
C++/Tree Mapping User Manual

Revision 4.0.0 July 2014

Copyright © 2005-2014 CODE SYNTHESIS TOOLS CC

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, version 1.2; with no Invariant Sections, no Front-Cover Texts
and no Back-Cover Texts.

This document is available in the following formats: XHTML, PDF, and PostScript.

http://www.codesynthesis.com/licenses/fdl-1.2.txt
http://www.codesynthesis.com/products/xsd
http://codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/index.xhtml
http://codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/cxx-tree-manual.pdf

Table of Contents
................... 1Preface
.............. 1About This Document
............... 1More Information
................. 11 Introduction
................ 22 C++/Tree Mapping
............. 22.1 Preliminary Information
.............. 22.1.1 C++ Standard
............... 22.1.2 Identifiers
.......... 32.1.3 Character Type and Encoding
........... 32.1.4 XML Schema Namespace
............. 42.1.5 Anonymous Types
............... 42.2 Error Handling
......... 52.2.1 xml_schema::duplicate_id
.......... 52.3 Mapping for import and include
............... 52.3.1 Import
......... 62.3.2 Inclusion with Target Namespace
......... 62.3.3 Inclusion without Target Namespace
............. 72.4 Mapping for Namespaces
........... 72.5 Mapping for Built-in Data Types
......... 102.5.1 Inheritance from Built-in Data Types
............ 112.5.2 Mapping for anyType
.......... 122.5.3 Mapping for anySimpleType
............ 132.5.4 Mapping for QName
............ 142.5.5 Mapping for IDREF
...... 162.5.6 Mapping for base64Binary and hexBinary
............ 192.5.7 Time Zone Representation
.............. 202.5.8 Mapping for date
............ 212.5.9 Mapping for dateTime
............ 222.5.10 Mapping for duration
.............. 242.5.11 Mapping for gDay
............. 242.5.12 Mapping for gMonth
............ 252.5.13 Mapping for gMonthDay
............. 262.5.14 Mapping for gYear
............ 272.5.15 Mapping for gYearMonth
.............. 282.5.16 Mapping for time
............ 292.6 Mapping for Simple Types
........ 292.6.1 Mapping for Derivation by Restriction
........... 302.6.2 Mapping for Enumerations
.......... 312.6.3 Mapping for Derivation by List
......... 322.6.4 Mapping for Derivation by Union

iJuly 2014 C++/Tree Mapping User Manual, v4.0.0

Table of Contents

............. 332.7 Mapping for Complex Types

.......... 372.7.1 Mapping for Derivation by Extension

.......... 372.7.2 Mapping for Derivation by Restriction

.......... 372.8 Mapping for Local Elements and Attributes

...... 392.8.1 Mapping for Members with the One Cardinality Class

..... 412.8.2 Mapping for Members with the Optional Cardinality Class

..... 452.8.3 Mapping for Members with the Sequence Cardinality Class

............... 482.8.4 Element Order

............. 552.9 Mapping for Global Elements

............... 552.9.1 Element Types

............... 582.9.2 Element Map

............. 592.10 Mapping for Global Attributes

........ 602.11 Mapping for xsi:type and Substitution Groups

........... 622.12 Mapping for any and anyAttribute

....... 642.12.1 Mapping for any with the One Cardinality Class

...... 652.12.2 Mapping for any with the Optional Cardinality Class

...... 682.12.3 Mapping for any with the Sequence Cardinality Class

............. 742.12.4 Element Wildcard Order

........... 752.12.5 Mapping for anyAttribute

........... 802.13 Mapping for Mixed Content Models

.................... 823 Parsing

............ 853.1 Initializing the Xerces-C++ Runtime

............... 853.2 Flags and Properties

................ 863.3 Error Handling

............ 883.3.1 xml_schema::parsing

......... 893.3.2 xml_schema::expected_element

........ 893.3.3 xml_schema::unexpected_element

........ 903.3.4 xml_schema::expected_attribute

....... 913.3.5 xml_schema::unexpected_enumerator

....... 913.3.6 xml_schema::expected_text_content

.......... 913.3.7 xml_schema::no_type_info

........... 923.3.8 xml_schema::not_derived

......... 923.3.9 xml_schema::no_prefix_mapping

............ 933.4 Reading from a Local File or URI

............. 933.5 Reading from std::istream

.......... 943.6 Reading from xercesc::InputSource

............... 943.7 Reading from DOM

................... 944 Serialization

............ 964.1 Initializing the Xerces-C++ Runtime

.......... 974.2 Namespace Infomap and Character Encoding

................... 994.3 Flags

................ 994.4 Error Handling

.......... 1004.4.1 xml_schema::serialization

July 2014ii C++/Tree Mapping User Manual, v4.0.0

Table of Contents

........ 1004.4.2 xml_schema::unexpected_element

.......... 1004.4.3 xml_schema::no_type_info

............. 1014.5 Serializing to std::ostream

......... 1014.6 Serializing to xercesc::XMLFormatTarget

............... 1024.7 Serializing to DOM

................ 1035 Additional Functionality

................ 1035.1 DOM Association

............... 1065.2 Binary Serialization

............. 107Appendix A — Default and Fixed Values

iiiJuly 2014 C++/Tree Mapping User Manual, v4.0.0

Table of Contents

Preface

About This Document

This document describes the mapping of W3C XML Schema to the C++ programming language
as implemented by CodeSynthesis XSD - an XML Schema to C++ data binding compiler. The
mapping represents information stored in XML instance documents as a statically-typed, tree-like
in-memory data structure and is called C++/Tree.

Revision 4.0.0
This revision of the manual describes the C++/Tree mapping as implemented by CodeSynthesis
XSD version 4.0.0.

This document is available in the following formats: XHTML, PDF, and PostScript.

More Information

Beyond this manual, you may also find the following sources of information useful:

C++/Tree Mapping Getting Started Guide
C++/Tree Mapping Customization Guide
C++/Tree Mapping Frequently Asked Questions (FAQ)
XSD Compiler Command Line Manual
The examples/cxx/tree/ directory in the XSD distribution contains a collection of
examples and a README file with an overview of each example.
The README file in the XSD distribution explains how to compile the examples on various
platforms.
The xsd-users mailing list is a place to ask questions. Furthermore the archives may already
have answers to some of your questions.

1 Introduction
C++/Tree is a W3C XML Schema to C++ mapping that represents the data stored in XML as a
statically-typed, vocabulary-specific object model. Based on a formal description of an XML
vocabulary (schema), the C++/Tree mapping produces a tree-like data structure suitable for
in-memory processing as well as XML parsing and serialization code.

A typical application that processes XML documents usually performs the following three steps:
it first reads (parses) an XML instance document to an object model, it then performs some useful
computations on that model which may involve modification of the model, and finally it may
write (serialize) the modified object model back to XML.

1July 2014 C++/Tree Mapping User Manual, v4.0.0

Preface

http://www.codesynthesis.com/products/xsd
http://codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/index.xhtml
http://codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/cxx-tree-manual.pdf
http://codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/cxx-tree-manual.ps
http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/
http://wiki.codesynthesis.com/Tree/Customization_guide
http://wiki.codesynthesis.com/Tree/FAQ
http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml
http://www.codesynthesis.com/mailman/listinfo/xsd-users
http://www.codesynthesis.com/pipermail/xsd-users/

The C++/Tree mapping consists of C++ types that represent the given vocabulary (Chapter 2,
"C++/Tree Mapping"), a set of parsing functions that convert XML documents to a tree-like
in-memory data structure (Chapter 3, "Parsing"), and a set of serialization functions that convert
the object model back to XML (Chapter 4, "Serialization"). Furthermore, the mapping provides a
number of additional features, such as DOM association and binary serialization, that can be
useful in some applications (Chapter 5, "Additional Functionality").

2 C++/Tree Mapping

2.1 Preliminary Information

2.1.1 C++ Standard

The C++/Tree mapping provides support for ISO/IEC C++ 1998/2003 (C++98) and ISO/IEC
C++ 2011 (C++11). To select the C++ standard for the generated code we use the --std XSD
compiler command line option. While the majority of the examples in this manual use C++98,
support for the new functionality and library components introduced in C++11 are discussed
throughout the document.

2.1.2 Identifiers

XML Schema names may happen to be reserved C++ keywords or contain characters that are
illegal in C++ identifiers. To avoid C++ compilation problems, such names are changed
(escaped) when mapped to C++. If an XML Schema name is a C++ keyword, the "_" suffix is
added to it. All character of an XML Schema name that are not allowed in C++ identifiers are
replaced with "_".

For example, XML Schema name try will be mapped to C++ identifier try_ . Similarly, XML
Schema name strange.na-me will be mapped to C++ identifier strange_na_me .

Furthermore, conflicts between type names and function names in the same scope are resolved
using name escaping. Such conflicts include both a global element (which is mapped to a set of
parsing and/or serialization functions or element types, see Section 2.9, "Mapping for Global
Elements") and a global type sharing the same name as well as a local element or attribute inside
a type having the same name as the type itself.

For example, if we had a global type catalog and a global element with the same name then
the type would be mapped to a C++ class with name catalog while the parsing functions corre-
sponding to the global element would have their names escaped as catalog_ .

July 20142 C++/Tree Mapping User Manual, v4.0.0

2 C++/Tree Mapping

By default the mapping uses the so-called K&R (Kernighan and Ritchie) identifier naming
convention which is also used throughout this manual. In this convention both type and function
names are in lower case and words are separated by underscores. If your application code or
schemas use a different notation, you may want to change the naming convention used by the
mapping for consistency. The compiler supports a set of widely-used naming conventions that
you can select with the --type-naming and --function-naming options. You can also
further refine one of the predefined conventions or create a completely custom naming scheme by
using the --*-regex options. For more detailed information on these options refer to the
NAMING CONVENTION section in the XSD Compiler Command Line Manual.

2.1.3 Character Type and Encoding

The code that implements the mapping, depending on the --char-type option, is generated
using either char or wchar_t as the character type. In this document code samples use symbol
C to refer to the character type you have selected when translating your schemas, for example
std::basic_string<C> .

Another aspect of the mapping that depends on the character type is character encoding. For the
char character type the default encoding is UTF-8. Other supported encodings are ISO-8859-1,
Xerces-C++ Local Code Page (LPC), as well as custom encodings and can be selected with the
--char-encoding command line option.

For the wchar_t character type the encoding is automatically selected between UTF-16 and
UTF-32/UCS-4 depending on the size of the wchar_t type. On some platforms (for example,
Windows with Visual C++ and AIX with IBM XL C++) wchar_t is 2 bytes long. For these
platforms the encoding is UTF-16. On other platforms wchar_t is 4 bytes long and
UTF-32/UCS-4 is used.

2.1.4 XML Schema Namespace

The mapping relies on some predefined types, classes, and functions that are logically defined in
the XML Schema namespace reserved for the XML Schema language
(http://www.w3.org/2001/XMLSchema). By default, this namespace is mapped to C++
namespace xml_schema . It is automatically accessible from a C++ compilation unit that
includes a header file generated from an XML Schema definition.

Note that, if desired, the default mapping of this namespace can be changed as described in
Section 2.4, "Mapping for Namespaces".

3July 2014 C++/Tree Mapping User Manual, v4.0.0

2.1.3 Character Type and Encoding

http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml

2.1.5 Anonymous Types

For the purpose of code generation, anonymous types defined in XML Schema are automatically
assigned names that are derived from enclosing attributes and elements. Otherwise, such types
follows standard mapping rules for simple and complex type definitions (see Section 2.6,
"Mapping for Simple Types" and Section 2.7, "Mapping for Complex Types"). For example, in
the following schema fragment:

<element name="object">
 <complexType>
 ...
 </complexType>
</element>

The anonymous type defined inside element object will be given name object . The compiler
has a number of options that control the process of anonymous type naming. For more informa-
tion refer to the XSD Compiler Command Line Manual.

