
The modifier function makes a deep copy of its argument. For instance: 

<complexType name="object">
  <sequence>
    <element name="member" type="string" minOccurs="unbounded"/>
  </sequence>
</complexType>

is mapped to:
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class object: public xml_schema::type
{
public:
  // Type definitions.
  //
  typedef xml_schema::string member_type;
  typedef sequence<member_type> member_sequence;
  typedef member_sequence::iterator member_iterator;
  typedef member_sequence::const_iterator member_const_iterator;

  // Accessors.
  //
  const member_sequence&
  member () const;

  member_sequence&
  member ();

  // Modifier.
  //
  void
  member (const member_sequence&);

  ...

};

The sequence  class template is defined in an implementation-specific namespace. It conforms
to the sequence interface as defined by the ISO/ANSI Standard for C++ (ISO/IEC 14882:1998,
Section 23.1.1, "Sequences"). Practically, this means that you can treat such a sequence as if it
was std::vector . Two notable extensions to the standard interface that are available only for
sequences of non-fundamental C++ types are the addition of the overloaded push_back  and 
insert  as well as the detach_back  and detach  member functions. The additional 
push_back  and insert  functions accept an automatic pointer (std::auto_ptr  or 
std::unique_ptr , depending on the C++ standard selected) to the element type instead of
the constant reference. They assume ownership of the pointed to object and reset the passed auto-
matic pointer. The detach_back  and detach  functions detach the element value from the
sequence container and, by default, remove the element from the sequence. These additional 
functions have the following signatures:

template <typename X>
class sequence
{
public:
  ...

  void
  push_back (std::[auto|unique]_ptr<X>)
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  iterator
  insert (iterator position, std::[auto|unique]_ptr<X>)

  std::[auto|unique]_ptr<X>
  detach_back (bool pop = true);

  iterator
  detach (iterator position,
          std::[auto|unique]_ptr<X>& result,
          bool erase = true)

  ...
}

The following code shows how one could use this mapping:

void
f (object& o)
{
  using xml_schema::string;

  object::member_sequence& s (o.member ());

  // Iteration.
  //
  for (object::member_iterator i (s.begin ()); i != s.end (); ++i)
  {
    string& value (*i);
  }

  // Modification.
  //
  s.push_back ("hello");  // deep copy

  // C++98 version.
  //
  std::auto_ptr<string> p (new string ("hello"));
  s.push_back (p);        // assumes ownership
  p = s.detach_back ();   // detach and pop
  s.push_back (p);        // re-append

  // C++11 version.
  //
  std::unique_ptr<string> p (new string ("hello"));
  s.push_back (std::move (p)); // assumes ownership
  p = s.detach_back ();        // detach and pop
  s.push_back (std::move (p)); // re-append

  // Setting a new container.
  //
  object::member_sequence n;
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  n.push_back ("one");
  n.push_back ("two");
  o.member (n);           // deep copy
}

2.8.4 Element Order

C++/Tree is a "flattening" mapping in a sense that many levels of nested compositors (choice
and sequence ), all potentially with their own cardinalities, are in the end mapped to a flat set of
elements with one of the three cardinality classes discussed in the previous sections. While this
results in a simple and easy to use API for most types, in certain cases, the order of elements in
the actual XML documents is not preserved once parsed into the object model. And sometimes
such order has application-specific significance. As an example, consider a schema that defines a
batch of bank transactions:

<complexType name="withdraw">
  <sequence>
    <element name="account" type="unsignedInt"/>
    <element name="amount" type="unsignedInt"/>
  </sequence>
</complexType>

<complexType name="deposit">
  <sequence>
    <element name="account" type="unsignedInt"/>
    <element name="amount" type="unsignedInt"/>
  </sequence>
</complexType>

<complexType name="batch">
  <choice minOccurs="0" maxOccurs="unbounded">
    <element name="withdraw" type="withdraw"/>
    <element name="deposit" type="deposit"/>
  </choice>
</complexType>

The batch can contain any number of transactions in any order but the order of transactions in
each actual batch is significant. For instance, consider what could happen if we reorder the trans-
actions and apply all the withdrawals before deposits.

For the batch  schema type defined above the default C++/Tree mapping will produce a C++
class that contains a pair of sequence containers, one for each of the two elements. While this will
capture the content (transactions), the order of this content as it appears in XML will be lost.
Also, if we try to serialize the batch we just loaded back to XML, all the withdrawal transactions
will appear before deposits.
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To overcome this limitation of a flattening mapping, C++/Tree allows us to mark certain XML
Schema types, for which content order is important, as ordered.

There are several command line options that control which schema types are treated as ordered.
To make an individual type ordered, we use the --ordered-type  option, for example:

--ordered-type batch

To automatically treat all the types that are derived from an ordered type also ordered, we use the 
--ordered-type-derived  option. This is primarily useful if you would like to iterate over
the complete hierarchy’s content using the content order sequence (discussed below).

Ordered types are also useful for handling mixed content. To automatically mark all the types
with mixed content as ordered we use the --ordered-type-mixed  option. For more infor-
mation on handling mixed content see Section 2.13, "Mapping for Mixed Content Models".

Finally, we can mark all the types in the schema we are compiling with the 
--ordered-type-all  option. You should only resort to this option if all the types in your
schema truly suffer from the loss of content order since, as we will discuss shortly, ordered types
require extra effort to access and, especially, modify. See the XSD Compiler Command Line 
Manual for more information on these options.

Once a type is marked ordered, C++/Tree alters its mapping in several ways. Firstly, for each
local element, element wildcard (Section 2.12.4, "Element Wildcard Order"), and mixed content
text (Section 2.13, "Mapping for Mixed Content Models") in this type, a content id constant is 
generated. Secondly, an addition sequence is added to the class that captures the content order.
Here is how the mapping of our batch  class changes once we make it ordered:

class batch: public xml_schema::type
{
public:
  // withdraw
  //
  typedef withdraw withdraw_type;
  typedef sequence<withdraw_type> withdraw_sequence;
  typedef withdraw_sequence::iterator withdraw_iterator;
  typedef withdraw_sequence::const_iterator withdraw_const_iterator;

  static const std::size_t withdraw_id = 1;

  const withdraw_sequence&
  withdraw () const;

  withdraw_sequence&
  withdraw ();

  void
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  withdraw (const withdraw_sequence&);

  // deposit
  //
  typedef deposit deposit_type;
  typedef sequence<deposit_type> deposit_sequence;
  typedef deposit_sequence::iterator deposit_iterator;
  typedef deposit_sequence::const_iterator deposit_const_iterator;

  static const std::size_t deposit_id = 2;

  const deposit_sequence&
  deposit () const;

  deposit_sequence&
  deposit ();

  void
  deposit (const deposit_sequence&);

  // content_order
  //
  typedef xml_schema::content_order content_order_type;
  typedef std::vector<content_order_type> content_order_sequence;
  typedef content_order_sequence::iterator content_order_iterator;
  typedef content_order_sequence::const_iterator content_order_const_iterator;

  const content_order_sequence&
  content_order () const;

  content_order_sequence&
  content_order ();

  void
  content_order (const content_order_sequence&);

  ...
};

Notice the withdraw_id  and deposit_id  content ids as well as the extra 
content_order  sequence that does not correspond to any element in the schema definition.
The other changes to the mapping for ordered types has to do with XML parsing and serialization
code. During parsing the content order is captured in the content_order  sequence while
during serialization this sequence is used to determine the order in which content is serialized.
The content_order  sequence is also copied during copy construction and assigned during
copy assignment. It is also taken into account during comparison.
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The entry type of the content_order  sequence is the xml_schema::content_order
type that has the following interface:

namespace xml_schema
{
  struct content_order
  {
    content_order (std::size_t id, std::size_t index = 0);

    std::size_t id;
    std::size_t index;
  };

  bool
  operator== (const content_order&, const content_order&);

  bool
  operator!= (const content_order&, const content_order&);

  bool
  operator< (const content_order&, const content_order&);
}

The content_order  sequence describes the order of content (elements, including wildcards,
as well as mixed content text). Each entry in this sequence consists of the content id (for example, 
withdraw_id  or deposit_id  in our case) as well as, for elements of the sequence cardinal-
ity class, an index into the corresponding sequence container (the index is unused for the one and
optional cardinality classes). For example, in our case, if the content id is withdraw_id , then
the index will point into the withdraw  element sequence.

With all this information we can now examine how to iterate over transaction in the batch in
content order:

batch& b = ...

for (batch::content_order_const_iterator i (b.content_order ().begin ());
     i != b.content_order ().end ();
     ++i)
{
  switch (i->id)
  {
  case batch::withdraw_id:
    {
      const withdraw& t (b.withdraw ()[i->index]);
      cerr << t.account () << " withdraw " << t.amount () << endl;
      break;
    }
  case batch::deposit_id:
    {
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      const deposit& t (b.deposit ()[i->index]);
      cerr << t.account () << " deposit " << t.amount () << endl;
      break;
    }
  default:
    {
      assert (false); // Unknown content id.
    }
  }
}

If we serialized our batch back to XML, we would also see that the order of transactions in the
output is exactly the same as in the input rather than all the withdrawals first followed by all the 
deposits.

The most complex aspect of working with ordered types is modifications. Now we not only need
to change the content, but also remember to update the order information corresponding to this
change. As a first example, we add a deposit transaction to the batch:

using xml_schema::content_order;

batch::deposit_sequence& d (b.deposit ());
batch::withdraw_sequence& w (b.withdraw ());
batch::content_order_sequence& co (b.content_order ());

d.push_back (deposit (123456789, 100000));
co.push_back (content_order (batch::deposit_id, d.size () - 1));

In the above example we first added the content (deposit transaction) and then updated the
content order information by adding an entry with deposit_id  content id and the index of the
just added deposit transaction.

Removing the last transaction can be easy if we know which transaction (deposit or withdrawal)
is last:

d.pop_back ();
co.pop_back ();

If, however, we do not know which transaction is last, then things get a bit more complicated:

switch (co.back ().id)
{
case batch::withdraw_id:
  {
    d.pop_back ();
    break;
  }
case batch::deposit_id:
  {
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    w.pop_back ();
    break;
  }
}

co.pop_back ();

The following example shows how to add a transaction at the beginning of the batch:

w.push_back (withdraw (123456789, 100000));
co.insert (co.begin (),
           content_order (batch::withdraw_id, w.size () - 1));

Note also that when we merely modify the content of one of the elements in place, we do not
need to update its order since it doesn’t change. For example, here is how we can change the
amount in the first withdrawal:

w[0].amount (10000);

For the complete working code shown in this section refer to the order/element  example in
the examples/cxx/tree/  directory in the XSD distribution.