2.2 Error Handling

The mapping uses the C++ exception handling mechanism as a primary way of reporting error
conditions. All exceptions that are specified in this mapping derive from
xml_schema::exception which itself is derived from std::exception :

struct exception: virtual std::exception
{
 friend
 std::basic_ostream<C>&
 operator<< (std::basic_ostream<C>& os, const exception& e)
 {
 e.print (os);
 return os;
 }

protected:
 virtual void
 print (std::basic_ostream<C>&) const = 0;
};

The exception hierarchy supports "virtual" operator<< which allows you to obtain diagnostics
corresponding to the thrown exception using the base exception interface. For example:

July 20144 C++/Tree Mapping User Manual, v4.0.0

2.2 Error Handling

http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml

try
{
 ...
}
catch (const xml_schema::exception& e)
{
 cerr << e << endl;
}

The following sub-sections describe exceptions thrown by the types that constitute the object
model. Section 3.3, "Error Handling" of Chapter 3, "Parsing" describes exceptions and error
handling mechanisms specific to the parsing functions. Section 4.4, "Error Handling" of Chapter
4, "Serialization" describes exceptions and error handling mechanisms specific to the serialization
functions.

2.2.1 xml_schema::duplicate_id

struct duplicate_id: virtual exception
{
 duplicate_id (const std::basic_string<C>& id);

 const std::basic_string<C>&
 id () const;

 virtual const char*
 what () const throw ();
};

The xml_schema::duplicate_id is thrown when a conflicting instance of
xml_schema::id (see Section 2.5, "Mapping for Built-in Data Types") is added to a tree. The
offending ID value can be obtained using the id function.

2.3 Mapping for import and include

2.3.1 Import

The XML Schema import element is mapped to the C++ Preprocessor #include directive.
The value of the schemaLocation attribute is used to derive the name of the header file that
appears in the #include directive. For instance:

<import namespace="http://www.codesynthesis.com/test"
 schemaLocation="test.xsd"/>

is mapped to:

5July 2014 C++/Tree Mapping User Manual, v4.0.0

2.3 Mapping for import and include

#include "test.hxx"

Note that you will need to compile imported schemas separately in order to produce correspond-
ing header files.

2.3.2 Inclusion with Target Namespace

The XML Schema include element which refers to a schema with a target namespace or
appears in a schema without a target namespace follows the same mapping rules as the import
element, see Section 2.3.1, "Import".

2.3.3 Inclusion without Target Namespace

For the XML Schema include element which refers to a schema without a target namespace
and appears in a schema with a target namespace (such inclusion sometimes called "chameleon
inclusion"), declarations and definitions from the included schema are generated in-line in the
namespace of the including schema as if they were declared and defined there verbatim. For
example, consider the following two schemas:

<-- common.xsd -->
<schema>
 <complexType name="type">
 ...
 </complexType>
</schema>

<-- test.xsd -->
<schema targetNamespace="http://www.codesynthesis.com/test">
 <include schemaLocation="common.xsd"/>
</schema>

The fragment of interest from the generated header file for text.xsd would look like this:

// test.hxx
namespace test
{
 class type
 {
 ...
 };
}

July 20146 C++/Tree Mapping User Manual, v4.0.0

2.3.2 Inclusion with Target Namespace

2.4 Mapping for Namespaces

An XML Schema namespace is mapped to one or more nested C++ namespaces. XML Schema
namespaces are identified by URIs. By default, a namespace URI is mapped to a sequence of
C++ namespace names by removing the protocol and host parts and splitting the rest into a
sequence of names with ’/ ’ as the name separator. For instance:

<schema targetNamespace="http://www.codesynthesis.com/system/test">
 ...
</schema>

is mapped to:

namespace system
{
 namespace test
 {
 ...
 }
}

The default mapping of namespace URIs to C++ namespace names can be altered using the
--namespace-map and --namespace-regex options. See the XSD Compiler Command
Line Manual for more information.

2.5 Mapping for Built-in Data Types

The mapping of XML Schema built-in data types to C++ types is summarized in the table below.

XML Schema type
Alias in the xml_schema

namespace
C++ type

anyType and anySimpleType types

anyType type Section 2.5.2, "Mapping for anyType "

anySimpleType simple_type
Section 2.5.3, "Mapping for anySimple-
Type "

fixed-length integral types

byte byte signed char

unsignedByte unsigned_byte unsigned char

short short_ short

unsignedShort unsigned_short unsigned short

7July 2014 C++/Tree Mapping User Manual, v4.0.0

2.4 Mapping for Namespaces

http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml
http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml

int int_ int

unsignedInt unsigned_int unsigned int

long long_ long long

unsignedLong unsigned_long unsigned long long

arbitrary-length integral types

integer integer long long

nonPositiveInteger non_positive_integer long long

nonNegativeInteger non_negative_integer unsigned long long

positiveInteger positive_integer unsigned long long

negativeInteger negative_integer long long

boolean types

boolean boolean bool

fixed-precision floating-point types

float float_ float

double double_ double

arbitrary-precision floating-point types

decimal decimal double

string types

string string type derived from std::basic_string

normalizedString normalized_string type derived from string

token token type derived from normalized_string

Name name type derived from token

NMTOKEN nmtoken type derived from token

NMTOKENS nmtokens type derived from sequence<nmtoken>

NCName ncname type derived from name

language language type derived from token

qualified name

QName qname Section 2.5.4, "Mapping for QName"

ID/IDREF types

July 20148 C++/Tree Mapping User Manual, v4.0.0

2.5 Mapping for Built-in Data Types

ID id type derived from ncname

IDREF idref Section 2.5.5, "Mapping for IDREF"

IDREFS idrefs type derived from sequence<idref>

URI types

anyURI uri type derived from std::basic_string

binary types

base64Binary base64_binary Section 2.5.6, "Mapping for
base64Binary and hexBinary " hexBinary hex_binary

date/time types

date date Section 2.5.8, "Mapping for date "

dateTime date_time Section 2.5.9, "Mapping for dateTime "

duration duration Section 2.5.10, "Mapping for duration "

gDay gday Section 2.5.11, "Mapping for gDay"

gMonth gmonth Section 2.5.12, "Mapping for gMonth "

gMonthDay gmonth_day
Section 2.5.13, "Mapping for gMonth-
Day"

gYear gyear Section 2.5.14, "Mapping for gYear "

gYearMonth gyear_month
Section 2.5.15, "Mapping for gYear-
Month "

time time Section 2.5.16, "Mapping for time "

entity types

ENTITY entity type derived from name

ENTITIES entities type derived from sequence<entity>

All XML Schema built-in types are mapped to C++ classes that are derived from the
xml_schema::simple_type class except where the mapping is to a fundamental C++ type.

The sequence class template is defined in an implementation-specific namespace. It conforms
to the sequence interface as defined by the ISO/ANSI Standard for C++ (ISO/IEC 14882:1998,
Section 23.1.1, "Sequences"). Practically, this means that you can treat such a sequence as if it
was std::vector . One notable extension to the standard interface that is available only for
sequences of non-fundamental C++ types is the addition of the overloaded push_back and
insert member functions which instead of the constant reference to the element type accept

9July 2014 C++/Tree Mapping User Manual, v4.0.0

2.5 Mapping for Built-in Data Types

automatic pointer (std::auto_ptr or std::unique_ptr , depending on the C++ standard
selected) to the element type. These functions assume ownership of the pointed to object and
reset the passed automatic pointer.

2.5.1 Inheritance from Built-in Data Types

In cases where the mapping calls for an inheritance from a built-in type which is mapped to a
fundamental C++ type, a proxy type is used instead of the fundamental C++ type (C++ does not
allow inheritance from fundamental types). For instance:

<simpleType name="my_int">
 <restriction base="int"/>
</simpleType>

is mapped to:

class my_int: public fundamental_base<int>
{
 ...
};

The fundamental_base class template provides a close emulation (though not exact) of a
fundamental C++ type. It is defined in an implementation-specific namespace and has the follow-
ing interface:

template <typename X>
class fundamental_base: public simple_type
{
public:
 fundamental_base ();
 fundamental_base (X)
 fundamental_base (const fundamental_base&)

public:
 fundamental_base&
 operator= (const X&);

public:
 operator const X & () const;
 operator X& ();

 template <typename Y>
 operator Y () const;

 template <typename Y>
 operator Y ();
};

July 201410 C++/Tree Mapping User Manual, v4.0.0

2.5.1 Inheritance from Built-in Data Types

2.5.2 Mapping for anyType

The XML Schema anyType built-in data type is mapped to the xml_schema::type C++
class:

class type
{
public:
 virtual
 ~type ();

 type ();
 type (const type&);

 type&
 operator= (const type&);

 virtual type*
 _clone () const;

 // anyType DOM content.
 //
public:
 typedef element_optional dom_content_optional;

 const dom_content_optional&
 dom_content () const;

 dom_content_optional&
 dom_content ();

 void
 dom_content (const xercesc::DOMElement&);

 void
 dom_content (xercesc::DOMElement*);

 void
 dom_content (const dom_content_optional&);

 const xercesc::DOMDocument&
 dom_content_document () const;

 xercesc::DOMDocument&
 dom_content_document ();

 bool
 null_content () const;

 // DOM association.

11July 2014 C++/Tree Mapping User Manual, v4.0.0

2.5.2 Mapping for anyType

 //
public:
 const xercesc::DOMNode*
 _node () const;

 xercesc::DOMNode*
 _node ();
};

When xml_schema::type is used to create an instance (as opposed to being a base of a
derived type), it represents the XML Schema anyType type. anyType allows any attributes
and any content in any order. In the C++/Tree mapping this content can be represented as a DOM
fragment, similar to XML Schema wildcards (Section 2.12, "Mapping for any and anyAt-
tribute ").

To enable automatic extraction of anyType content during parsing, the --gener-
ate-any-type option must be specified. Because the DOM API is used to access such
content, the Xerces-C++ runtime should be initialized by the application prior to parsing and
should remain initialized for the lifetime of objects with the DOM content. For more information
on the Xerces-C++ runtime initialization see Section 3.1, "Initializing the Xerces-C++ Runtime".

The DOM content is stored as the optional DOM element container and the DOM content acces-
sors and modifiers presented above are identical to those generated for an optional element wild-
card. Refer to Section 2.12.2, "Mapping for any with the Optional Cardinality Class" for details
on their semantics.

The dom_content_document() function returns the DOM document used to store the raw
XML content corresponding to the anyType instance. It is equivalent to the dom_docu-
ment() function generated for types with wildcards.

The null_content() accessor is an optimization function that allows us to check for the lack
of content without actually creating its empty representation, that is, empty DOM document for
anyType or empty string for anySimpleType (see the following section for details on
anySimpleType).

For more information on DOM association refer to Section 5.1, "DOM Association".

2.5.3 Mapping for anySimpleType

The XML Schema anySimpleType built-in data type is mapped to the
xml_schema::simple_type C++ class:

class simple_type: public type
{
public:
 simple_type ();

July 201412 C++/Tree Mapping User Manual, v4.0.0

2.5.3 Mapping for anySimpleType

 simple_type (const C*);
 simple_type (const std::basic_string<C>&);

 simple_type (const simple_type&);

 simple_type&
 operator= (const simple_type&);

 virtual simple_type*
 _clone () const;

 // anySimpleType text content.
 //
public:
 const std::basic_string<C>&
 text_content () const;

 std::basic_string<C>&
 text_content ();

 void
 text_content (const std::basic_string<C>&);
};

When xml_schema::simple_type is used to create an instance (as opposed to being a base
of a derived type), it represents the XML Schema anySimpleType type. anySimpleType
allows any simple content. In the C++/Tree mapping this content can be represented as a string
and accessed or modified with the text_content() functions shown above.