If both the base and derived types are ordered, then the content order sequence is only added to
the base and the content ids are unique within the whole hierarchy. In this case the content order
sequence for the derived type contains ordering information for both base and derived content.

In some applications we may need to perform more complex content processing. For example, in
our case, we may need to remove all the withdrawal transactions. The default container, 
std::vector , is not particularly suitable for such operations. What may be required by some 
applications is a multi-index container that not only allows us to iterate in content order similar to 
std::vector  but also search by the content id as well as the content id and index pair.

While C++/Tree does not provide this functionality by default, it allows us to specify a custom
container type for content order with the --order-container  command line option. The
only requirement from the generated code side for such a container is to provide the vector -like 
push_back() , size() , and const iteration interfaces.

As an example, here is how we can use the Boost Multi-Index container for content order. First
we create the content-order-container.hxx  header with the following definition (in
C++11, use the alias template instead):

#ifndef CONTENT_ORDER_CONTAINER
#define CONTENT_ORDER_CONTAINER

#include <cstddef> // std::size_t

#include <boost/multi_index_container.hpp>
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#include <boost/multi_index/member.hpp>
#include <boost/multi_index/identity.hpp>
#include <boost/multi_index/ordered_index.hpp>
#include <boost/multi_index/random_access_index.hpp>

struct by_id {};
struct by_id_index {};

template <typename T>
struct content_order_container:
  boost::multi_index::multi_index_container<
    T,
    boost::multi_index::indexed_by<
      boost::multi_index::random_access<>,
      boost::multi_index::ordered_unique<
        boost::multi_index::tag<by_id_index>,
        boost::multi_index::identity<T>
      >,
      boost::multi_index::ordered_non_unique<
        boost::multi_index::tag<by_id>,
        boost::multi_index::member<T, std::size_t, &T::id>
      >
    >
  >
{};

#endif

Next we add the following two XSD compiler options to include this header into every generated
header file and to use the custom container type (see the XSD compiler command line manual for
more information on shell quoting for the first option):

--hxx-prologue ’#include "content-order-container.hxx"’
--order-container content_order_container

With these changes we can now use the multi-index functionality, for example, to search for a
specific content id:

typedef batch::content_order_sequence::index<by_id>::type id_set;
typedef id_set::iterator id_iterator;

const id_set& ids (b.content_order ().get<by_id> ());

std::pair<id_iterator, id_iterator> r (
  ids.equal_range (std::size_t (batch::deposit_id));

for (id_iterator i (r.first); i != r.second; ++i)
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{
  const deposit& t (b.deposit ()[i->index]);
  cerr << t.account () << " deposit " << t.amount () << endl;
}

2.9 Mapping for Global Elements

An XML Schema element definition is called global if it appears directly under the schema
element. A global element is a valid root of an instance document. By default, a global element is
mapped to a set of overloaded parsing and, optionally, serialization functions with the same name
as the element. It is also possible to generate types for root elements instead of parsing and serial-
ization functions. This is primarily useful to distinguish object models with the same root type but
with different root elements. See Section 2.9.1, "Element Types" for details. It is also possible to
request the generation of an element map which allows uniform parsing and serialization of 
multiple root elements. See Section 2.9.2, "Element Map" for details. 

The parsing functions read XML instance documents and return corresponding object models as
an automatic pointer (std::auto_ptr  or std::unique_ptr , depending on the C++ stan-
dard selected). Their signatures have the following pattern (type  denotes element’s type and 
name denotes element’s name): 

std::[auto|unique]_ptr<type>
name (....);

The process of parsing, including the exact signatures of the parsing functions, is the subject of 
Chapter 3, "Parsing". 

The serialization functions write object models back to XML instance documents. Their signa-
tures have the following pattern: 

void
name (<stream type>&, const type&, ....);

The process of serialization, including the exact signatures of the serialization functions, is the
subject of Chapter 4, "Serialization". 

2.9.1 Element Types

The generation of element types is requested with the --generate-element-map  option.
With this option each global element is mapped to a C++ class with the same name as the
element. Such a class is derived from xml_schema::element_type  and contains the same
set of type definitions, constructors, and member function as would a type containing a single
element with the One cardinality class named "value" . In addition, the element type also
contains a set of member functions for accessing the element name and namespace as well as its
value in a uniform manner. For example:
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<complexType name="type">
  <sequence>
    ...
  </sequence>
</complexType>

<element name="root" type="type"/>

is mapped to:

class type
{
  ...
};

class root: public xml_schema::element_type
{
public:
  // Element value.
  //
  typedef type value_type;

  const value_type&
  value () const;

  value_type&
  value ();

  void
  value (const value_type&);

  void
  value (std::[auto|unique]_ptr<value_type>);

  // Constructors.
  //
  root (const value_type&);

  root (std::[auto|unique]_ptr<value_type>);

  root (const xercesc::DOMElement&, xml_schema::flags = 0);

  root (const root&, xml_schema::flags = 0);

  virtual root*
  _clone (xml_schema::flags = 0) const;

  // Element name and namespace.
  //
  static const std::string&
  name ();

July 201456 C++/Tree Mapping User Manual, v4.0.0

2.9.1 Element Types



  static const std::string&
  namespace_ ();

  virtual const std::string&
  _name () const;

  virtual const std::string&
  _namespace () const;

  // Element value as xml_schema::type.
  //
  virtual const xml_schema::type*
  _value () const;

  virtual xml_schema::type*
  _value ();
};

void
operator<< (xercesc::DOMElement&, const root&);

The xml_schema::element_type  class is a common base type for all element types and is
defined as follows:

namespace xml_schema
{
  class element_type
  {
  public:
    virtual
    ~element_type ();

    virtual element_type*
    _clone (flags f = 0) const = 0;

    virtual const std::basic_string<C>&
    _name () const = 0;

    virtual const std::basic_string<C>&
    _namespace () const = 0;

    virtual xml_schema::type*
    _value () = 0;

    virtual const xml_schema::type*
    _value () const = 0;
  };
}
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The _value()  member function returns a pointer to the element value or 0 if the element is of a 
fundamental C++ type and therefore is not derived from xml_schema::type . 

Unlike parsing and serialization functions, element types are only capable of parsing and serializ-
ing from/to a DOMElement object. This means that the application will need to perform its own
XML-to-DOM parsing and DOM-to-XML serialization. The following section describes a mech-
anism provided by the mapping to uniformly parse and serialize multiple root elements.

2.9.2 Element Map

When element types are generated for root elements it is also possible to request the generation of
an element map with the --generate-element-map  option. The element map allows
uniform parsing and serialization of multiple root elements via the common 
xml_schema::element_type  base type. The xml_schema::element_map  class is
defined as follows:

namespace xml_schema
{
  class element_map
  {
  public:
    static std::[auto|unique]_ptr<xml_schema::element_type>
    parse (const xercesc::DOMElement&, flags = 0);

    static void
    serialize (xercesc::DOMElement&, const element_type&);
  };
}

The parse()  function creates the corresponding element type object based on the element name
and namespace and returns it as an automatic pointer (std::auto_ptr  or 
std::unique_ptr , depending on the C++ standard selected) to 
xml_schema::element_type . The serialize()  function serializes the passed element
object to DOMElement. Note that in case of serialize() , the DOMElement object should
have the correct name and namespace. If no element type is available for an element, both func-
tions throw the xml_schema::no_element_info  exception:

struct no_element_info: virtual exception
{
  no_element_info (const std::basic_string<C>& element_name,
                   const std::basic_string<C>& element_namespace);

  const std::basic_string<C>&
  element_name () const;

  const std::basic_string<C>&
  element_namespace () const;
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  virtual const char*
  what () const throw ();
};

The application can discover the actual type of the element object returned by parse()  either
using dynamic_cast  or by comparing element names and namespaces. The following code 
fragments illustrate how the element map can be used:

// Parsing.
//
DOMElement& e = ... // Parse XML to DOM.

auto_ptr<xml_schema::element_type> r (
  xml_schema::element_map::parse (e));

if (root1 r1 = dynamic_cast<root1*> (r.get ()))
{
  ...
}
else if (r->_name == root2::name () &&
         r->_namespace () == root2::namespace_ ())
{
  root2& r2 (static_cast<root2&> (*r));

  ...
}

// Serialization.
//
xml_schema::element_type& r = ...

string name (r._name ());
string ns (r._namespace ());

DOMDocument& doc = ... // Create a new DOMDocument with name and ns.
DOMElement& e (*doc->getDocumentElement ());

xml_schema::element_map::serialize (e, r);

// Serialize DOMDocument to XML.

2.10 Mapping for Global Attributes

An XML Schema attribute definition is called global if it appears directly under the schema
element. A global attribute does not have any mapping. 
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2.11 Mapping for xsi:type and Substitution Groups

The mapping provides optional support for the XML Schema polymorphism features 
(xsi:type  and substitution groups) which can be requested with the --generate-poly-
morphic  option. When used, the dynamic type of a member may be different from its static
type. Consider the following schema definition and instance document: 

<!-- test.xsd -->
<schema>
  <complexType name="base">
    <attribute name="text" type="string"/>
  </complexType>

  <complexType name="derived">
    <complexContent>
      <extension base="base">
        <attribute name="extra-text" type="string"/>
      </extension>
    </complexContent>
  </complexType>

  <complexType name="root_type">
    <sequence>
      <element name="item" type="base" maxOccurs="unbounded"/>
    </sequence>
  </complexType>

  <element name="root" type="root_type"/>
</schema>

<!-- test.xml -->
<root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <item text="hello"/>
  <item text="hello" extra-text="world" xsi:type="derived"/>
</root>

In the resulting object model, the container for the root::item  member will have two
elements: the first element’s type will be base  while the second element’s (dynamic) type will
be derived . This can be discovered using the dynamic_cast  operator as shown in the 
following example: 

void
f (root& r)
{
  for (root::item_const_iterator i (r.item ().begin ());
       i != r.item ().end ()
       ++i)
  {
    if (derived* d = dynamic_cast<derived*> (&(*i)))

July 201460 C++/Tree Mapping User Manual, v4.0.0

2.11 Mapping for xsi:type and Substitution Groups



    {
      // derived
    }
    else
    {
      // base
    }
  }
}

The _clone  virtual function should be used instead of copy constructors to make copies of
members that might use polymorphism: 

void
f (root& r)
{
  for (root::item_const_iterator i (r.item ().begin ());
       i != r.item ().end ()
       ++i)
  {
    std::auto_ptr<base> c (i->_clone ());
  }
}

The mapping can often automatically determine which types are polymorphic based on the substi-
tution group declarations. However, if your XML vocabulary is not using substitution groups or if 
substitution groups are defined in a separate schema, then you will need to use the --polymor-
phic-type  option to specify which types are polymorphic. When using this option you only
need to specify the root of a polymorphic type hierarchy and the mapping will assume that all the
derived types are also polymorphic. Also note that you need to specify this option when compil-
ing every schema file that references the polymorphic type. Consider the following two schemas
as an example:

<!-- base.xsd -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

  <xs:complexType name="base">
    <xs:sequence>
      <xs:element name="b" type="xs:int"/>
    </xs:sequence>
  </xs:complexType>

  <!-- substitution group root -->
  <xs:element name="base" type="base"/>

</xs:schema>
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<!-- derived.xsd -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

  <include schemaLocation="base.xsd"/>

  <xs:complexType name="derived">
    <xs:complexContent>
      <xs:extension base="base">
        <xs:sequence>
          <xs:element name="d" type="xs:string"/>
        </xs:sequence>
      </xs:extension>
    </xs:complexContent>
  </xs:complexType>

  <xs:element name="derived" type="derived" substitutionGroup="base"/>

</xs:schema>

In this example we need to specify "--polymorphic-type base " when compiling both
schemas because the substitution group is declared in a schema other than the one defining type 
base .

You can also indicate that all types should be treated as polymorphic with the --polymor-
phic-type-all . However, this may result in slower generated code with a greater footprint.

2.12 Mapping for any and anyAttribute

For the XML Schema any  and anyAttribute  wildcards an optional mapping can be
requested with the --generate-wildcard  option. The mapping represents the content
matched by wildcards as DOM fragments. Because the DOM API is used to access such content,
the Xerces-C++ runtime should be initialized by the application prior to parsing and should
remain initialized for the lifetime of objects with the wildcard content. For more information on
the Xerces-C++ runtime initialization see Section 3.1, "Initializing the Xerces-C++ Runtime". 

The mapping for any  is similar to the mapping for local elements (see Section 2.8, "Mapping for
Local Elements and Attributes") except that the type used in the wildcard mapping is 
xercesc::DOMElement . As with local elements, the mapping divides all possible cardinality 
combinations into three cardinality classes: one, optional, and sequence. 

The mapping for anyAttribute  represents the attributes matched by this wildcard as a set of 
xercesc::DOMAttr  objects with a key being the attribute’s name and namespace.

Similar to local elements and attributes, the any  and anyAttribute  wildcards are mapped to
a set of public type definitions (typedefs) and a set of public accessor and modifier functions.
Type definitions have names derived from "any"  for the any  wildcard and 
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"any_attribute"  for the anyAttribute  wildcard. The accessor and modifier functions
are named "any"  for the any  wildcard and "any_attribute"  for the anyAttribute  
wildcard. Subsequent wildcards in the same type have escaped names such as "any1"  or 
"any_attribute1" . 

Because Xerces-C++ DOM nodes always belong to a DOMDocument, each type with a wildcard
has an associated DOMDocument object. The reference to this object can be obtained using the 
accessor function called dom_document . The access to the document object from the applica-
tion code may be necessary to create or modify the wildcard content. For example: 

<complexType name="object">
  <sequence>
    <any namespace="##other"/>
  </sequence>
  <anyAttribute namespace="##other"/>
</complexType>

is mapped to:

class object: public xml_schema::type
{
public:
  // any
  //
  const xercesc::DOMElement&
  any () const;

  void
  any (const xercesc::DOMElement&);

  ...

  // any_attribute
  //
  typedef attribute_set any_attribute_set;
  typedef any_attribute_set::iterator any_attribute_iterator;
  typedef any_attribute_set::const_iterator any_attribute_const_iterator;

  const any_attribute_set&
  any_attribute () const;

  any_attribute_set&
  any_attribute ();

  ...

  // DOMDocument object for wildcard content.
  //
  const xercesc::DOMDocument&
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  dom_document () const;

  xercesc::DOMDocument&
  dom_document ();

  ...
};

Names and semantics of type definitions for the wildcards as well as signatures of the accessor
and modifier functions depend on the wildcard type as well as the cardinality class for the any  
wildcard. They are described in the following sub-sections. 

2.12.1 Mapping for any with the One Cardinality Class

For any  with the One cardinality class, there are no type definitions. The accessor functions
come in constant and non-constant versions. The constant accessor function returns a constant 
reference to xercesc::DOMElement  and can be used for read-only access. The non-constant
version returns an unrestricted reference to xercesc::DOMElement  and can be used for
read-write access. 

The first modifier function expects an argument of type reference to constant 
xercesc::DOMElement  and makes a deep copy of its argument. The second modifier func-
tion expects an argument of type pointer to xercesc::DOMElement . This modifier function
assumes ownership of its argument and expects the element object to be created using the DOM 
document associated with this instance. For example: 

<complexType name="object">
  <sequence>
    <any namespace="##other"/>
  </sequence>
</complexType>

is mapped to:

class object: public xml_schema::type
{
public:
  // Accessors.
  //
  const xercesc::DOMElement&
  any () const;

  xercesc::DOMElement&
  any ();

  // Modifiers.
  //
  void
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  any (const xercesc::DOMElement&);

  void
  any (xercesc::DOMElement*);

  ...

};

The following code shows how one could use this mapping:

void
f (object& o, const xercesc::DOMElement& e)
{
  using namespace xercesc;

  DOMElement& e1 (o.any ());             // get
  o.any (e)                              // set, deep copy
  DOMDocument& doc (o.dom_document ());
  o.any (doc.createElement (...));       // set, assumes ownership
}

2.12.2 Mapping for any with the Optional Cardinality Class

For any  with the Optional cardinality class, the type definitions consist of an alias for the
container type with name any_optional  (or any1_optional , etc., for subsequent wild-
cards in the type definition). 

Unlike accessor functions for the One cardinality class, accessor functions for the Optional cardi-
nality class return references to corresponding containers rather than directly to DOMElement.
The accessor functions come in constant and non-constant versions. The constant accessor func-
tion returns a constant reference to the container and can be used for read-only access. The
non-constant version returns an unrestricted reference to the container and can be used for
read-write access. 

The modifier functions are overloaded for xercesc::DOMElement  and the container type.
The first modifier function expects an argument of type reference to constant 
xercesc::DOMElement  and makes a deep copy of its argument. The second modifier func-
tion expects an argument of type pointer to xercesc::DOMElement . This modifier function
assumes ownership of its argument and expects the element object to be created using the DOM 
document associated with this instance. The third modifier function expects an argument of type 
reference to constant of the container type and makes a deep copy of its argument. For instance: 
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<complexType name="object">
  <sequence>
    <any namespace="##other" minOccurs="0"/>
  </sequence>
</complexType>

is mapped to:

class object: public xml_schema::type
{
public:
  // Type definitions.
  //
  typedef element_optional any_optional;

  // Accessors.
  //
  const any_optional&
  any () const;

  any_optional&
  any ();

  // Modifiers.
  //
  void
  any (const xercesc::DOMElement&);

  void
  any (xercesc::DOMElement*);

  void
  any (const any_optional&);

  ...

};

The element_optional  container is a specialization of the optional  class template
described in Section 2.8.2, "Mapping for Members with the Optional Cardinality Class". Its inter-
face is presented below: 

class element_optional
{
public:
  explicit
  element_optional (xercesc::DOMDocument&);

  // Makes a deep copy.
  //
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  element_optional (const xercesc::DOMElement&, xercesc::DOMDocument&);

  // Assumes ownership.
  //
  element_optional (xercesc::DOMElement*, xercesc::DOMDocument&);

  element_optional (const element_optional&, xercesc::DOMDocument&);

public:
  element_optional&
  operator= (const xercesc::DOMElement&);

  element_optional&
  operator= (const element_optional&);

  // Pointer-like interface.
  //
public:
  const xercesc::DOMElement*
  operator-> () const;

  xercesc::DOMElement*
  operator-> ();

  const xercesc::DOMElement&
  operator* () const;

  xercesc::DOMElement&
  operator* ();

  typedef void (element_optional::*bool_convertible) ();
  operator bool_convertible () const;

  // Get/set interface.
  //
public:
  bool
  present () const;

  const xercesc::DOMElement&
  get () const;

  xercesc::DOMElement&
  get ();

  // Makes a deep copy.
  //
  void
  set (const xercesc::DOMElement&);

  // Assumes ownership.
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  //
  void
  set (xercesc::DOMElement*);

  void
  reset ();
};

bool
operator== (const element_optional&, const element_optional&);

bool
operator!= (const element_optional&, const element_optional&);

The following code shows how one could use this mapping:

void
f (object& o, const xercesc::DOMElement& e)
{
  using namespace xercesc;

  DOMDocument& doc (o.dom_document ());

  if (o.any ().present ())                  // test
  {
    DOMElement& e1 (o.any ().get ());       // get
    o.any ().set (e);                       // set, deep copy
    o.any ().set (doc.createElement (...)); // set, assumes ownership
    o.any ().reset ();                      // reset
  }

  // Same as above but using pointer notation:
  //
  if (o.member ())                          // test
  {
    DOMElement& e1 (*o.any ());             // get
    o.any (e);                              // set, deep copy
    o.any (doc.createElement (...));        // set, assumes ownership
    o.any ().reset ();                      // reset
  }
}

2.12.3 Mapping for any with the Sequence Cardinality Class

For any  with the Sequence cardinality class, the type definitions consist of an alias of the
container type with name any_sequence  (or any1_sequence , etc., for subsequent wild-
cards in the type definition), an alias of the iterator type with name any_iterator  (or 
any1_iterator , etc., for subsequent wildcards in the type definition), and an alias of the
constant iterator type with name any_const_iterator  (or any1_const_iterator , etc.,
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for subsequent wildcards in the type definition). 

The accessor functions come in constant and non-constant versions. The constant accessor func-
tion returns a constant reference to the container and can be used for read-only access. The
non-constant version returns an unrestricted reference to the container and can be used for
read-write access. 