2.5.4 Mapping for QName

The XML Schema QName built-in data type is mapped to the xml_schema::qname C++
class:

class qname: public simple_type
{
public:
 qname (const ncname&);
 qname (const uri&, const ncname&);
 qname (const qname&);

public:
 qname&
 operator= (const qname&);

public:
 virtual qname*
 _clone () const;

public:

13July 2014 C++/Tree Mapping User Manual, v4.0.0

2.5.4 Mapping for QName

 bool
 qualified () const;

 const uri&
 namespace_ () const;

 const ncname&
 name () const;
};

The qualified accessor function can be used to determine if the name is qualified.

2.5.5 Mapping for IDREF

The XML Schema IDREF built-in data type is mapped to the xml_schema::idref C++
class. This class implements the smart pointer C++ idiom:

class idref: public ncname
{
public:
 idref (const C* s);
 idref (const C* s, std::size_t n);
 idref (std::size_t n, C c);
 idref (const std::basic_string<C>&);
 idref (const std::basic_string<C>&,
 std::size_t pos,
 std::size_t n = npos);

public:
 idref (const idref&);

public:
 virtual idref*
 _clone () const;

public:
 idref&
 operator= (C c);

 idref&
 operator= (const C* s);

 idref&
 operator= (const std::basic_string<C>&)

 idref&
 operator= (const idref&);

public:
 const type*

July 201414 C++/Tree Mapping User Manual, v4.0.0

2.5.5 Mapping for IDREF

 operator-> () const;

 type*
 operator-> ();

 const type&
 operator* () const;

 type&
 operator* ();

 const type*
 get () const;

 type*
 get ();

 // Conversion to bool.
 //
public:
 typedef void (idref::*bool_convertible)();
 operator bool_convertible () const;
};

The object, idref instance refers to, is the immediate container of the matching id instance.
For example, with the following instance document and schema:

<!-- test.xml -->
<root>
 <object id="obj-1" text="hello"/>
 <reference>obj-1</reference>
</root>

<!-- test.xsd -->
<schema>
 <complexType name="object_type">
 <attribute name="id" type="ID"/>
 <attribute name="text" type="string"/>
 </complexType>

 <complexType name="root_type">
 <sequence>
 <element name="object" type="object_type"/>
 <element name="reference" type="IDREF"/>
 </sequence>
 </complexType>

 <element name="root" type="root_type"/>
</schema>

15July 2014 C++/Tree Mapping User Manual, v4.0.0

2.5.5 Mapping for IDREF

The ref instance in the code below will refer to an object of type object_type :

root_type& root = ...;
xml_schema::idref& ref (root.reference ());
object_type& obj (dynamic_cast<object_type&> (*ref));
cout << obj.text () << endl;

The smart pointer interface of the idref class always returns a pointer or reference to
xml_schema::type . This means that you will need to manually cast such pointer or reference
to its real (dynamic) type before you can use it (unless all you need is the base interface provided
by xml_schema::type). As a special extension to the XML Schema language, the mapping
supports static typing of idref references by employing the refType extension attribute. The
following example illustrates this mechanism:

<!-- test.xsd -->
<schema
 xmlns:xse="http://www.codesynthesis.com/xmlns/xml-schema-extension">

 ...

 <element name="reference" type="IDREF" xse:refType="object_type"/>

 ...

</schema>

With this modification we do not need to do manual casting anymore:

root_type& root = ...;
root_type::reference_type& ref (root.reference ());
object_type& obj (*ref);
cout << ref->text () << endl;

2.5.6 Mapping for base64Binary and hexBinary

The XML Schema base64Binary and hexBinary built-in data types are mapped to the
xml_schema::base64_binary and xml_schema::hex_binary C++ classes, respec-
tively. The base64_binary and hex_binary classes support a simple buffer abstraction by
inheriting from the xml_schema::buffer class:

class bounds: public virtual exception
{
public:
 virtual const char*
 what () const throw ();
};

class buffer

July 201416 C++/Tree Mapping User Manual, v4.0.0

2.5.6 Mapping for base64Binary and hexBinary

{
public:
 typedef std::size_t size_t;

public:
 buffer (size_t size = 0);
 buffer (size_t size, size_t capacity);
 buffer (const void* data, size_t size);
 buffer (const void* data, size_t size, size_t capacity);
 buffer (void* data,
 size_t size,
 size_t capacity,
 bool assume_ownership);

public:
 buffer (const buffer&);

 buffer&
 operator= (const buffer&);

 void
 swap (buffer&);

public:
 size_t
 capacity () const;

 bool
 capacity (size_t);

public:
 size_t
 size () const;

 bool
 size (size_t);

public:
 const char*
 data () const;

 char*
 data ();

 const char*
 begin () const;

 char*
 begin ();

 const char*

17July 2014 C++/Tree Mapping User Manual, v4.0.0

2.5.6 Mapping for base64Binary and hexBinary

 end () const;

 char*
 end ();
};

The last overloaded constructor reuses an existing data buffer instead of making a copy. If the
assume_ownership argument is true , the instance assumes ownership of the memory block
pointed to by the data argument and will eventually release it by calling operator delete .
The capacity and size modifier functions return true if the underlying buffer has moved.

The bounds exception is thrown if the constructor arguments violate the (size <= capac-
ity) constraint.

The base64_binary and hex_binary classes support the buffer interface and perform
automatic decoding/encoding from/to the Base64 and Hex formats, respectively:

class base64_binary: public simple_type, public buffer
{
public:
 base64_binary (size_t size = 0);
 base64_binary (size_t size, size_t capacity);
 base64_binary (const void* data, size_t size);
 base64_binary (const void* data, size_t size, size_t capacity);
 base64_binary (void* data,
 size_t size,
 size_t capacity,
 bool assume_ownership);

public:
 base64_binary (const base64_binary&);

 base64_binary&
 operator= (const base64_binary&);

 virtual base64_binary*
 _clone () const;

public:
 std::basic_string<C>
 encode () const;
};

class hex_binary: public simple_type, public buffer
{
public:
 hex_binary (size_t size = 0);
 hex_binary (size_t size, size_t capacity);
 hex_binary (const void* data, size_t size);
 hex_binary (const void* data, size_t size, size_t capacity);

July 201418 C++/Tree Mapping User Manual, v4.0.0

2.5.6 Mapping for base64Binary and hexBinary

 hex_binary (void* data,
 size_t size,
 size_t capacity,
 bool assume_ownership);

public:
 hex_binary (const hex_binary&);

 hex_binary&
 operator= (const hex_binary&);

 virtual hex_binary*
 _clone () const;

public:
 std::basic_string<C>
 encode () const;
};

2.5.7 Time Zone Representation

The date , dateTime , gDay, gMonth , gMonthDay , gYear , gYearMonth , and time
XML Schema built-in types all include an optional time zone component. The following
xml_schema::time_zone base class is used to represent this information:

class time_zone
{
public:
 time_zone ();
 time_zone (short hours, short minutes);

 bool
 zone_present () const;

 void
 zone_reset ();

 short
 zone_hours () const;

 void
 zone_hours (short);

 short
 zone_minutes () const;

 void
 zone_minutes (short);
};

19July 2014 C++/Tree Mapping User Manual, v4.0.0

2.5.7 Time Zone Representation

bool
operator== (const time_zone&, const time_zone&);

bool
operator!= (const time_zone&, const time_zone&);

The zone_present() accessor function returns true if the time zone is specified. The
zone_reset() modifier function resets the time zone object to the not specified state. If the
time zone offset is negative then both hours and minutes components are represented as negative
integers.

2.5.8 Mapping for date

The XML Schema date built-in data type is mapped to the xml_schema::date C++ class
which represents a year, a day, and a month with an optional time zone. Its interface is presented
below. For more information on the base xml_schema::time_zone class refer to Section
2.5.7, "Time Zone Representation".

class date: public simple_type, public time_zone
{
public:
 date (int year, unsigned short month, unsigned short day);
 date (int year, unsigned short month, unsigned short day,
 short zone_hours, short zone_minutes);

public:
 date (const date&);

 date&
 operator= (const date&);

 virtual date*
 _clone () const;

public:
 int
 year () const;

 void
 year (int);

 unsigned short
 month () const;

 void
 month (unsigned short);

 unsigned short
 day () const;

July 201420 C++/Tree Mapping User Manual, v4.0.0

2.5.8 Mapping for date

 void
 day (unsigned short);
};

bool
operator== (const date&, const date&);

bool
operator!= (const date&, const date&);

2.5.9 Mapping for dateTime

The XML Schema dateTime built-in data type is mapped to the
xml_schema::date_time C++ class which represents a year, a month, a day, hours,
minutes, and seconds with an optional time zone. Its interface is presented below. For more infor-
mation on the base xml_schema::time_zone class refer to Section 2.5.7, "Time Zone
Representation".

class date_time: public simple_type, public time_zone
{
public:
 date_time (int year, unsigned short month, unsigned short day,
 unsigned short hours, unsigned short minutes,
 double seconds);

 date_time (int year, unsigned short month, unsigned short day,
 unsigned short hours, unsigned short minutes,
 double seconds, short zone_hours, short zone_minutes);
public:
 date_time (const date_time&);

 date_time&
 operator= (const date_time&);

 virtual date_time*
 _clone () const;

public:
 int
 year () const;

 void
 year (int);

 unsigned short
 month () const;

 void

21July 2014 C++/Tree Mapping User Manual, v4.0.0

2.5.9 Mapping for dateTime

 month (unsigned short);

 unsigned short
 day () const;

 void
 day (unsigned short);

 unsigned short
 hours () const;

 void
 hours (unsigned short);

 unsigned short
 minutes () const;

 void
 minutes (unsigned short);

 double
 seconds () const;

 void
 seconds (double);
};

bool
operator== (const date_time&, const date_time&);

bool
operator!= (const date_time&, const date_time&);

2.5.10 Mapping for duration

The XML Schema duration built-in data type is mapped to the xml_schema::duration
C++ class which represents a potentially negative duration in the form of years, months, days,
hours, minutes, and seconds. Its interface is presented below.

class duration: public simple_type
{
public:
 duration (bool negative,
 unsigned int years, unsigned int months, unsigned int days,
 unsigned int hours, unsigned int minutes, double seconds);
public:
 duration (const duration&);

 duration&
 operator= (const duration&);

July 201422 C++/Tree Mapping User Manual, v4.0.0

2.5.10 Mapping for duration

 virtual duration*
 _clone () const;

public:
 bool
 negative () const;

 void
 negative (bool);

 unsigned int
 years () const;

 void
 years (unsigned int);

 unsigned int
 months () const;

 void
 months (unsigned int);

 unsigned int
 days () const;

 void
 days (unsigned int);

 unsigned int
 hours () const;

 void
 hours (unsigned int);

 unsigned int
 minutes () const;

 void
 minutes (unsigned int);

 double
 seconds () const;

 void
 seconds (double);
};

bool

23July 2014 C++/Tree Mapping User Manual, v4.0.0

2.5.10 Mapping for duration

operator== (const duration&, const duration&);

bool
operator!= (const duration&, const duration&);

2.5.11 Mapping for gDay

The XML Schema gDay built-in data type is mapped to the xml_schema::gday C++ class
which represents a day of the month with an optional time zone. Its interface is presented below.
For more information on the base xml_schema::time_zone class refer to Section 2.5.7,
"Time Zone Representation".

class gday: public simple_type, public time_zone
{
public:
 explicit
 gday (unsigned short day);
 gday (unsigned short day, short zone_hours, short zone_minutes);

public:
 gday (const gday&);

 gday&
 operator= (const gday&);

 virtual gday*
 _clone () const;

public:
 unsigned short
 day () const;

 void
 day (unsigned short);
};

bool
operator== (const gday&, const gday&);

bool
operator!= (const gday&, const gday&);

2.5.12 Mapping for gMonth

The XML Schema gMonth built-in data type is mapped to the xml_schema::gmonth C++
class which represents a month of the year with an optional time zone. Its interface is presented
below. For more information on the base xml_schema::time_zone class refer to Section
2.5.7, "Time Zone Representation".

July 201424 C++/Tree Mapping User Manual, v4.0.0

2.5.11 Mapping for gDay

class gmonth: public simple_type, public time_zone
{
public:
 explicit
 gmonth (unsigned short month);
 gmonth (unsigned short month,
 short zone_hours, short zone_minutes);

public:
 gmonth (const gmonth&);

 gmonth&
 operator= (const gmonth&);

 virtual gmonth*
 _clone () const;

public:
 unsigned short
 month () const;

 void
 month (unsigned short);
};

bool
operator== (const gmonth&, const gmonth&);

bool
operator!= (const gmonth&, const gmonth&);

2.5.13 Mapping for gMonthDay

The XML Schema gMonthDay built-in data type is mapped to the
xml_schema::gmonth_day C++ class which represents a day and a month of the year with
an optional time zone. Its interface is presented below. For more information on the base
xml_schema::time_zone class refer to Section 2.5.7, "Time Zone Representation".

class gmonth_day: public simple_type, public time_zone
{
public:
 gmonth_day (unsigned short month, unsigned short day);
 gmonth_day (unsigned short month, unsigned short day,
 short zone_hours, short zone_minutes);

public:
 gmonth_day (const gmonth_day&);

 gmonth_day&
 operator= (const gmonth_day&);

25July 2014 C++/Tree Mapping User Manual, v4.0.0

2.5.13 Mapping for gMonthDay

 virtual gmonth_day*
 _clone () const;

public:
 unsigned short
 month () const;

 void
 month (unsigned short);

 unsigned short
 day () const;

 void
 day (unsigned short);
};

bool
operator== (const gmonth_day&, const gmonth_day&);

bool
operator!= (const gmonth_day&, const gmonth_day&);

2.5.14 Mapping for gYear

The XML Schema gYear built-in data type is mapped to the xml_schema::gyear C++
class which represents a year with an optional time zone. Its interface is presented below. For
more information on the base xml_schema::time_zone class refer to Section 2.5.7, "Time
Zone Representation".

class gyear: public simple_type, public time_zone
{
public:
 explicit
 gyear (int year);
 gyear (int year, short zone_hours, short zone_minutes);

public:
 gyear (const gyear&);

 gyear&
 operator= (const gyear&);

 virtual gyear*
 _clone () const;

public:
 int
 year () const;

July 201426 C++/Tree Mapping User Manual, v4.0.0

2.5.14 Mapping for gYear

 void
 year (int);
};

bool
operator== (const gyear&, const gyear&);

bool
operator!= (const gyear&, const gyear&);

2.5.15 Mapping for gYearMonth

The XML Schema gYearMonth built-in data type is mapped to the
xml_schema::gyear_month C++ class which represents a year and a month with an
optional time zone. Its interface is presented below. For more information on the base
xml_schema::time_zone class refer to Section 2.5.7, "Time Zone Representation".

class gyear_month: public simple_type, public time_zone
{
public:
 gyear_month (int year, unsigned short month);
 gyear_month (int year, unsigned short month,
 short zone_hours, short zone_minutes);
public:
 gyear_month (const gyear_month&);

 gyear_month&
 operator= (const gyear_month&);

 virtual gyear_month*
 _clone () const;

public:
 int
 year () const;

 void
 year (int);

 unsigned short
 month () const;

 void
 month (unsigned short);
};

bool

27July 2014 C++/Tree Mapping User Manual, v4.0.0

2.5.15 Mapping for gYearMonth

operator== (const gyear_month&, const gyear_month&);

bool
operator!= (const gyear_month&, const gyear_month&);

2.5.16 Mapping for time

The XML Schema time built-in data type is mapped to the xml_schema::time C++ class
which represents hours, minutes, and seconds with an optional time zone. Its interface is
presented below. For more information on the base xml_schema::time_zone class refer to
Section 2.5.7, "Time Zone Representation".

class time: public simple_type, public time_zone
{
public:
 time (unsigned short hours, unsigned short minutes, double seconds);
 time (unsigned short hours, unsigned short minutes, double seconds,
 short zone_hours, short zone_minutes);

public:
 time (const time&);

 time&
 operator= (const time&);

 virtual time*
 _clone () const;

public:
 unsigned short
 hours () const;

 void
 hours (unsigned short);

 unsigned short
 minutes () const;

 void
 minutes (unsigned short);

 double
 seconds () const;

 void
 seconds (double);
};

bool

July 201428 C++/Tree Mapping User Manual, v4.0.0

2.5.16 Mapping for time

operator== (const time&, const time&);

bool
operator!= (const time&, const time&);

2.6 Mapping for Simple Types

An XML Schema simple type is mapped to a C++ class with the same name as the simple type.
The class defines a public copy constructor, a public copy assignment operator, and a public
virtual _clone function. The _clone function is declared const , does not take any argu-
ments, and returns a pointer to a complete copy of the instance allocated in the free store. The
_clone function shall be used to make copies when static type and dynamic type of the instance
may differ (see Section 2.11, "Mapping for xsi:type and Substitution Groups"). For instance:

<simpleType name="object">
 ...
</simpleType>

is mapped to:

class object: ...
{
public:
 object (const object&);

public:
 object&
 operator= (const object&);

public:
 virtual object*
 _clone () const;

 ...

};

The base class specification and the rest of the class definition depend on the type of derivation
used to define the simple type.

2.6.1 Mapping for Derivation by Restriction

XML Schema derivation by restriction is mapped to C++ public inheritance. The base type of the
restriction becomes the base type for the resulting C++ class. In addition to the members
described in Section 2.6, "Mapping for Simple Types", the resulting C++ class defines a public
constructor with the base type as its single argument. For instance:

29July 2014 C++/Tree Mapping User Manual, v4.0.0

2.6 Mapping for Simple Types

<simpleType name="object">
 <restriction base="base">
 ...
 </restriction>
</simpleType>

is mapped to:

class object: public base
{
public:
 object (const base&);
 object (const object&);

public:
 object&
 operator= (const object&);

public:
 virtual object*
 _clone () const;
};

2.6.2 Mapping for Enumerations

XML Schema restriction by enumeration is mapped to a C++ class with semantics similar to C++
enum. Each XML Schema enumeration element is mapped to a C++ enumerator with the name
derived from the value attribute and defined in the class scope. In addition to the members
described in Section 2.6, "Mapping for Simple Types", the resulting C++ class defines a public
constructor that can be called with one of the enumerators as its single argument, a public
constructor that can be called with enumeration’s base value as its single argument, a public
assignment operator that can be used to assign the value of one of the enumerators, and a public
implicit conversion operator to the underlying C++ enum type.

Furthermore, for string-based enumeration types, the resulting C++ class defines a public
constructor with a single argument of type const C* and a public constructor with a single
argument of type const std::basic_string<C>& . For instance:

<simpleType name="color">
 <restriction base="string">
 <enumeration value="red"/>
 <enumeration value="green"/>
 <enumeration value="blue"/>
 </restriction>
</simpleType>

July 201430 C++/Tree Mapping User Manual, v4.0.0

2.6.2 Mapping for Enumerations

is mapped to:

class color: public xml_schema::string
{
public:
 enum value
 {
 red,
 green,
 blue
 };

public:
 color (value);
 color (const C*);
 color (const std::basic_string<C>&);
 color (const xml_schema::string&);
 color (const color&);

public:
 color&
 operator= (value);

 color&
 operator= (const color&);

public:
 virtual color*
 _clone () const;

public:
 operator value () const;
};

2.6.3 Mapping for Derivation by List

XML Schema derivation by list is mapped to C++ public inheritance from
xml_schema::simple_type (Section 2.5.3, "Mapping for anySimpleType ") and a suit-
able sequence type. The list item type becomes the element type of the sequence. In addition to
the members described in Section 2.6, "Mapping for Simple Types", the resulting C++ class
defines a public default constructor, a public constructor with the first argument of type
size_type and the second argument of list item type that creates a list object with the specified
number of copies of the specified element value, and a public constructor with the two arguments
of an input iterator type that creates a list object from an iterator range. For instance:

<simpleType name="int_list">
 <list itemType="int"/>
</simpleType>

31July 2014 C++/Tree Mapping User Manual, v4.0.0

2.6.3 Mapping for Derivation by List

is mapped to:

class int_list: public simple_type,
 public sequence<int>
{
public:
 int_list ();
 int_list (size_type n, int x);

 template <typename I>
 int_list (const I& begin, const I& end);
 int_list (const int_list&);

public:
 int_list&
 operator= (const int_list&);

public:
 virtual int_list*
 _clone () const;
};

The sequence class template is defined in an implementation-specific namespace. It conforms
to the sequence interface as defined by the ISO/ANSI Standard for C++ (ISO/IEC 14882:1998,
Section 23.1.1, "Sequences"). Practically, this means that you can treat such a sequence as if it
was std::vector . One notable extension to the standard interface that is available only for
sequences of non-fundamental C++ types is the addition of the overloaded push_back and
insert member functions which instead of the constant reference to the element type accept
automatic pointer (std::auto_ptr or std::unique_ptr , depending on the C++ standard
selected) to the element type. These functions assume ownership of the pointed to object and
reset the passed automatic pointer.

2.6.4 Mapping for Derivation by Union

XML Schema derivation by union is mapped to C++ public inheritance from
xml_schema::simple_type (Section 2.5.3, "Mapping for anySimpleType ") and
std::basic_string<C> . In addition to the members described in Section 2.6, "Mapping for
Simple Types", the resulting C++ class defines a public constructor with a single argument of
type const C* and a public constructor with a single argument of type const
std::basic_string<C>& . For instance:

<simpleType name="int_string_union">
 <xsd:union memberTypes="xsd:int xsd:string"/>
</simpleType>

July 201432 C++/Tree Mapping User Manual, v4.0.0

2.6.4 Mapping for Derivation by Union

is mapped to:

class int_string_union: public simple_type,
 public std::basic_string<C>
{
public:
 int_string_union (const C*);
 int_string_union (const std::basic_string<C>&);
 int_string_union (const int_string_union&);

public:
 int_string_union&
 operator= (const int_string_union&);

public:
 virtual int_string_union*
 _clone () const;
};

2.7 Mapping for Complex Types

An XML Schema complex type is mapped to a C++ class with the same name as the complex
type. The class defines a public copy constructor, a public copy assignment operator, and a public
virtual _clone function. The _clone function is declared const , does not take any argu-
ments, and returns a pointer to a complete copy of the instance allocated in the free store. The
_clone function shall be used to make copies when static type and dynamic type of the instance
may differ (see Section 2.11, "Mapping for xsi:type and Substitution Groups").

Additionally, the resulting C++ class defines two public constructors that take an initializer for
each member of the complex type and all its base types that belongs to the One cardinality class
(see Section 2.8, "Mapping for Local Elements and Attributes"). In the first constructor, the argu-
ments are passed as constant references and the newly created instance is initialized with copies
of the passed objects. In the second constructor, arguments that are complex types (that is, they
themselves contain elements or attributes) are passed as either std::auto_ptr (C++98) or
std::unique_ptr (C++11), depending on the C++ standard selected. In this case the newly
created instance is directly initialized with and assumes ownership of the pointed to objects and
the std::[auto|unique]_ptr arguments are reset to 0. For instance:

<complexType name="complex">
 <sequence>
 <element name="a" type="int"/>
 <element name="b" type="string"/>
 </sequence>
</complexType>

<complexType name="object">
 <sequence>

33July 2014 C++/Tree Mapping User Manual, v4.0.0

2.7 Mapping for Complex Types

 <element name="s-one" type="boolean"/>
 <element name="c-one" type="complex"/>
 <element name="optional" type="int" minOccurs="0"/>
 <element name="sequence" type="string" maxOccurs="unbounded"/>
 </sequence>
</complexType>

is mapped to:

class complex: public xml_schema::type
{
public:
 object (const int& a, const xml_schema::string& b);
 object (const complex&);

public:
 object&
 operator= (const complex&);

public:
 virtual complex*
 _clone () const;

 ...