The modifier function expects an argument of type reference to constant of the container type.
The modifier function makes a deep copy of its argument. For instance: 

<complexType name="object">
  <sequence>
    <any namespace="##other" minOccurs="unbounded"/>
  </sequence>
</complexType>

is mapped to:

class object: public xml_schema::type
{
public:
  // Type definitions.
  //
  typedef element_sequence any_sequence;
  typedef any_sequence::iterator any_iterator;
  typedef any_sequence::const_iterator any_const_iterator;

  // Accessors.
  //
  const any_sequence&
  any () const;

  any_sequence&
  any ();

  // Modifier.
  //
  void
  any (const any_sequence&);

  ...

};

The element_sequence  container is a specialization of the sequence  class template
described in Section 2.8.3, "Mapping for Members with the Sequence Cardinality Class". Its 
interface is similar to the sequence interface as defined by the ISO/ANSI Standard for C++
(ISO/IEC 14882:1998, Section 23.1.1, "Sequences") and is presented below: 
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class element_sequence
{
public:
  typedef xercesc::DOMElement        value_type;
  typedef xercesc::DOMElement*       pointer;
  typedef const xercesc::DOMElement* const_pointer;
  typedef xercesc::DOMElement&       reference;
  typedef const xercesc::DOMElement& const_reference;

  typedef <implementation-defined>   iterator;
  typedef <implementation-defined>   const_iterator;
  typedef <implementation-defined>   reverse_iterator;
  typedef <implementation-defined>   const_reverse_iterator;

  typedef <implementation-defined>   size_type;
  typedef <implementation-defined>   difference_type;
  typedef <implementation-defined>   allocator_type;

public:
  explicit
  element_sequence (xercesc::DOMDocument&);

  // DOMElement cannot be default-constructed.
  //
  // explicit
  // element_sequence (size_type n);

  element_sequence (size_type n,
                    const xercesc::DOMElement&,
                    xercesc::DOMDocument&);

  template <typename I>
  element_sequence (const I& begin,
                    const I& end,
                    xercesc::DOMDocument&);

  element_sequence (const element_sequence&, xercesc::DOMDocument&);

  element_sequence&
  operator= (const element_sequence&);

public:
  void
  assign (size_type n, const xercesc::DOMElement&);

  template <typename I>
  void
  assign (const I& begin, const I& end);

public:
  // This version of resize can only be used to shrink the
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  // sequence because DOMElement cannot be default-constructed.
  //
  void
  resize (size_type);

  void
  resize (size_type, const xercesc::DOMElement&);

public:
  size_type
  size () const;

  size_type
  max_size () const;

  size_type
  capacity () const;

  bool
  empty () const;

  void
  reserve (size_type);

  void
  clear ();

public:
  const_iterator
  begin () const;

  const_iterator
  end () const;

  iterator
  begin ();

  iterator
  end ();

  const_reverse_iterator
  rbegin () const;

  const_reverse_iterator
  rend () const

    reverse_iterator
  rbegin ();

  reverse_iterator
  rend ();

71July 2014 C++/Tree Mapping User Manual, v4.0.0

2.12.3 Mapping for any with the Sequence Cardinality Class



public:
  xercesc::DOMElement&
  operator[] (size_type);

  const xercesc::DOMElement&
  operator[] (size_type) const;

  xercesc::DOMElement&
  at (size_type);

  const xercesc::DOMElement&
  at (size_type) const;

  xercesc::DOMElement&
  front ();

  const xercesc::DOMElement&
  front () const;

  xercesc::DOMElement&
  back ();

  const xercesc::DOMElement&
  back () const;

public:
  // Makes a deep copy.
  //
  void
  push_back (const xercesc::DOMElement&);

  // Assumes ownership.
  //
  void
  push_back (xercesc::DOMElement*);

  void
  pop_back ();

  // Makes a deep copy.
  //
  iterator
  insert (iterator position, const xercesc::DOMElement&);

  // Assumes ownership.
  //
  iterator
  insert (iterator position, xercesc::DOMElement*);

  void
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  insert (iterator position, size_type n, const xercesc::DOMElement&);

  template <typename I>
  void
  insert (iterator position, const I& begin, const I& end);

  iterator
  erase (iterator position);

  iterator
  erase (iterator begin, iterator end);

public:
  // Note that the DOMDocument object of the two sequences being
  // swapped should be the same.
  //
  void
  swap (sequence& x);
};

inline bool
operator== (const element_sequence&, const element_sequence&);

inline bool
operator!= (const element_sequence&, const element_sequence&);

The following code shows how one could use this mapping:

void
f (object& o, const xercesc::DOMElement& e)
{
  using namespace xercesc;

  object::any_sequence& s (o.any ());

  // Iteration.
  //
  for (object::any_iterator i (s.begin ()); i != s.end (); ++i)
  {
    DOMElement& e (*i);
  }

  // Modification.
  //
  s.push_back (e);                       // deep copy
  DOMDocument& doc (o.dom_document ());
  s.push_back (doc.createElement (...)); // assumes ownership
}
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2.12.4 Element Wildcard Order

Similar to elements, element wildcards in ordered types (Section 2.8.4, "Element Order") are
assigned content ids and are included in the content order sequence. Continuing with the bank 
transactions example started in Section 2.8.4, we can extend the batch by allowing custom trans-
actions:

<complexType name="batch">
  <choice minOccurs="0" maxOccurs="unbounded">
    <element name="withdraw" type="withdraw"/>
    <element name="deposit" type="deposit"/>
    <any namespace="##other" processContents="lax"/>
  </choice>
</complexType>

This will lead to the following changes in the generated batch  C++ class:

class batch: public xml_schema::type
{
public:
  ...

  // any
  //
  typedef element_sequence any_sequence;
  typedef any_sequence::iterator any_iterator;
  typedef any_sequence::const_iterator any_const_iterator;

  static const std::size_t any_id = 3UL;

  const any_sequence&
  any () const;

  any_sequence&
  any ();

  void
  any (const any_sequence&);

  ...
};

With this change we also need to update the iteration code to handle the new content id:

for (batch::content_order_const_iterator i (b.content_order ().begin ());
     i != b.content_order ().end ();
     ++i)
{
  switch (i->id)
  {
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    ...

  case batch::any_id:
    {
      const DOMElement& e (b.any ()[i->index]);
      ...
      break;
    }

    ...
  }
}

For the complete working code that shows the use of wildcards in ordered types refer to the 
order/element  example in the examples/cxx/tree/  directory in the XSD distribution.

2.12.5 Mapping for anyAttribute

For anyAttribute  the type definitions consist of an alias of the container type with name 
any_attribute_set  (or any1_attribute_set , etc., for subsequent wildcards in the
type definition), an alias of the iterator type with name any_attribute_iterator  (or 
any1_attribute_iterator , etc., for subsequent wildcards in the type definition), and an
alias of the constant iterator type with name any_attribute_const_iterator  (or 
any1_attribute_const_iterator , etc., for subsequent wildcards in the type definition). 

The accessor functions come in constant and non-constant versions. The constant accessor func-
tion returns a constant reference to the container and can be used for read-only access. The
non-constant version returns an unrestricted reference to the container and can be used for
read-write access. 

The modifier function expects an argument of type reference to constant of the container type.
The modifier function makes a deep copy of its argument. For instance: 

<complexType name="object">
  <sequence>
    ...
  </sequence>
  <anyAttribute namespace="##other"/>
</complexType>

is mapped to:

class object: public xml_schema::type
{
public:
  // Type definitions.
  //
  typedef attribute_set any_attribute_set;
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  typedef any_attribute_set::iterator any_attribute_iterator;
  typedef any_attribute_set::const_iterator any_attribute_const_iterator;

  // Accessors.
  //
  const any_attribute_set&
  any_attribute () const;

  any_attribute_set&
  any_attribute ();

  // Modifier.
  //
  void
  any_attribute (const any_attribute_set&);

  ...

};

The attribute_set  class is an associative container similar to the std::set  class template
as defined by the ISO/ANSI Standard for C++ (ISO/IEC 14882:1998, Section 23.3.3, "Class
template set") with the key being the attribute’s name and namespace. Unlike std::set , 
attribute_set  allows searching using names and namespaces instead of 
xercesc::DOMAttr  objects. It is defined in an implementation-specific namespace and its 
interface is presented below: 

class attribute_set
{
public:
  typedef xercesc::DOMAttr         key_type;
  typedef xercesc::DOMAttr         value_type;
  typedef xercesc::DOMAttr*        pointer;
  typedef const xercesc::DOMAttr*  const_pointer;
  typedef xercesc::DOMAttr&        reference;
  typedef const xercesc::DOMAttr&  const_reference;

  typedef <implementation-defined> iterator;
  typedef <implementation-defined> const_iterator;
  typedef <implementation-defined> reverse_iterator;
  typedef <implementation-defined> const_reverse_iterator;

  typedef <implementation-defined> size_type;
  typedef <implementation-defined> difference_type;
  typedef <implementation-defined> allocator_type;

public:
  attribute_set (xercesc::DOMDocument&);

  template <typename I>
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  attribute_set (const I& begin, const I& end, xercesc::DOMDocument&);

  attribute_set (const attribute_set&, xercesc::DOMDocument&);

  attribute_set&
  operator= (const attribute_set&);

public:
  const_iterator
  begin () const;

  const_iterator
  end () const;

  iterator
  begin ();

  iterator
  end ();

  const_reverse_iterator
  rbegin () const;

  const_reverse_iterator
  rend () const;

  reverse_iterator
  rbegin ();

  reverse_iterator
  rend ();

public:
  size_type
  size () const;

  size_type
  max_size () const;

  bool
  empty () const;

  void
  clear ();

public:
  // Makes a deep copy.
  //
  std::pair<iterator, bool>
  insert (const xercesc::DOMAttr&);
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  // Assumes ownership.
  //
  std::pair<iterator, bool>
  insert (xercesc::DOMAttr*);

  // Makes a deep copy.
  //
  iterator
  insert (iterator position, const xercesc::DOMAttr&);

  // Assumes ownership.
  //
  iterator
  insert (iterator position, xercesc::DOMAttr*);

  template <typename I>
  void
  insert (const I& begin, const I& end);

public:
  void
  erase (iterator position);

  size_type
  erase (const std::basic_string<C>& name);

  size_type
  erase (const std::basic_string<C>& namespace_,
         const std::basic_string<C>& name);

  size_type
  erase (const XMLCh* name);

  size_type
  erase (const XMLCh* namespace_, const XMLCh* name);

  void
  erase (iterator begin, iterator end);

public:
  size_type
  count (const std::basic_string<C>& name) const;

  size_type
  count (const std::basic_string<C>& namespace_,
         const std::basic_string<C>& name) const;

  size_type
  count (const XMLCh* name) const;

  size_type
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  count (const XMLCh* namespace_, const XMLCh* name) const;

  iterator
  find (const std::basic_string<C>& name);

  iterator
  find (const std::basic_string<C>& namespace_,
        const std::basic_string<C>& name);

  iterator
  find (const XMLCh* name);

  iterator
  find (const XMLCh* namespace_, const XMLCh* name);

  const_iterator
  find (const std::basic_string<C>& name) const;

  const_iterator
  find (const std::basic_string<C>& namespace_,
        const std::basic_string<C>& name) const;

  const_iterator
  find (const XMLCh* name) const;

  const_iterator
  find (const XMLCh* namespace_, const XMLCh* name) const;

public:
  // Note that the DOMDocument object of the two sets being
  // swapped should be the same.
  //
  void
  swap (attribute_set&);
};

bool
operator== (const attribute_set&, const attribute_set&);

bool
operator!= (const attribute_set&, const attribute_set&);

The following code shows how one could use this mapping:

void
f (object& o, const xercesc::DOMAttr& a)
{
  using namespace xercesc;

  object::any_attribute_set& s (o.any_attribute ());
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  // Iteration.
  //
  for (object::any_attribute_iterator i (s.begin ()); i != s.end (); ++i)
  {
    DOMAttr& a (*i);
  }

  // Modification.
  //
  s.insert (a);                         // deep copy
  DOMDocument& doc (o.dom_document ());
  s.insert (doc.createAttribute (...)); // assumes ownership

  // Searching.
  //
  object::any_attribute_iterator i (s.find ("name"));
  i = s.find ("http://www.w3.org/XML/1998/namespace", "lang");
}

2.13 Mapping for Mixed Content Models

For XML Schema types with mixed content models C++/Tree provides mapping support only if
the type is marked as ordered (Section 2.8.4, "Element Order"). Use the 
--ordered-type-mixed  XSD compiler option to automatically mark all types with mixed
content as ordered.

For an ordered type with mixed content, C++/Tree adds an extra text content sequence that is
used to store the text fragments. This text content sequence is also assigned the content id and its
entries are included in the content order sequence, just like elements. As a result, it is possible to
capture the order between elements and text fragments.

As an example, consider the following schema that describes text with embedded links:

<complexType name="anchor">
  <simpleContent>
    <extension base="string">
      <attribute name="href" type="anyURI" use="required"/>
    </extension>
  </simpleContent>
</complexType>

<complexType name="text" mixed="true">
  <sequence>
    <element name="a" type="anchor" minOccurs="0" maxOccurs="unbounded"/>
  </sequence>
</complexType>
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The generated text  C++ class will provide the following API (assuming it is marked as 
ordered):

class text: public xml_schema::type
{
public:
  // a
  //
  typedef anchor a_type;
  typedef sequence<a_type> a_sequence;
  typedef a_sequence::iterator a_iterator;
  typedef a_sequence::const_iterator a_const_iterator;

  static const std::size_t a_id = 1UL;

  const a_sequence&
  a () const;

  a_sequence&
  a ();

  void
  a (const a_sequence&);

  // text_content
  //
  typedef xml_schema::string text_content_type;
  typedef sequence<text_content_type> text_content_sequence;
  typedef text_content_sequence::iterator text_content_iterator;
  typedef text_content_sequence::const_iterator text_content_const_iterator;

  static const std::size_t text_content_id = 2UL;

  const text_content_sequence&
  text_content () const;

  text_content_sequence&
  text_content ();

  void
  text_content (const text_content_sequence&);

  // content_order
  //
  typedef xml_schema::content_order content_order_type;
  typedef std::vector<content_order_type> content_order_sequence;
  typedef content_order_sequence::iterator content_order_iterator;
  typedef content_order_sequence::const_iterator content_order_const_iterator;

  const content_order_sequence&
  content_order () const;

81July 2014 C++/Tree Mapping User Manual, v4.0.0

2.13 Mapping for Mixed Content Models



  content_order_sequence&
  content_order ();

  void
  content_order (const content_order_sequence&);

  ...
};

Given this interface we can iterate over both link elements and text in content order. The follow-
ing code fragment converts our format to plain text with references.

const text& t = ...

for (text::content_order_const_iterator i (t.content_order ().begin ());
     i != t.content_order ().end ();
     ++i)
{
  switch (i->id)
  {
  case text::a_id:
    {
      const anchor& a (t.a ()[i->index]);
      cerr << a << "[" << a.href () << "]";
      break;
    }
  case text::text_content_id:
    {
      const xml_schema::string& s (t.text_content ()[i->index]);
      cerr << s;
      break;
    }
  default:
    {
      assert (false); // Unknown content id.
    }
  }
}

For the complete working code that shows the use of mixed content in ordered types refer to the 
order/mixed  example in the examples/cxx/tree/  directory in the XSD distribution.

3 Parsing
This chapter covers various aspects of parsing XML instance documents in order to obtain corre-
sponding tree-like object model. 

July 201482 C++/Tree Mapping User Manual, v4.0.0

3 Parsing



Each global XML Schema element in the form:

<element name="name" type="type"/>

is mapped to 14 overloaded C++ functions in the form:

// Read from a URI or a local file.
//

std::[auto|unique]_ptr<type>
name (const std::basic_string<C>& uri,
      xml_schema::flags = 0,
      const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>
name (const std::basic_string<C>& uri,
      xml_schema::error_handler&,
      xml_schema::flags = 0,
      const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>
name (const std::basic_string<C>& uri,
      xercesc::DOMErrorHandler&,
      xml_schema::flags = 0,
      const xml_schema::properties& = xml_schema::properties ());

// Read from std::istream.
//

std::[auto|unique]_ptr<type>
name (std::istream&,
      xml_schema::flags = 0,
      const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>
name (std::istream&,
      xml_schema::error_handler&,
      xml_schema::flags = 0,
      const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>
name (std::istream&,
      xercesc::DOMErrorHandler&,
      xml_schema::flags = 0,
      const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>
name (std::istream&,
      const std::basic_string<C>& id,
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      xml_schema::flags = 0,
      const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>
name (std::istream&,
      const std::basic_string<C>& id,
      xml_schema::error_handler&,
      xml_schema::flags = 0,
      const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>
name (std::istream&,
      const std::basic_string<C>& id,
      xercesc::DOMErrorHandler&,
      xml_schema::flags = 0,
      const xml_schema::properties& = xml_schema::properties ());

// Read from InputSource.
//

std::[auto|unique]_ptr<type>
name (xercesc::InputSource&,
      xml_schema::flags = 0,
      const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>
name (xercesc::InputSource&,
      xml_schema::error_handler&,
      xml_schema::flags = 0,
      const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>
name (xercesc::InputSource&,
      xercesc::DOMErrorHandler&,
      xml_schema::flags = 0,
      const xml_schema::properties& = xml_schema::properties ());

// Read from DOM.
//

std::[auto|unique]_ptr<type>
name (const xercesc::DOMDocument&,
      xml_schema::flags = 0,
      const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>
name (xml_schema::dom::[auto|unique]_ptr<xercesc::DOMDocument>,
      xml_schema::flags = 0,
      const xml_schema::properties& = xml_schema::properties ());
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You can choose between reading an XML instance from a local file, URI, std::istream , 
xercesc::InputSource , or a pre-parsed DOM instance in the form of 
xercesc::DOMDocument . All the parsing functions return a dynamically allocated object
model as either std::auto_ptr  or std::unique_ptr , depending on the C++ standard
selected. Each of these parsing functions is discussed in more detail in the following sections. 

3.1 Initializing the Xerces-C++ Runtime

Some parsing functions expect you to initialize the Xerces-C++ runtime while others initialize
and terminate it as part of their work. The general rule is as follows: if a function has any argu-
ments or return a value that is an instance of a Xerces-C++ type, then this function expects you to 
initialize the Xerces-C++ runtime. Otherwise, the function initializes and terminates the runtime
for you. Note that it is legal to have nested calls to the Xerces-C++ initialize and terminate func-
tions as long as the calls are balanced. 

You can instruct parsing functions that initialize and terminate the runtime not to do so by
passing the xml_schema::flags::dont_initialize  flag (see Section 3.2, "Flags and 
Properties"). 

3.2 Flags and Properties

Parsing flags and properties are the last two arguments of every parsing function. They allow you
to fine-tune the process of instance validation and parsing. Both arguments are optional. 

The following flags are recognized by the parsing functions:

xml_schema::flags::keep_dom  
Keep association between DOM nodes and the resulting object model nodes. For more infor-
mation about DOM association refer to Section 5.1, "DOM Association". 

xml_schema::flags::own_dom  
Assume ownership of the DOM document passed. This flag only makes sense together with
the keep_dom  flag in the call to the parsing function with the 
xml_schema::dom::[auto|unique]_ptr<DOMDocument>  argument. 

xml_schema::flags::dont_validate  
Do not validate instance documents against schemas. 

xml_schema::flags::dont_initialize  
Do not initialize the Xerces-C++ runtime. 

You can pass several flags by combining them using the bit-wise OR operator. For example:

using xml_schema::flags;

std::auto_ptr<type> r (
  name ("test.xml", flags::keep_dom | flags::dont_validate));
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By default, validation of instance documents is turned on even though parsers generated by XSD
do not assume instance documents are valid. They include a number of checks that prevent 
construction of inconsistent object models. This, however, does not mean that an instance docu-
ment that was successfully parsed by the XSD-generated parsers is valid per the corresponding
schema. If an instance document is not "valid enough" for the generated parsers to construct 
consistent object model, one of the exceptions defined in xml_schema  namespace is thrown
(see Section 3.3, "Error Handling"). 

For more information on the Xerces-C++ runtime initialization refer to Section 3.1, "Initializing
the Xerces-C++ Runtime". 

The xml_schema::properties  class allows you to programmatically specify schema loca-
tions to be used instead of those specified with the xsi::schemaLocation  and 
xsi::noNamespaceSchemaLocation  attributes in instance documents. The interface of
the properties  class is presented below: 

class properties
{
public:
  void
  schema_location (const std::basic_string<C>& namespace_,
                   const std::basic_string<C>& location);
  void
  no_namespace_schema_location (const std::basic_string<C>& location);
};

Note that all locations are relative to an instance document unless they are URIs. For example, if
you want to use a local file as your schema, then you will need to pass file:///abso-
lute/path/to/your/schema  as the location argument. 