};

class object: public xml_schema::type
{
public:
 object (const bool& s_one, const complex& c_one);
 object (const bool& s_one, std::[auto|unique]_ptr<complex> c_one);
 object (const object&);

public:
 object&
 operator= (const object&);

public:
 virtual object*
 _clone () const;

 ...

};

Notice that the generated complex class does not have the second
(std::[auto|unique]_ptr) version of the constructor since all its required members are of
simple types.

July 201434 C++/Tree Mapping User Manual, v4.0.0

2.7 Mapping for Complex Types

If an XML Schema complex type has an ultimate base which is an XML Schema simple type
then the resulting C++ class also defines a public constructor that takes an initializer for the base
type as well as for each member of the complex type and all its base types that belongs to the One
cardinality class. For instance:

<complexType name="object">
 <simpleContent>
 <extension base="date">
 <attribute name="lang" type="language" use="required"/>
 </extension>
 </simpleContent>
</complexType>

is mapped to:

class object: public xml_schema::string
{
public:
 object (const xml_schema::language& lang);

 object (const xml_schema::date& base,
 const xml_schema::language& lang);

 ...

};

Furthermore, for string-based XML Schema complex types, the resulting C++ class also defines
two public constructors with the first arguments of type const C* and
std::basic_string<C>& , respectively, followed by arguments for each member of the
complex type and all its base types that belongs to the One cardinality class. For enumera-
tion-based complex types the resulting C++ class also defines a public constructor with the first
arguments of the underlying enum type followed by arguments for each member of the complex
type and all its base types that belongs to the One cardinality class. For instance:

<simpleType name="color">
 <restriction base="string">
 <enumeration value="red"/>
 <enumeration value="green"/>
 <enumeration value="blue"/>
 </restriction>
</simpleType>

<complexType name="object">
 <simpleContent>
 <extension base="color">

35July 2014 C++/Tree Mapping User Manual, v4.0.0

2.7 Mapping for Complex Types

 <attribute name="lang" type="language" use="required"/>
 </extension>
 </simpleContent>
</complexType>

is mapped to:

class color: public xml_schema::string
{
public:
 enum value
 {
 red,
 green,
 blue
 };

public:
 color (value);
 color (const C*);
 color (const std::basic_string<C>&);

 ...

};

class object: color
{
public:
 object (const color& base,
 const xml_schema::language& lang);

 object (const color::value& base,
 const xml_schema::language& lang);

 object (const C* base,
 const xml_schema::language& lang);

 object (const std::basic_string<C>& base,
 const xml_schema::language& lang);

 ...

};

Additional constructors can be requested with the --generate-default-ctor and
--generate-from-base-ctor options. See the XSD Compiler Command Line Manual for
details.

July 201436 C++/Tree Mapping User Manual, v4.0.0

2.7 Mapping for Complex Types

http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml

If an XML Schema complex type is not explicitly derived from any type, the resulting C++ class
is derived from xml_schema::type . In cases where an XML Schema complex type is
defined using derivation by extension or restriction, the resulting C++ base class specification
depends on the type of derivation and is described in the subsequent sections.

The mapping for elements and attributes that are defined in a complex type is described in
Section 2.8, "Mapping for Local Elements and Attributes".

2.7.1 Mapping for Derivation by Extension

XML Schema derivation by extension is mapped to C++ public inheritance. The base type of the
extension becomes the base type for the resulting C++ class.

2.7.2 Mapping for Derivation by Restriction

XML Schema derivation by restriction is mapped to C++ public inheritance. The base type of the
restriction becomes the base type for the resulting C++ class. XML Schema elements and
attributes defined within restriction do not result in any definitions in the resulting C++ class.
Instead, corresponding (unrestricted) definitions are inherited from the base class. In the future
versions of this mapping, such elements and attributes may result in redefinitions of accessors and
modifiers to reflect their restricted semantics.

2.8 Mapping for Local Elements and Attributes

XML Schema element and attribute definitions are called local if they appear within a complex
type definition, an element group definition, or an attribute group definitions.

Local XML Schema element and attribute definitions have the same C++ mapping. Therefore, in
this section, local elements and attributes are collectively called members.

While there are many different member cardinality combinations (determined by the use
attribute for attributes and the minOccurs and maxOccurs attributes for elements), the
mapping divides all possible cardinality combinations into three cardinality classes:

one
attributes: use == "required"
attributes: use == "optional" and has default or fixed value
elements: minOccurs == "1" and maxOccurs == "1"

optional
attributes: use == "optional" and doesn’t have default or fixed value
elements: minOccurs == "0" and maxOccurs == "1"

37July 2014 C++/Tree Mapping User Manual, v4.0.0

2.8 Mapping for Local Elements and Attributes

sequence
elements: maxOccurs > "1"

An optional attribute with a default or fixed value acquires this value if the attribute hasn’t been
specified in an instance document (see Appendix A, "Default and Fixed Values"). This mapping
places such optional attributes to the One cardinality class.

A member is mapped to a set of public type definitions (typedef s) and a set of public accessor
and modifier functions. Type definitions have names derived from the member’s name. The
accessor and modifier functions have the same name as the member. For example:

<complexType name="object">
 <sequence>
 <element name="member" type="string"/>
 </sequence>
</complexType>

is mapped to:

class object: public xml_schema::type
{
public:
 typedef xml_schema::string member_type;

 const member_type&
 member () const;

 ...

};

In addition, if a member has a default or fixed value, a static accessor function is generated that
returns this value. For example:

<complexType name="object">
 <attribute name="data" type="string" default="test"/>
</complexType>

is mapped to:

class object: public xml_schema::type
{
public:
 typedef xml_schema::string data_type;

 const data_type&
 data () const;

 static const data_type&

July 201438 C++/Tree Mapping User Manual, v4.0.0

2.8 Mapping for Local Elements and Attributes

 data_default_value ();

 ...

};

Names and semantics of type definitions for the member as well as signatures of the accessor and
modifier functions depend on the member’s cardinality class and are described in the following
sub-sections.

2.8.1 Mapping for Members with the One Cardinality Class

For the One cardinality class, the type definitions consist of an alias for the member’s type with
the name created by appending the _type suffix to the member’s name.

The accessor functions come in constant and non-constant versions. The constant accessor func-
tion returns a constant reference to the member and can be used for read-only access. The
non-constant version returns an unrestricted reference to the member and can be used for
read-write access.

The first modifier function expects an argument of type reference to constant of the member’s
type. It makes a deep copy of its argument. Except for member’s types that are mapped to funda-
mental C++ types, the second modifier function is provided that expects an argument of type
automatic pointer (std::auto_ptr or std::unique_ptr , depending on the C++ standard
selected) to the member’s type. It assumes ownership of the pointed to object and resets the
passed automatic pointer. For instance:

<complexType name="object">
 <sequence>
 <element name="member" type="string"/>
 </sequence>
</complexType>

is mapped to:

class object: public xml_schema::type
{
public:
 // Type definitions.
 //
 typedef xml_schema::string member_type;

 // Accessors.
 //
 const member_type&
 member () const;

 member_type&

39July 2014 C++/Tree Mapping User Manual, v4.0.0

2.8.1 Mapping for Members with the One Cardinality Class

 member ();

 // Modifiers.
 //
 void
 member (const member_type&);

 void
 member (std::[auto|unique]_ptr<member_type>);
 ...

};

In addition, if requested by specifying the --generate-detach option and only for members
of non-fundamental C++ types, the mapping provides a detach function that returns an automatic
pointer to the member’s type, for example:

class object: public xml_schema::type
{
public:
 ...

 std::[auto|unique]_ptr<member_type>
 detach_member ();
 ...

};

This function detaches the value from the tree leaving the member value uninitialized. Accessing
such an uninitialized value prior to re-initializing it results in undefined behavior.

The following code shows how one could use this mapping:

void
f (object& o)
{
 using xml_schema::string;

 string s (o.member ()); // get
 object::member_type& sr (o.member ()); // get

 o.member ("hello"); // set, deep copy
 o.member () = "hello"; // set, deep copy

 // C++98 version.
 //
 std::auto_ptr<string> p (new string ("hello"));
 o.member (p); // set, assumes ownership
 p = o.detach_member (); // detach, member is uninitialized
 o.member (p); // re-attach

July 201440 C++/Tree Mapping User Manual, v4.0.0

2.8.1 Mapping for Members with the One Cardinality Class

 // C++11 version.
 //
 std::unique_ptr<string> p (new string ("hello"));
 o.member (std::move (p)); // set, assumes ownership
 p = o.detach_member (); // detach, member is uninitialized
 o.member (std::move (p)); // re-attach
}

2.8.2 Mapping for Members with the Optional Cardinality Class

For the Optional cardinality class, the type definitions consist of an alias for the member’s type
with the name created by appending the _type suffix to the member’s name and an alias for the
container type with the name created by appending the _optional suffix to the member’s
name.

Unlike accessor functions for the One cardinality class, accessor functions for the Optional cardi-
nality class return references to corresponding containers rather than directly to members. The
accessor functions come in constant and non-constant versions. The constant accessor function
returns a constant reference to the container and can be used for read-only access. The
non-constant version returns an unrestricted reference to the container and can be used for
read-write access.

The modifier functions are overloaded for the member’s type and the container type. The first
modifier function expects an argument of type reference to constant of the member’s type. It
makes a deep copy of its argument. Except for member’s types that are mapped to fundamental
C++ types, the second modifier function is provided that expects an argument of type automatic
pointer (std::auto_ptr or std::unique_ptr , depending on the C++ standard selected)
to the member’s type. It assumes ownership of the pointed to object and resets the passed auto-
matic pointer. The last modifier function expects an argument of type reference to constant of the
container type. It makes a deep copy of its argument. For instance:

<complexType name="object">
 <sequence>
 <element name="member" type="string" minOccurs="0"/>
 </sequence>
</complexType>

is mapped to:

class object: public xml_schema::type
{
public:
 // Type definitions.
 //
 typedef xml_schema::string member_type;
 typedef optional<member_type> member_optional;

41July 2014 C++/Tree Mapping User Manual, v4.0.0

2.8.2 Mapping for Members with the Optional Cardinality Class

 // Accessors.
 //
 const member_optional&
 member () const;

 member_optional&
 member ();

 // Modifiers.
 //
 void
 member (const member_type&);

 void
 member (std::[auto|unique]_ptr<member_type>);

 void
 member (const member_optional&);

 ...