3.3 Error Handling

As discussed in Section 2.2, "Error Handling", the mapping uses the C++ exception handling 
mechanism as its primary way of reporting error conditions. However, to handle recoverable
parsing and validation errors and warnings, a callback interface maybe preferred by the applica-
tion.

To better understand error handling and reporting strategies employed by the parsing functions, it
is useful to know that the transformation of an XML instance document to a statically-typed tree
happens in two stages. The first stage, performed by Xerces-C++, consists of parsing an XML 
document into a DOM instance. For short, we will call this stage the XML-DOM stage. Valida-
tion, if not disabled, happens during this stage. The second stage, performed by the generated
parsers, consist of parsing the DOM instance into the statically-typed tree. We will call this stage
the DOM-Tree stage. Additional checks are performed during this stage in order to prevent 
construction of inconsistent tree which could otherwise happen when validation is disabled, for 
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example.

All parsing functions except the one that operates on a DOM instance come in overloaded triples.
The first function in such a triple reports error conditions exclusively by throwing exceptions. It 
accumulates all the parsing and validation errors of the XML-DOM stage and throws them in a
single instance of the xml_schema::parsing  exception (described below). The second and
the third functions in the triple use callback interfaces to report parsing and validation errors and 
warnings. The two callback interfaces are xml_schema::error_handler  and 
xercesc::DOMErrorHandler . For more information on the xercesc::DOMErrorHan-
dler  interface refer to the Xerces-C++ documentation. The 
xml_schema::error_handler  interface is presented below: 

class error_handler
{
public:
  struct severity
  {
    enum value
    {
      warning,
      error,
      fatal
    };
  };

  virtual bool
  handle (const std::basic_string<C>& id,
          unsigned long line,
          unsigned long column,
          severity,
          const std::basic_string<C>& message) = 0;

  virtual
  ~error_handler ();
};

The id  argument of the error_handler::handle  function identifies the resource being
parsed (e.g., a file name or URI). 

By returning true  from the handle  function you instruct the parser to recover and continue
parsing. Returning false  results in termination of the parsing process. An error with the fatal  
severity level results in termination of the parsing process no matter what is returned from the 
handle  function. It is safe to throw an exception from the handle  function. 

The DOM-Tree stage reports error conditions exclusively by throwing exceptions. Individual 
exceptions thrown by the parsing functions are described in the following sub-sections. 
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3.3.1 xml_schema::parsing

struct severity
{
  enum value
  {
    warning,
    error
  };

  severity (value);
  operator value () const;
};

struct error
{
  error (severity,
         const std::basic_string<C>& id,
         unsigned long line,
         unsigned long column,
         const std::basic_string<C>& message);

  severity
  severity () const;

  const std::basic_string<C>&
  id () const;

  unsigned long
  line () const;

  unsigned long
  column () const;

  const std::basic_string<C>&
  message () const;
};

std::basic_ostream<C>&
operator<< (std::basic_ostream<C>&, const error&);

struct diagnostics: std::vector<error>
{
};

std::basic_ostream<C>&
operator<< (std::basic_ostream<C>&, const diagnostics&);

struct parsing: virtual exception
{
  parsing ();
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  parsing (const diagnostics&);

  const diagnostics&
  diagnostics () const;

  virtual const char*
  what () const throw ();
};

The xml_schema::parsing  exception is thrown if there were parsing or validation errors
reported during the XML-DOM stage. If no callback interface was provided to the parsing func-
tion, the exception contains a list of errors and warnings accessible using the diagnostics  
function. The usual conditions when this exception is thrown include malformed XML instances
and, if validation is turned on, invalid instance documents. 

3.3.2 xml_schema::expected_element

struct expected_element: virtual exception
{
  expected_element (const std::basic_string<C>& name,
                    const std::basic_string<C>& namespace_);

  const std::basic_string<C>&
  name () const;

  const std::basic_string<C>&
  namespace_ () const;

  virtual const char*
  what () const throw ();
};

The xml_schema::expected_element  exception is thrown when an expected element is
not encountered by the DOM-Tree stage. The name and namespace of the expected element can
be obtained using the name and namespace_  functions respectively. 

3.3.3 xml_schema::unexpected_element

struct unexpected_element: virtual exception
{
  unexpected_element (const std::basic_string<C>& encountered_name,
                      const std::basic_string<C>& encountered_namespace,
                      const std::basic_string<C>& expected_name,
                      const std::basic_string<C>& expected_namespace)

  const std::basic_string<C>&
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  encountered_name () const;

  const std::basic_string<C>&
  encountered_namespace () const;

  const std::basic_string<C>&
  expected_name () const;

  const std::basic_string<C>&
  expected_namespace () const;

  virtual const char*
  what () const throw ();
};

The xml_schema::unexpected_element  exception is thrown when an unexpected
element is encountered by the DOM-Tree stage. The name and namespace of the encountered
element can be obtained using the encountered_name  and encountered_namespace  
functions respectively. If an element was expected instead of the encountered one, its name and 
namespace can be obtained using the expected_name  and expected_namespace  func-
tions respectively. Otherwise these functions return empty strings. 

3.3.4 xml_schema::expected_attribute

struct expected_attribute: virtual exception
{
  expected_attribute (const std::basic_string<C>& name,
                      const std::basic_string<C>& namespace_);

  const std::basic_string<C>&
  name () const;

  const std::basic_string<C>&
  namespace_ () const;

  virtual const char*
  what () const throw ();
};

The xml_schema::expected_attribute  exception is thrown when an expected attribute
is not encountered by the DOM-Tree stage. The name and namespace of the expected attribute
can be obtained using the name and namespace_  functions respectively. 
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3.3.5 xml_schema::unexpected_enumerator

struct unexpected_enumerator: virtual exception
{
  unexpected_enumerator (const std::basic_string<C>& enumerator);

  const std::basic_string<C>&
  enumerator () const;

  virtual const char*
  what () const throw ();
};

The xml_schema::unexpected_enumerator  exception is thrown when an unexpected 
enumerator is encountered by the DOM-Tree stage. The enumerator can be obtained using the 
enumerator  functions. 

3.3.6 xml_schema::expected_text_content

struct expected_text_content: virtual exception
{
  virtual const char*
  what () const throw ();
};

The xml_schema::expected_text_content  exception is thrown when a content other
than text is encountered and the text content was expected by the DOM-Tree stage. 

3.3.7 xml_schema::no_type_info

struct no_type_info: virtual exception
{
  no_type_info (const std::basic_string<C>& type_name,
                const std::basic_string<C>& type_namespace);

  const std::basic_string<C>&
  type_name () const;

  const std::basic_string<C>&
  type_namespace () const;

  virtual const char*
  what () const throw ();
};

The xml_schema::no_type_info  exception is thrown when there is no type information 
associated with a type specified by the xsi:type  attribute. This exception is thrown by the
DOM-Tree stage. The name and namespace of the type in question can be obtained using the 
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type_name  and type_namespace  functions respectively. Usually, catching this exception
means that you haven’t linked the code generated from the schema defining the type in question
with your application or this schema has been compiled without the --generate-polymor-
phic  option. 

3.3.8 xml_schema::not_derived

struct not_derived: virtual exception
{
  not_derived (const std::basic_string<C>& base_type_name,
               const std::basic_string<C>& base_type_namespace,
               const std::basic_string<C>& derived_type_name,
               const std::basic_string<C>& derived_type_namespace);

  const std::basic_string<C>&
  base_type_name () const;

  const std::basic_string<C>&
  base_type_namespace () const;

  const std::basic_string<C>&
  derived_type_name () const;

  const std::basic_string<C>&
  derived_type_namespace () const;

  virtual const char*
  what () const throw ();
};

The xml_schema::not_derived  exception is thrown when a type specified by the 
xsi:type  attribute is not derived from the expected base type. This exception is thrown by the
DOM-Tree stage. The name and namespace of the expected base type can be obtained using the 
base_type_name  and base_type_namespace  functions respectively. The name and 
namespace of the offending type can be obtained using the derived_type_name  and 
derived_type_namespace  functions respectively. 

3.3.9 xml_schema::no_prefix_mapping

struct no_prefix_mapping: virtual exception
{
  no_prefix_mapping (const std::basic_string<C>& prefix);

  const std::basic_string<C>&
  prefix () const;
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  virtual const char*
  what () const throw ();
};

The xml_schema::no_prefix_mapping  exception is thrown during the DOM-Tree stage
if a namespace prefix is encountered for which a prefix-namespace mapping hasn’t been
provided. The namespace prefix in question can be obtained using the prefix  function. 

3.4 Reading from a Local File or URI

Using a local file or URI is the simplest way to parse an XML instance. For example:

using std::auto_ptr;

auto_ptr<type> r1 (name ("test.xml"));
auto_ptr<type> r2 (name ("http://www.codesynthesis.com/test.xml"));

Or, in the C++11 mode:

using std::unique_ptr;

unique_ptr<type> r1 (name ("test.xml"));
unique_ptr<type> r2 (name ("http://www.codesynthesis.com/test.xml"));

3.5 Reading from std::istream

When using an std::istream  instance, you may also pass an optional resource id. This id is
used to identify the resource (for example in error messages) as well as to resolve relative paths.
For instance:

using std::auto_ptr;

{
  std::ifstream ifs ("test.xml");
  auto_ptr<type> r (name (ifs, "test.xml"));
}

{
  std::string str ("..."); // Some XML fragment.
  std::istringstream iss (str);
  auto_ptr<type> r (name (iss));
}
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3.6 Reading from xercesc::InputSource

Reading from a xercesc::InputSource  instance is similar to the std::istream  case
except the resource id is maintained by the InputSource  object. For instance:

xercesc::StdInInputSource is;
std::auto_ptr<type> r (name (is));

3.7 Reading from DOM

Reading from a xercesc::DOMDocument  instance allows you to setup a custom XML-DOM
stage. Things like DOM parser reuse, schema pre-parsing, and schema caching can be achieved
with this approach. For more information on how to obtain DOM representation from an XML
instance refer to the Xerces-C++ documentation. In addition, the C++/Tree Mapping FAQ shows
how to parse an XML instance to a Xerces-C++ DOM document using the XSD runtime utilities. 

The last parsing function is useful when you would like to perform your own XML-to-DOM
parsing and associate the resulting DOM document with the object model nodes. The automatic 
DOMDocument pointer is reset and the resulting object model assumes ownership of the DOM 
document passed. For example:

// C++98 version.
//
xml_schema::dom::auto_ptr<xercesc::DOMDocument> doc = ...

std::auto_ptr<type> r (
  name (doc, xml_schema::flags::keep_dom | xml_schema::flags::own_dom));

// At this point doc is reset to 0.

// C++11 version.
//
xml_schema::dom::unique_ptr<xercesc::DOMDocument> doc = ...

std::unique_ptr<type> r (
  name (std::move (doc),
        xml_schema::flags::keep_dom | xml_schema::flags::own_dom));

// At this point doc is reset to 0.

4 Serialization
This chapter covers various aspects of serializing a tree-like object model to DOM or XML. In
this regard, serialization is complimentary to the reverse process of parsing a DOM or XML
instance into an object model which is discussed in Chapter 3, "Parsing". Note that the generation
of the serialization code is optional and should be explicitly requested with the --gener-
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ate-serialization  option. See the XSD Compiler Command Line Manual for more infor-
mation. 

Each global XML Schema element in the form: 

<xsd:element name="name" type="type"/>

is mapped to 8 overloaded C++ functions in the form:

// Serialize to std::ostream.
//
void
name (std::ostream&,
      const type&,
      const xml_schema::namespace_fomap& =
        xml_schema::namespace_infomap (),
      const std::basic_string<C>& encoding = "UTF-8",
      xml_schema::flags = 0);

void
name (std::ostream&,
      const type&,
      xml_schema::error_handler&,
      const xml_schema::namespace_infomap& =
        xml_schema::namespace_infomap (),
      const std::basic_string<C>& encoding = "UTF-8",
      xml_schema::flags = 0);

void
name (std::ostream&,
      const type&,
      xercesc::DOMErrorHandler&,
      const xml_schema::namespace_infomap& =
        xml_schema::namespace_infomap (),
      const std::basic_string<C>& encoding = "UTF-8",
      xml_schema::flags = 0);

// Serialize to XMLFormatTarget.
//
void
name (xercesc::XMLFormatTarget&,
      const type&,
      const xml_schema::namespace_infomap& =
        xml_schema::namespace_infomap (),
      const std::basic_string<C>& encoding = "UTF-8",
      xml_schema::flags = 0);

void
name (xercesc::XMLFormatTarget&,
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      const type&,
      xml_schema::error_handler&,
      const xml_schema::namespace_infomap& =
        xml_schema::namespace_infomap (),
      const std::basic_string<C>& encoding = "UTF-8",
      xml_schema::flags = 0);

void
name (xercesc::XMLFormatTarget&,
      const type&,
      xercesc::DOMErrorHandler&,
      const xml_schema::namespace_infomap& =
        xml_schema::namespace_infomap (),
      const std::basic_string<C>& encoding = "UTF-8",
      xml_schema::flags = 0);

// Serialize to DOM.
//
xml_schema::dom::[auto|unique]_ptr<xercesc::DOMDocument>
name (const type&,
      const xml_schema::namespace_infomap&
        xml_schema::namespace_infomap (),
      xml_schema::flags = 0);

void
name (xercesc::DOMDocument&,
      const type&,
      xml_schema::flags = 0);

You can choose between writing XML to std::ostream  or xercesc::XMLFormatTar-
get  and creating a DOM instance in the form of xercesc::DOMDocument . Serialization to 
ostream  or XMLFormatTarget  requires a considerably less work while serialization to
DOM provides for greater flexibility. Each of these serialization functions is discussed in more
detail in the following sections. 

4.1 Initializing the Xerces-C++ Runtime

Some serialization functions expect you to initialize the Xerces-C++ runtime while others initial-
ize and terminate it as part of their work. The general rule is as follows: if a function has any 
arguments or return a value that is an instance of a Xerces-C++ type, then this function expects
you to initialize the Xerces-C++ runtime. Otherwise, the function initializes and terminates the
runtime for you. Note that it is legal to have nested calls to the Xerces-C++ initialize and termi-
nate functions as long as the calls are balanced. 
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You can instruct serialization functions that initialize and terminate the runtime not to do so by
passing the xml_schema::flags::dont_initialize  flag (see Section 4.3, "Flags"). 

4.2 Namespace Infomap and Character Encoding

When a document being serialized uses XML namespaces, custom prefix-namespace associations
can to be established. If custom prefix-namespace mapping is not provided then generic prefixes 
(p1 , p2 , etc) are automatically assigned to namespaces as needed. Also, if you would like the 
resulting instance document to contain the schemaLocation  or noNamespaceSchemaLo-
cation  attributes, you will need to provide namespace-schema associations. The 
xml_schema::namespace_infomap  class is used to capture this information:

struct namespace_info
{
  namespace_info ();
  namespace_info (const std::basic_string<C>& name,
                  const std::basic_string<C>& schema);

  std::basic_string<C> name;
  std::basic_string<C> schema;
};

// Map of namespace prefix to namespace_info.
//
struct namespace_infomap: public std::map<std::basic_string<C>,
                                          namespace_info>
{
};

Consider the following associations as an example:

xml_schema::namespace_infomap map;

map["t"].name = "http://www.codesynthesis.com/test";
map["t"].schema = "test.xsd";

This map, if passed to one of the serialization functions, could result in the following XML frag-
ment:

<?xml version="1.0" ?>
<t:name xmlns:t="http://www.codesynthesis.com/test"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="http://www.codesynthesis.com/test test.xsd">

As you can see, the serialization function automatically added namespace mapping for the xsi
prefix. You can change this by providing your own prefix:
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xml_schema::namespace_infomap map;

map["xsn"].name = "http://www.w3.org/2001/XMLSchema-instance";

map["t"].name = "http://www.codesynthesis.com/test";
map["t"].schema = "test.xsd";

This could result in the following XML fragment:

<?xml version="1.0" ?>
<t:name xmlns:t="http://www.codesynthesis.com/test"
        xmlns:xsn="http://www.w3.org/2001/XMLSchema-instance"
        xsn:schemaLocation="http://www.codesynthesis.com/test test.xsd">

To specify the location of a schema without a namespace you can use an empty prefix as in the
example below: 

xml_schema::namespace_infomap map;

map[""].schema = "test.xsd";

This would result in the following XML fragment:

<?xml version="1.0" ?>
<name xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
      xsi:noNamespaceSchemaLocation="test.xsd">

To make a particular namespace default you can use an empty prefix, for example:

xml_schema::namespace_infomap map;

map[""].name = "http://www.codesynthesis.com/test";
map[""].schema = "test.xsd";

This could result in the following XML fragment:

<?xml version="1.0" ?>
<name xmlns="http://www.codesynthesis.com/test"
      xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
      xsi:schemaLocation="http://www.codesynthesis.com/test test.xsd">

Another bit of information that you can pass to the serialization functions is the character encod-
ing method that you would like to use. Common values for this argument are "US-ASCII" , 
"ISO8859-1" , "UTF-8" , "UTF-16BE" , "UTF-16LE" , "UCS-4BE" , and "UCS-4LE" .
The default encoding is "UTF-8" . For more information on encoding methods see the "Charac-
ter Encoding" article from Wikipedia. 
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4.3 Flags

Serialization flags are the last argument of every serialization function. They allow you to
fine-tune the process of serialization. The flags argument is optional. 

The following flags are recognized by the serialization functions:

xml_schema::flags::dont_initialize  
Do not initialize the Xerces-C++ runtime. 

xml_schema::flags::dont_pretty_print  
Do not add extra spaces or new lines that make the resulting XML slightly bigger but easier
to read. 

xml_schema::flags::no_xml_declaration  
Do not write XML declaration (<?xml ... ?>). 

You can pass several flags by combining them using the bit-wise OR operator. For example:

std::auto_ptr<type> r = ...
std::ofstream ofs ("test.xml");
xml_schema::namespace_infomap map;
name (ofs,
      *r,
      map,
      "UTF-8",
      xml_schema::flags::no_xml_declaration |
      xml_schema::flags::dont_pretty_print);

For more information on the Xerces-C++ runtime initialization refer to Section 4.1, "Initializing
the Xerces-C++ Runtime". 

4.4 Error Handling

As with the parsing functions (see Section 3.3, "Error Handling"), to better understand error
handling and reporting strategies employed by the serialization functions, it is useful to know that
the transformation of a statically-typed tree to an XML instance document happens in two stages.
The first stage, performed by the generated code, consist of building a DOM instance from the 
statically-typed tree . For short, we will call this stage the Tree-DOM stage. The second stage,
performed by Xerces-C++, consists of serializing the DOM instance into the XML document. We
will call this stage the DOM-XML stage. 

All serialization functions except the two that serialize into a DOM instance come in overloaded
triples. The first function in such a triple reports error conditions exclusively by throwing excep-
tions. It accumulates all the serialization errors of the DOM-XML stage and throws them in a
single instance of the xml_schema::serialization  exception (described below). The
second and the third functions in the triple use callback interfaces to report serialization errors
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and warnings. The two callback interfaces are xml_schema::error_handler  and 
xercesc::DOMErrorHandler . The xml_schema::error_handler  interface is
described in Section 3.3, "Error Handling". For more information on the xercesc::DOMEr-
rorHandler  interface refer to the Xerces-C++ documentation. 

The Tree-DOM stage reports error conditions exclusively by throwing exceptions. Individual 
exceptions thrown by the serialization functions are described in the following sub-sections. 

4.4.1 xml_schema::serialization

struct serialization: virtual exception
{
  serialization ();
  serialization (const diagnostics&);

  const diagnostics&
  diagnostics () const;

  virtual const char*
  what () const throw ();
};

The xml_schema::diagnostics  class is described in Section 3.3.1, 
"xml_schema::parsing ". The xml_schema::serialization  exception is thrown if
there were serialization errors reported during the DOM-XML stage. If no callback interface was
provided to the serialization function, the exception contains a list of errors and warnings accessi-
ble using the diagnostics  function. 

4.4.2 xml_schema::unexpected_element

The xml_schema::unexpected_element  exception is described in Section 3.3.3, 
"xml_schema::unexpected_element ". It is thrown by the serialization functions during
the Tree-DOM stage if the root element name of the provided DOM instance does not match with
the name of the element this serialization function is for. 