};

The optional class template is defined in an implementation-specific namespace and has the
following interface. The [auto|unique]_ptr -based constructor and modifier function are
only available if the template argument is not a fundamental C++ type.

template <typename X>
class optional
{
public:
 optional ();

 // Makes a deep copy.
 //
 explicit
 optional (const X&);

 // Assumes ownership.
 //
 explicit
 optional (std::[auto|unique]_ptr<X>);

 optional (const optional&);

public:
 optional&
 operator= (const X&);

 optional&

July 201442 C++/Tree Mapping User Manual, v4.0.0

2.8.2 Mapping for Members with the Optional Cardinality Class

 operator= (const optional&);

 // Pointer-like interface.
 //
public:
 const X*
 operator-> () const;

 X*
 operator-> ();

 const X&
 operator* () const;

 X&
 operator* ();

 typedef void (optional::*bool_convertible) ();
 operator bool_convertible () const;

 // Get/set interface.
 //
public:
 bool
 present () const;

 const X&
 get () const;

 X&
 get ();

 // Makes a deep copy.
 //
 void
 set (const X&);

 // Assumes ownership.
 //
 void
 set (std::[auto|unique]_ptr<X>);

 // Detach and return the contained value.
 //
 std::[auto|unique]_ptr<X>
 detach ();

 void
 reset ();
};

43July 2014 C++/Tree Mapping User Manual, v4.0.0

2.8.2 Mapping for Members with the Optional Cardinality Class

template <typename X>
bool
operator== (const optional<X>&, const optional<X>&);

template <typename X>
bool
operator!= (const optional<X>&, const optional<X>&);

template <typename X>
bool
operator< (const optional<X>&, const optional<X>&);

template <typename X>
bool
operator> (const optional<X>&, const optional<X>&);

template <typename X>
bool
operator<= (const optional<X>&, const optional<X>&);

template <typename X>
bool
operator>= (const optional<X>&, const optional<X>&);

The following code shows how one could use this mapping:

void
f (object& o)
{
 using xml_schema::string;

 if (o.member ().present ()) // test
 {
 string& s (o.member ().get ()); // get
 o.member ("hello"); // set, deep copy
 o.member ().set ("hello"); // set, deep copy
 o.member ().reset (); // reset
 }

 // Same as above but using pointer notation:
 //
 if (o.member ()) // test
 {
 string& s (*o.member ()); // get
 o.member ("hello"); // set, deep copy
 *o.member () = "hello"; // set, deep copy
 o.member ().reset (); // reset
 }

 // C++98 version.
 //

July 201444 C++/Tree Mapping User Manual, v4.0.0

2.8.2 Mapping for Members with the Optional Cardinality Class

 std::auto_ptr<string> p (new string ("hello"));
 o.member (p); // set, assumes ownership

 p = new string ("hello");
 o.member ().set (p); // set, assumes ownership

 p = o.member ().detach (); // detach, member is reset
 o.member ().set (p); // re-attach

 // C++11 version.
 //
 std::unique_ptr<string> p (new string ("hello"));
 o.member (std::move (p)); // set, assumes ownership

 p.reset (new string ("hello"));
 o.member ().set (std::move (p)); // set, assumes ownership

 p = o.member ().detach (); // detach, member is reset
 o.member ().set (std::move (p)); // re-attach
}

2.8.3 Mapping for Members with the Sequence Cardinality Class

For the Sequence cardinality class, the type definitions consist of an alias for the member’s type
with the name created by appending the _type suffix to the member’s name, an alias of the
container type with the name created by appending the _sequence suffix to the member’s
name, an alias of the iterator type with the name created by appending the _iterator suffix to
the member’s name, and an alias of the constant iterator type with the name created by appending
the _const_iterator suffix to the member’s name.

The accessor functions come in constant and non-constant versions. The constant accessor func-
tion returns a constant reference to the container and can be used for read-only access. The
non-constant version returns an unrestricted reference to the container and can be used for
read-write access.

The modifier function expects an argument of type reference to constant of the container type.
The modifier function makes a deep copy of its argument. For instance:

<complexType name="object">
 <sequence>
 <element name="member" type="string" minOccurs="unbounded"/>
 </sequence>
</complexType>

is mapped to:

45July 2014 C++/Tree Mapping User Manual, v4.0.0

2.8.3 Mapping for Members with the Sequence Cardinality Class

class object: public xml_schema::type
{
public:
 // Type definitions.
 //
 typedef xml_schema::string member_type;
 typedef sequence<member_type> member_sequence;
 typedef member_sequence::iterator member_iterator;
 typedef member_sequence::const_iterator member_const_iterator;

 // Accessors.
 //
 const member_sequence&
 member () const;

 member_sequence&
 member ();

 // Modifier.
 //
 void
 member (const member_sequence&);

 ...

};

The sequence class template is defined in an implementation-specific namespace. It conforms
to the sequence interface as defined by the ISO/ANSI Standard for C++ (ISO/IEC 14882:1998,
Section 23.1.1, "Sequences"). Practically, this means that you can treat such a sequence as if it
was std::vector . Two notable extensions to the standard interface that are available only for
sequences of non-fundamental C++ types are the addition of the overloaded push_back and
insert as well as the detach_back and detach member functions. The additional
push_back and insert functions accept an automatic pointer (std::auto_ptr or
std::unique_ptr , depending on the C++ standard selected) to the element type instead of
the constant reference. They assume ownership of the pointed to object and reset the passed auto-
matic pointer. The detach_back and detach functions detach the element value from the
sequence container and, by default, remove the element from the sequence. These additional
functions have the following signatures:

template <typename X>
class sequence
{
public:
 ...

 void
 push_back (std::[auto|unique]_ptr<X>)

July 201446 C++/Tree Mapping User Manual, v4.0.0

2.8.3 Mapping for Members with the Sequence Cardinality Class

 iterator
 insert (iterator position, std::[auto|unique]_ptr<X>)

 std::[auto|unique]_ptr<X>
 detach_back (bool pop = true);

 iterator
 detach (iterator position,
 std::[auto|unique]_ptr<X>& result,
 bool erase = true)

 ...
}

The following code shows how one could use this mapping:

void
f (object& o)
{
 using xml_schema::string;

 object::member_sequence& s (o.member ());

 // Iteration.
 //
 for (object::member_iterator i (s.begin ()); i != s.end (); ++i)
 {
 string& value (*i);
 }

 // Modification.
 //
 s.push_back ("hello"); // deep copy

 // C++98 version.
 //
 std::auto_ptr<string> p (new string ("hello"));
 s.push_back (p); // assumes ownership
 p = s.detach_back (); // detach and pop
 s.push_back (p); // re-append

 // C++11 version.
 //
 std::unique_ptr<string> p (new string ("hello"));
 s.push_back (std::move (p)); // assumes ownership
 p = s.detach_back (); // detach and pop
 s.push_back (std::move (p)); // re-append

 // Setting a new container.
 //
 object::member_sequence n;

47July 2014 C++/Tree Mapping User Manual, v4.0.0

2.8.3 Mapping for Members with the Sequence Cardinality Class

 n.push_back ("one");
 n.push_back ("two");
 o.member (n); // deep copy
}

2.8.4 Element Order

C++/Tree is a "flattening" mapping in a sense that many levels of nested compositors (choice
and sequence), all potentially with their own cardinalities, are in the end mapped to a flat set of
elements with one of the three cardinality classes discussed in the previous sections. While this
results in a simple and easy to use API for most types, in certain cases, the order of elements in
the actual XML documents is not preserved once parsed into the object model. And sometimes
such order has application-specific significance. As an example, consider a schema that defines a
batch of bank transactions:

<complexType name="withdraw">
 <sequence>
 <element name="account" type="unsignedInt"/>
 <element name="amount" type="unsignedInt"/>
 </sequence>
</complexType>

<complexType name="deposit">
 <sequence>
 <element name="account" type="unsignedInt"/>
 <element name="amount" type="unsignedInt"/>
 </sequence>
</complexType>

<complexType name="batch">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="withdraw" type="withdraw"/>
 <element name="deposit" type="deposit"/>
 </choice>
</complexType>

The batch can contain any number of transactions in any order but the order of transactions in
each actual batch is significant. For instance, consider what could happen if we reorder the trans-
actions and apply all the withdrawals before deposits.

For the batch schema type defined above the default C++/Tree mapping will produce a C++
class that contains a pair of sequence containers, one for each of the two elements. While this will
capture the content (transactions), the order of this content as it appears in XML will be lost.
Also, if we try to serialize the batch we just loaded back to XML, all the withdrawal transactions
will appear before deposits.

July 201448 C++/Tree Mapping User Manual, v4.0.0

2.8.4 Element Order

To overcome this limitation of a flattening mapping, C++/Tree allows us to mark certain XML
Schema types, for which content order is important, as ordered.

There are several command line options that control which schema types are treated as ordered.
To make an individual type ordered, we use the --ordered-type option, for example:

--ordered-type batch

To automatically treat all the types that are derived from an ordered type also ordered, we use the
--ordered-type-derived option. This is primarily useful if you would like to iterate over
the complete hierarchy’s content using the content order sequence (discussed below).

Ordered types are also useful for handling mixed content. To automatically mark all the types
with mixed content as ordered we use the --ordered-type-mixed option. For more infor-
mation on handling mixed content see Section 2.13, "Mapping for Mixed Content Models".

Finally, we can mark all the types in the schema we are compiling with the
--ordered-type-all option. You should only resort to this option if all the types in your
schema truly suffer from the loss of content order since, as we will discuss shortly, ordered types
require extra effort to access and, especially, modify. See the XSD Compiler Command Line
Manual for more information on these options.

Once a type is marked ordered, C++/Tree alters its mapping in several ways. Firstly, for each
local element, element wildcard (Section 2.12.4, "Element Wildcard Order"), and mixed content
text (Section 2.13, "Mapping for Mixed Content Models") in this type, a content id constant is
generated. Secondly, an addition sequence is added to the class that captures the content order.
Here is how the mapping of our batch class changes once we make it ordered:

class batch: public xml_schema::type
{
public:
 // withdraw
 //
 typedef withdraw withdraw_type;
 typedef sequence<withdraw_type> withdraw_sequence;
 typedef withdraw_sequence::iterator withdraw_iterator;
 typedef withdraw_sequence::const_iterator withdraw_const_iterator;

 static const std::size_t withdraw_id = 1;

 const withdraw_sequence&
 withdraw () const;

 withdraw_sequence&
 withdraw ();

 void

49July 2014 C++/Tree Mapping User Manual, v4.0.0

2.8.4 Element Order

http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml
http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml

 withdraw (const withdraw_sequence&);

 // deposit
 //
 typedef deposit deposit_type;
 typedef sequence<deposit_type> deposit_sequence;
 typedef deposit_sequence::iterator deposit_iterator;
 typedef deposit_sequence::const_iterator deposit_const_iterator;

 static const std::size_t deposit_id = 2;

 const deposit_sequence&
 deposit () const;

 deposit_sequence&
 deposit ();

 void
 deposit (const deposit_sequence&);

 // content_order
 //
 typedef xml_schema::content_order content_order_type;
 typedef std::vector<content_order_type> content_order_sequence;
 typedef content_order_sequence::iterator content_order_iterator;
 typedef content_order_sequence::const_iterator content_order_const_iterator;

 const content_order_sequence&
 content_order () const;

 content_order_sequence&
 content_order ();

 void
 content_order (const content_order_sequence&);

 ...
};

Notice the withdraw_id and deposit_id content ids as well as the extra
content_order sequence that does not correspond to any element in the schema definition.
The other changes to the mapping for ordered types has to do with XML parsing and serialization
code. During parsing the content order is captured in the content_order sequence while
during serialization this sequence is used to determine the order in which content is serialized.
The content_order sequence is also copied during copy construction and assigned during
copy assignment. It is also taken into account during comparison.

July 201450 C++/Tree Mapping User Manual, v4.0.0

2.8.4 Element Order

The entry type of the content_order sequence is the xml_schema::content_order
type that has the following interface:

namespace xml_schema
{
 struct content_order
 {
 content_order (std::size_t id, std::size_t index = 0);

 std::size_t id;
 std::size_t index;
 };

 bool
 operator== (const content_order&, const content_order&);

 bool
 operator!= (const content_order&, const content_order&);

 bool
 operator< (const content_order&, const content_order&);
}

The content_order sequence describes the order of content (elements, including wildcards,
as well as mixed content text). Each entry in this sequence consists of the content id (for example,
withdraw_id or deposit_id in our case) as well as, for elements of the sequence cardinal-
ity class, an index into the corresponding sequence container (the index is unused for the one and
optional cardinality classes). For example, in our case, if the content id is withdraw_id , then
the index will point into the withdraw element sequence.