4.4.3 xml_schema::no_type_info

The xml_schema::no_type_info  exception is described in Section 3.3.7, 
"xml_schema::no_type_info ". It is thrown by the serialization functions during the
Tree-DOM stage when there is no type information associated with a dynamic type of an
element. Usually, catching this exception means that you haven’t linked the code generated from
the schema defining the type in question with your application or this schema has been compiled
without the --generate-polymorphic  option. 
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4.5 Serializing to std::ostream

In order to serialize to std::ostream  you will need an object model, an output stream and, 
optionally, a namespace infomap. For instance:

// Obtain the object model.
//
std::auto_ptr<type> r = ...

// Prepare namespace mapping and schema location information.
//
xml_schema::namespace_infomap map;

map["t"].name = "http://www.codesynthesis.com/test";
map["t"].schema = "test.xsd";

// Write it out.
//
name (std::cout, *r, map);

Note that the output stream is treated as a binary stream. This becomes important when you use a 
character encoding that is wider than 8-bit char , for instance UTF-16 or UCS-4. For example,
things will most likely break if you try to serialize to std::ostringstream  with UTF-16 or
UCS-4 as an encoding. This is due to the special value, ’\0’ , that will most likely occur as part
of such serialization and it won’t have the special meaning assumed by 
std::ostringstream . 

4.6 Serializing to xercesc::XMLFormatTarget

Serializing to an xercesc::XMLFormatTarget  instance is similar the std::ostream
case. For instance: 

using std::auto_ptr;

// Obtain the object model.
//
auto_ptr<type> r = ...

// Prepare namespace mapping and schema location information.
//
xml_schema::namespace_infomap map;

map["t"].name = "http://www.codesynthesis.com/test";
map["t"].schema = "test.xsd";

using namespace xercesc;

XMLPlatformUtils::Initialize ();
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{
  // Choose a target.
  //
  auto_ptr<XMLFormatTarget> ft;

  if (argc != 2)
  {
    ft = auto_ptr<XMLFormatTarget> (new StdOutFormatTarget ());
  }
  else
  {
    ft = auto_ptr<XMLFormatTarget> (
      new LocalFileFormatTarget (argv[1]));
  }

  // Write it out.
  //
  name (*ft, *r, map);
}

XMLPlatformUtils::Terminate ();

Note that we had to initialize the Xerces-C++ runtime before we could call this serialization func-
tion.

4.7 Serializing to DOM

The mapping provides two overloaded functions that implement serialization to a DOM instance.
The first creates a DOM instance for you and the second serializes to an existing DOM instance.
While serializing to a new DOM instance is similar to serializing to std::ostream  or 
xercesc::XMLFormatTarget , serializing to an existing DOM instance requires quite a bit
of work from your side. You will need to set all the custom namespace mapping attributes as well
as the schemaLocation  and/or noNamespaceSchemaLocation  attributes. The following
listing should give you an idea about what needs to be done: 

// Obtain the object model.
//
std::auto_ptr<type> r = ...

using namespace xercesc;

XMLPlatformUtils::Initialize ();

{
  // Create a DOM instance. Set custom namespace mapping and schema
  // location attributes.
  //
  DOMDocument& doc = ...
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  // Serialize to DOM.
  //
  name (doc, *r);

  // Serialize the DOM document to XML.
  //
  ...
}

XMLPlatformUtils::Terminate ();

For more information on how to create and serialize a DOM instance refer to the Xerces-C++ 
documentation. In addition, the C++/Tree Mapping FAQ shows how to implement these opera-
tions using the XSD runtime utilities. 

5 Additional Functionality
The C++/Tree mapping provides a number of optional features that can be useful in certain situa-
tions. They are described in the following sections.

5.1 DOM Association

Normally, after parsing is complete, the DOM document which was used to extract the data is
discarded. However, the parsing functions can be instructed to preserve the DOM document and
create an association between the DOM nodes and object model nodes. When there is an associa-
tion between the DOM and object model nodes, you can obtain the corresponding DOM element
or attribute node from an object model node as well as perform the reverse transition: obtain the 
corresponding object model from a DOM element or attribute node.

Maintaining DOM association is normally useful when the application needs access to XML
constructs that are not preserved in the object model, for example, XML comments. Another
useful aspect of DOM association is the ability of the application to navigate the document tree
using the generic DOM interface (for example, with the help of an XPath processor) and then
move back to the statically-typed object model. Note also that while you can change the underly-
ing DOM document, these changes are not reflected in the object model and will be ignored
during serialization. If you need to not only access but also modify some aspects of XML that are
not preserved in the object model, then type customization with custom parsing constructors and 
serialization operators should be used instead.

To request DOM association you will need to pass the xml_schema::flags::keep_dom
flag to one of the parsing functions (see Section 3.2, "Flags and Properties" for more informa-
tion). In this case the DOM document is retained and will be released when the object model is
deleted. Note that since DOM nodes "out-live" the parsing function call, you need to initialize the
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Xerces-C++ runtime before calling one of the parsing functions with the keep_dom  flag and 
terminate it after the object model is destroyed (see Section 3.1, "Initializing the Xerces-C++ 
Runtime").

If the keep_dom  flag is passed as the second argument to the copy constructor and the copy
being made is of a complete tree, then the DOM association is also maintained in the copy by
cloning the underlying DOM document and reestablishing the associations. For example:

using namespace xercesc;

XMLPlatformUtils::Initialize ();

{
  // Parse XML to object model.
  //
  std::auto_ptr<type> r (root (
    "root.xml",
     xml_schema::flags::keep_dom |
     xml_schema::flags::dont_initialize));

   // Copy without DOM association.
   //
   type copy1 (*r);

   // Copy with DOM association.
   //
   type copy2 (*r, xml_schema::flags::keep_dom);
}

XMLPlatformUtils::Terminate ();

To obtain the corresponding DOM node from an object model node you will need to call the 
_node  accessor function which returns a pointer to DOMNode. You can then query this DOM
node’s type and cast it to either DOMAttr*  or DOMElement* . To obtain the corresponding
object model node from a DOM node, the DOM user data API is used. The 
xml_schema::dom::tree_node_key  variable contains the key for object model nodes.
The following schema and code fragment show how to navigate from DOM to object model
nodes and in the opposite direction:

<complexType name="object">
  <sequence>
    <element name="a" type="string"/>
  </sequence>
</complexType>

<element name="root" type="object"/>
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using namespace xercesc;

XMLPlatformUtils::Initialize ();

{
  // Parse XML to object model.
  //
  std::auto_ptr<type> r (root (
    "root.xml",
     xml_schema::flags::keep_dom |
     xml_schema::flags::dont_initialize));

  DOMNode* n = root->_node ();
  assert (n->getNodeType () == DOMNode::ELEMENT_NODE);
  DOMElement* re = static_cast<DOMElement*> (n);

  // Get the ’a’ element. Note that it is not necessarily the
  // first child node of ’root’ since there could be whitespace
  // nodes before it.
  //
  DOMElement* ae;

  for (n = re->getFirstChild (); n != 0; n = n->getNextSibling ())
  {
    if (n->getNodeType () == DOMNode::ELEMENT_NODE)
    {
      ae = static_cast<DOMElement*> (n);
      break;
    }
  }

  // Get from the ’a’ DOM element to xml_schema::string object model
  // node.
  //
  xml_schema::type& t (
    *reinterpret_cast<xml_schema::type*> (
       ae->getUserData (xml_schema::dom::tree_node_key)));

  xml_schema::string& a (dynamic_cast<xml_schema::string&> (t));
}

XMLPlatformUtils::Terminate ();

The ’mixed’ example which can be found in the XSD distribution shows how to handle the mixed
content using DOM association.
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5.2 Binary Serialization

Besides reading from and writing to XML, the C++/Tree mapping also allows you to save the
object model to and load it from a number of predefined as well as custom data representation
formats. The predefined binary formats are CDR (Common Data Representation) and XDR 
(eXternal Data Representation). A custom format can easily be supported by providing insertion
and extraction operators for basic types.

Binary serialization saves only the data without any meta information or markup. As a result,
saving to and loading from a binary representation can be an order of magnitude faster than
parsing and serializing the same data in XML. Furthermore, the resulting representation is
normally several times smaller than the equivalent XML representation. These properties make
binary serialization ideal for internal data exchange and storage. A typical application that uses
this facility stores the data and communicates within the system using a binary format and
reads/writes the data in XML when communicating with the outside world.

In order to request the generation of insertion operators and extraction constructors for a specific 
predefined or custom data representation stream, you will need to use the --gener-
ate-insertion  and --generate-extraction  compiler options. See the XSD Compiler
Command Line Manual for more information.

Once the insertion operators and extraction constructors are generated, you can use the 
xml_schema::istream  and xml_schema::ostream  wrapper stream templates to save
the object model to and load it from a specific format. The following code fragment shows how
to do this using ACE (Adaptive Communication Environment) CDR streams as an example:

<complexType name="object">
  <sequence>
    <element name="a" type="string"/>
    <element name="b" type="int"/>
  </sequence>
</complexType>

<element name="root" type="object"/>

// Parse XML to object model.
//
std::auto_ptr<type> r (root ("root.xml"));

// Save to a CDR stream.
//
ACE_OutputCDR ace_ocdr;
xml_schema::ostream<ACE_OutputCDR> ocdr (ace_ocdr);

ocdr << *r;

// Load from a CDR stream.
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//
ACE_InputCDR ace_icdr (buf, size);
xml_schema::istream<ACE_InputCDR> icdr (ace_icdr);

std::auto_ptr<object> copy (new object (icdr));

// Serialize to XML.
//
root (std::cout, *copy);

The XSD distribution contains a number of examples that show how to save the object model to
and load it from CDR, XDR, and a custom format.

Appendix A — Default and Fixed Values
The following table summarizes the effect of default and fixed values (specified with the 
default  and fixed  attributes, respectively) on attribute and element values. The default
and fixed  attributes are mutually exclusive. It is also worthwhile to note that the fixed value 
semantics is a superset of the default value semantics. 

default fixed 

element

not 
present

optional required optional required 

not present
invalid 
instance

not present invalid instance 

empty default value is used fixed value is used 

value value is used
value is used provided it’s the same as
fixed 

attribute

not 
present

optional required optional required 

default value is 
used

invalid 
schema

fixed value is used invalid instance 

empty empty value is used
empty value is used provided it’s the
same as fixed 

value value is used
value is used provided it’s the same as
fixed 
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