With all this information we can now examine how to iterate over transaction in the batch in
content order:

batch& b = ...

for (batch::content_order_const_iterator i (b.content_order ().begin ());
 i != b.content_order ().end ();
 ++i)
{
 switch (i->id)
 {
 case batch::withdraw_id:
 {
 const withdraw& t (b.withdraw ()[i->index]);
 cerr << t.account () << " withdraw " << t.amount () << endl;
 break;
 }
 case batch::deposit_id:
 {

51July 2014 C++/Tree Mapping User Manual, v4.0.0

2.8.4 Element Order

 const deposit& t (b.deposit ()[i->index]);
 cerr << t.account () << " deposit " << t.amount () << endl;
 break;
 }
 default:
 {
 assert (false); // Unknown content id.
 }
 }
}

If we serialized our batch back to XML, we would also see that the order of transactions in the
output is exactly the same as in the input rather than all the withdrawals first followed by all the
deposits.

The most complex aspect of working with ordered types is modifications. Now we not only need
to change the content, but also remember to update the order information corresponding to this
change. As a first example, we add a deposit transaction to the batch:

using xml_schema::content_order;

batch::deposit_sequence& d (b.deposit ());
batch::withdraw_sequence& w (b.withdraw ());
batch::content_order_sequence& co (b.content_order ());

d.push_back (deposit (123456789, 100000));
co.push_back (content_order (batch::deposit_id, d.size () - 1));

In the above example we first added the content (deposit transaction) and then updated the
content order information by adding an entry with deposit_id content id and the index of the
just added deposit transaction.

Removing the last transaction can be easy if we know which transaction (deposit or withdrawal)
is last:

d.pop_back ();
co.pop_back ();

If, however, we do not know which transaction is last, then things get a bit more complicated:

switch (co.back ().id)
{
case batch::withdraw_id:
 {
 d.pop_back ();
 break;
 }
case batch::deposit_id:
 {

July 201452 C++/Tree Mapping User Manual, v4.0.0

2.8.4 Element Order

 w.pop_back ();
 break;
 }
}

co.pop_back ();

The following example shows how to add a transaction at the beginning of the batch:

w.push_back (withdraw (123456789, 100000));
co.insert (co.begin (),
 content_order (batch::withdraw_id, w.size () - 1));

Note also that when we merely modify the content of one of the elements in place, we do not
need to update its order since it doesn’t change. For example, here is how we can change the
amount in the first withdrawal:

w[0].amount (10000);

For the complete working code shown in this section refer to the order/element example in
the examples/cxx/tree/ directory in the XSD distribution.

If both the base and derived types are ordered, then the content order sequence is only added to
the base and the content ids are unique within the whole hierarchy. In this case the content order
sequence for the derived type contains ordering information for both base and derived content.

In some applications we may need to perform more complex content processing. For example, in
our case, we may need to remove all the withdrawal transactions. The default container,
std::vector , is not particularly suitable for such operations. What may be required by some
applications is a multi-index container that not only allows us to iterate in content order similar to
std::vector but also search by the content id as well as the content id and index pair.

While C++/Tree does not provide this functionality by default, it allows us to specify a custom
container type for content order with the --order-container command line option. The
only requirement from the generated code side for such a container is to provide the vector -like
push_back() , size() , and const iteration interfaces.

As an example, here is how we can use the Boost Multi-Index container for content order. First
we create the content-order-container.hxx header with the following definition (in
C++11, use the alias template instead):

#ifndef CONTENT_ORDER_CONTAINER
#define CONTENT_ORDER_CONTAINER

#include <cstddef> // std::size_t

#include <boost/multi_index_container.hpp>

53July 2014 C++/Tree Mapping User Manual, v4.0.0

2.8.4 Element Order

#include <boost/multi_index/member.hpp>
#include <boost/multi_index/identity.hpp>
#include <boost/multi_index/ordered_index.hpp>
#include <boost/multi_index/random_access_index.hpp>

struct by_id {};
struct by_id_index {};

template <typename T>
struct content_order_container:
 boost::multi_index::multi_index_container<
 T,
 boost::multi_index::indexed_by<
 boost::multi_index::random_access<>,
 boost::multi_index::ordered_unique<
 boost::multi_index::tag<by_id_index>,
 boost::multi_index::identity<T>
 >,
 boost::multi_index::ordered_non_unique<
 boost::multi_index::tag<by_id>,
 boost::multi_index::member<T, std::size_t, &T::id>
 >
 >
 >
{};

#endif

Next we add the following two XSD compiler options to include this header into every generated
header file and to use the custom container type (see the XSD compiler command line manual for
more information on shell quoting for the first option):

--hxx-prologue ’#include "content-order-container.hxx"’
--order-container content_order_container

With these changes we can now use the multi-index functionality, for example, to search for a
specific content id:

typedef batch::content_order_sequence::index<by_id>::type id_set;
typedef id_set::iterator id_iterator;

const id_set& ids (b.content_order ().get<by_id> ());

std::pair<id_iterator, id_iterator> r (
 ids.equal_range (std::size_t (batch::deposit_id));

for (id_iterator i (r.first); i != r.second; ++i)

July 201454 C++/Tree Mapping User Manual, v4.0.0

2.8.4 Element Order

{
 const deposit& t (b.deposit ()[i->index]);
 cerr << t.account () << " deposit " << t.amount () << endl;
}

2.9 Mapping for Global Elements

An XML Schema element definition is called global if it appears directly under the schema
element. A global element is a valid root of an instance document. By default, a global element is
mapped to a set of overloaded parsing and, optionally, serialization functions with the same name
as the element. It is also possible to generate types for root elements instead of parsing and serial-
ization functions. This is primarily useful to distinguish object models with the same root type but
with different root elements. See Section 2.9.1, "Element Types" for details. It is also possible to
request the generation of an element map which allows uniform parsing and serialization of
multiple root elements. See Section 2.9.2, "Element Map" for details.

The parsing functions read XML instance documents and return corresponding object models as
an automatic pointer (std::auto_ptr or std::unique_ptr , depending on the C++ stan-
dard selected). Their signatures have the following pattern (type denotes element’s type and
name denotes element’s name):

std::[auto|unique]_ptr<type>
name (....);

The process of parsing, including the exact signatures of the parsing functions, is the subject of
Chapter 3, "Parsing".

The serialization functions write object models back to XML instance documents. Their signa-
tures have the following pattern:

void
name (<stream type>&, const type&,);

The process of serialization, including the exact signatures of the serialization functions, is the
subject of Chapter 4, "Serialization".

2.9.1 Element Types

The generation of element types is requested with the --generate-element-map option.
With this option each global element is mapped to a C++ class with the same name as the
element. Such a class is derived from xml_schema::element_type and contains the same
set of type definitions, constructors, and member function as would a type containing a single
element with the One cardinality class named "value" . In addition, the element type also
contains a set of member functions for accessing the element name and namespace as well as its
value in a uniform manner. For example:

55July 2014 C++/Tree Mapping User Manual, v4.0.0

2.9 Mapping for Global Elements

<complexType name="type">
 <sequence>
 ...
 </sequence>
</complexType>

<element name="root" type="type"/>

is mapped to:

class type
{
 ...
};

class root: public xml_schema::element_type
{
public:
 // Element value.
 //
 typedef type value_type;

 const value_type&
 value () const;

 value_type&
 value ();

 void
 value (const value_type&);

 void
 value (std::[auto|unique]_ptr<value_type>);

 // Constructors.
 //
 root (const value_type&);

 root (std::[auto|unique]_ptr<value_type>);

 root (const xercesc::DOMElement&, xml_schema::flags = 0);

 root (const root&, xml_schema::flags = 0);

 virtual root*
 _clone (xml_schema::flags = 0) const;

 // Element name and namespace.
 //
 static const std::string&
 name ();

July 201456 C++/Tree Mapping User Manual, v4.0.0

2.9.1 Element Types

 static const std::string&
 namespace_ ();

 virtual const std::string&
 _name () const;

 virtual const std::string&
 _namespace () const;

 // Element value as xml_schema::type.
 //
 virtual const xml_schema::type*
 _value () const;

 virtual xml_schema::type*
 _value ();
};

void
operator<< (xercesc::DOMElement&, const root&);

The xml_schema::element_type class is a common base type for all element types and is
defined as follows:

namespace xml_schema
{
 class element_type
 {
 public:
 virtual
 ~element_type ();

 virtual element_type*
 _clone (flags f = 0) const = 0;

 virtual const std::basic_string<C>&
 _name () const = 0;

 virtual const std::basic_string<C>&
 _namespace () const = 0;

 virtual xml_schema::type*
 _value () = 0;

 virtual const xml_schema::type*
 _value () const = 0;
 };
}

57July 2014 C++/Tree Mapping User Manual, v4.0.0

2.9.1 Element Types

The _value() member function returns a pointer to the element value or 0 if the element is of a
fundamental C++ type and therefore is not derived from xml_schema::type .

Unlike parsing and serialization functions, element types are only capable of parsing and serializ-
ing from/to a DOMElement object. This means that the application will need to perform its own
XML-to-DOM parsing and DOM-to-XML serialization. The following section describes a mech-
anism provided by the mapping to uniformly parse and serialize multiple root elements.

2.9.2 Element Map

When element types are generated for root elements it is also possible to request the generation of
an element map with the --generate-element-map option. The element map allows
uniform parsing and serialization of multiple root elements via the common
xml_schema::element_type base type. The xml_schema::element_map class is
defined as follows:

namespace xml_schema
{
 class element_map
 {
 public:
 static std::[auto|unique]_ptr<xml_schema::element_type>
 parse (const xercesc::DOMElement&, flags = 0);

 static void
 serialize (xercesc::DOMElement&, const element_type&);
 };
}

The parse() function creates the corresponding element type object based on the element name
and namespace and returns it as an automatic pointer (std::auto_ptr or
std::unique_ptr , depending on the C++ standard selected) to
xml_schema::element_type . The serialize() function serializes the passed element
object to DOMElement. Note that in case of serialize() , the DOMElement object should
have the correct name and namespace. If no element type is available for an element, both func-
tions throw the xml_schema::no_element_info exception:

struct no_element_info: virtual exception
{
 no_element_info (const std::basic_string<C>& element_name,
 const std::basic_string<C>& element_namespace);

 const std::basic_string<C>&
 element_name () const;

 const std::basic_string<C>&
 element_namespace () const;

July 201458 C++/Tree Mapping User Manual, v4.0.0

2.9.2 Element Map

 virtual const char*
 what () const throw ();
};

The application can discover the actual type of the element object returned by parse() either
using dynamic_cast or by comparing element names and namespaces. The following code
fragments illustrate how the element map can be used:

// Parsing.
//
DOMElement& e = ... // Parse XML to DOM.

auto_ptr<xml_schema::element_type> r (
 xml_schema::element_map::parse (e));

if (root1 r1 = dynamic_cast<root1*> (r.get ()))
{
 ...
}
else if (r->_name == root2::name () &&
 r->_namespace () == root2::namespace_ ())
{
 root2& r2 (static_cast<root2&> (*r));

 ...
}

// Serialization.
//
xml_schema::element_type& r = ...

string name (r._name ());
string ns (r._namespace ());

DOMDocument& doc = ... // Create a new DOMDocument with name and ns.
DOMElement& e (*doc->getDocumentElement ());

xml_schema::element_map::serialize (e, r);

// Serialize DOMDocument to XML.

2.10 Mapping for Global Attributes

An XML Schema attribute definition is called global if it appears directly under the schema
element. A global attribute does not have any mapping.

59July 2014 C++/Tree Mapping User Manual, v4.0.0

2.10 Mapping for Global Attributes

2.11 Mapping for xsi:type and Substitution Groups

The mapping provides optional support for the XML Schema polymorphism features
(xsi:type and substitution groups) which can be requested with the --generate-poly-
morphic option. When used, the dynamic type of a member may be different from its static
type. Consider the following schema definition and instance document:

<!-- test.xsd -->
<schema>
 <complexType name="base">
 <attribute name="text" type="string"/>
 </complexType>

 <complexType name="derived">
 <complexContent>
 <extension base="base">
 <attribute name="extra-text" type="string"/>
 </extension>
 </complexContent>
 </complexType>

 <complexType name="root_type">
 <sequence>
 <element name="item" type="base" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <element name="root" type="root_type"/>
</schema>

<!-- test.xml -->
<root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <item text="hello"/>
 <item text="hello" extra-text="world" xsi:type="derived"/>
</root>

In the resulting object model, the container for the root::item member will have two
elements: the first element’s type will be base while the second element’s (dynamic) type will
be derived . This can be discovered using the dynamic_cast operator as shown in the
following example:

void
f (root& r)
{
 for (root::item_const_iterator i (r.item ().begin ());
 i != r.item ().end ()
 ++i)
 {
 if (derived* d = dynamic_cast<derived*> (&(*i)))

July 201460 C++/Tree Mapping User Manual, v4.0.0

2.11 Mapping for xsi:type and Substitution Groups

 {
 // derived
 }
 else
 {
 // base
 }
 }
}

The _clone virtual function should be used instead of copy constructors to make copies of
members that might use polymorphism:

void
f (root& r)
{
 for (root::item_const_iterator i (r.item ().begin ());
 i != r.item ().end ()
 ++i)
 {
 std::auto_ptr<base> c (i->_clone ());
 }
}

The mapping can often automatically determine which types are polymorphic based on the substi-
tution group declarations. However, if your XML vocabulary is not using substitution groups or if
substitution groups are defined in a separate schema, then you will need to use the --polymor-
phic-type option to specify which types are polymorphic. When using this option you only
need to specify the root of a polymorphic type hierarchy and the mapping will assume that all the
derived types are also polymorphic. Also note that you need to specify this option when compil-
ing every schema file that references the polymorphic type. Consider the following two schemas
as an example:

<!-- base.xsd -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:complexType name="base">
 <xs:sequence>
 <xs:element name="b" type="xs:int"/>
 </xs:sequence>
 </xs:complexType>

 <!-- substitution group root -->
 <xs:element name="base" type="base"/>

</xs:schema>

61July 2014 C++/Tree Mapping User Manual, v4.0.0

2.11 Mapping for xsi:type and Substitution Groups

<!-- derived.xsd -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <include schemaLocation="base.xsd"/>

 <xs:complexType name="derived">
 <xs:complexContent>
 <xs:extension base="base">
 <xs:sequence>
 <xs:element name="d" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:element name="derived" type="derived" substitutionGroup="base"/>

</xs:schema>

In this example we need to specify "--polymorphic-type base " when compiling both
schemas because the substitution group is declared in a schema other than the one defining type
base .

You can also indicate that all types should be treated as polymorphic with the --polymor-
phic-type-all . However, this may result in slower generated code with a greater footprint.

2.12 Mapping for any and anyAttribute

For the XML Schema any and anyAttribute wildcards an optional mapping can be
requested with the --generate-wildcard option. The mapping represents the content
matched by wildcards as DOM fragments. Because the DOM API is used to access such content,
the Xerces-C++ runtime should be initialized by the application prior to parsing and should
remain initialized for the lifetime of objects with the wildcard content. For more information on
the Xerces-C++ runtime initialization see Section 3.1, "Initializing the Xerces-C++ Runtime".

The mapping for any is similar to the mapping for local elements (see Section 2.8, "Mapping for
Local Elements and Attributes") except that the type used in the wildcard mapping is
xercesc::DOMElement . As with local elements, the mapping divides all possible cardinality
combinations into three cardinality classes: one, optional, and sequence.

The mapping for anyAttribute represents the attributes matched by this wildcard as a set of
xercesc::DOMAttr objects with a key being the attribute’s name and namespace.

Similar to local elements and attributes, the any and anyAttribute wildcards are mapped to
a set of public type definitions (typedefs) and a set of public accessor and modifier functions.
Type definitions have names derived from "any" for the any wildcard and

July 201462 C++/Tree Mapping User Manual, v4.0.0

2.12 Mapping for any and anyAttribute

"any_attribute" for the anyAttribute wildcard. The accessor and modifier functions
are named "any" for the any wildcard and "any_attribute" for the anyAttribute
wildcard. Subsequent wildcards in the same type have escaped names such as "any1" or
"any_attribute1" .

Because Xerces-C++ DOM nodes always belong to a DOMDocument, each type with a wildcard
has an associated DOMDocument object. The reference to this object can be obtained using the
accessor function called dom_document . The access to the document object from the applica-
tion code may be necessary to create or modify the wildcard content. For example:

<complexType name="object">
 <sequence>
 <any namespace="##other"/>
 </sequence>
 <anyAttribute namespace="##other"/>
</complexType>

is mapped to:

class object: public xml_schema::type
{
public:
 // any
 //
 const xercesc::DOMElement&
 any () const;

 void
 any (const xercesc::DOMElement&);

 ...

 // any_attribute
 //
 typedef attribute_set any_attribute_set;
 typedef any_attribute_set::iterator any_attribute_iterator;
 typedef any_attribute_set::const_iterator any_attribute_const_iterator;

 const any_attribute_set&
 any_attribute () const;

 any_attribute_set&
 any_attribute ();

 ...

 // DOMDocument object for wildcard content.
 //
 const xercesc::DOMDocument&

63July 2014 C++/Tree Mapping User Manual, v4.0.0

2.12 Mapping for any and anyAttribute

 dom_document () const;

 xercesc::DOMDocument&
 dom_document ();

 ...
};

Names and semantics of type definitions for the wildcards as well as signatures of the accessor
and modifier functions depend on the wildcard type as well as the cardinality class for the any
wildcard. They are described in the following sub-sections.

2.12.1 Mapping for any with the One Cardinality Class

For any with the One cardinality class, there are no type definitions. The accessor functions
come in constant and non-constant versions. The constant accessor function returns a constant
reference to xercesc::DOMElement and can be used for read-only access. The non-constant
version returns an unrestricted reference to xercesc::DOMElement and can be used for
read-write access.

The first modifier function expects an argument of type reference to constant
xercesc::DOMElement and makes a deep copy of its argument. The second modifier func-
tion expects an argument of type pointer to xercesc::DOMElement . This modifier function
assumes ownership of its argument and expects the element object to be created using the DOM
document associated with this instance. For example:

<complexType name="object">
 <sequence>
 <any namespace="##other"/>
 </sequence>
</complexType>

is mapped to:

class object: public xml_schema::type
{
public:
 // Accessors.
 //
 const xercesc::DOMElement&
 any () const;

 xercesc::DOMElement&
 any ();

 // Modifiers.
 //
 void

July 201464 C++/Tree Mapping User Manual, v4.0.0

2.12.1 Mapping for any with the One Cardinality Class

 any (const xercesc::DOMElement&);

 void
 any (xercesc::DOMElement*);

 ...

};

The following code shows how one could use this mapping:

void
f (object& o, const xercesc::DOMElement& e)
{
 using namespace xercesc;

 DOMElement& e1 (o.any ()); // get
 o.any (e) // set, deep copy
 DOMDocument& doc (o.dom_document ());
 o.any (doc.createElement (...)); // set, assumes ownership
}

2.12.2 Mapping for any with the Optional Cardinality Class

For any with the Optional cardinality class, the type definitions consist of an alias for the
container type with name any_optional (or any1_optional , etc., for subsequent wild-
cards in the type definition).

Unlike accessor functions for the One cardinality class, accessor functions for the Optional cardi-
nality class return references to corresponding containers rather than directly to DOMElement.
The accessor functions come in constant and non-constant versions. The constant accessor func-
tion returns a constant reference to the container and can be used for read-only access. The
non-constant version returns an unrestricted reference to the container and can be used for
read-write access.

The modifier functions are overloaded for xercesc::DOMElement and the container type.
The first modifier function expects an argument of type reference to constant
xercesc::DOMElement and makes a deep copy of its argument. The second modifier func-
tion expects an argument of type pointer to xercesc::DOMElement . This modifier function
assumes ownership of its argument and expects the element object to be created using the DOM
document associated with this instance. The third modifier function expects an argument of type
reference to constant of the container type and makes a deep copy of its argument. For instance:

65July 2014 C++/Tree Mapping User Manual, v4.0.0

2.12.2 Mapping for any with the Optional Cardinality Class

<complexType name="object">
 <sequence>
 <any namespace="##other" minOccurs="0"/>
 </sequence>
</complexType>

is mapped to:

class object: public xml_schema::type
{
public:
 // Type definitions.
 //
 typedef element_optional any_optional;

 // Accessors.
 //
 const any_optional&
 any () const;

 any_optional&
 any ();

 // Modifiers.
 //
 void
 any (const xercesc::DOMElement&);

 void
 any (xercesc::DOMElement*);

 void
 any (const any_optional&);

 ...

};

The element_optional container is a specialization of the optional class template
described in Section 2.8.2, "Mapping for Members with the Optional Cardinality Class". Its inter-
face is presented below:

class element_optional
{
public:
 explicit
 element_optional (xercesc::DOMDocument&);

 // Makes a deep copy.
 //

July 201466 C++/Tree Mapping User Manual, v4.0.0

2.12.2 Mapping for any with the Optional Cardinality Class

 element_optional (const xercesc::DOMElement&, xercesc::DOMDocument&);

 // Assumes ownership.
 //
 element_optional (xercesc::DOMElement*, xercesc::DOMDocument&);

 element_optional (const element_optional&, xercesc::DOMDocument&);

public:
 element_optional&
 operator= (const xercesc::DOMElement&);

 element_optional&
 operator= (const element_optional&);

 // Pointer-like interface.
 //
public:
 const xercesc::DOMElement*
 operator-> () const;

 xercesc::DOMElement*
 operator-> ();

 const xercesc::DOMElement&
 operator* () const;

 xercesc::DOMElement&
 operator* ();

 typedef void (element_optional::*bool_convertible) ();
 operator bool_convertible () const;

 // Get/set interface.
 //
public:
 bool
 present () const;

 const xercesc::DOMElement&
 get () const;

 xercesc::DOMElement&
 get ();

 // Makes a deep copy.
 //
 void
 set (const xercesc::DOMElement&);

 // Assumes ownership.

67July 2014 C++/Tree Mapping User Manual, v4.0.0

2.12.2 Mapping for any with the Optional Cardinality Class

 //
 void
 set (xercesc::DOMElement*);

 void
 reset ();
};

bool
operator== (const element_optional&, const element_optional&);

bool
operator!= (const element_optional&, const element_optional&);

The following code shows how one could use this mapping:

void
f (object& o, const xercesc::DOMElement& e)
{
 using namespace xercesc;

 DOMDocument& doc (o.dom_document ());

 if (o.any ().present ()) // test
 {
 DOMElement& e1 (o.any ().get ()); // get
 o.any ().set (e); // set, deep copy
 o.any ().set (doc.createElement (...)); // set, assumes ownership
 o.any ().reset (); // reset
 }

 // Same as above but using pointer notation:
 //
 if (o.member ()) // test
 {
 DOMElement& e1 (*o.any ()); // get
 o.any (e); // set, deep copy
 o.any (doc.createElement (...)); // set, assumes ownership
 o.any ().reset (); // reset
 }
}

2.12.3 Mapping for any with the Sequence Cardinality Class

For any with the Sequence cardinality class, the type definitions consist of an alias of the
container type with name any_sequence (or any1_sequence , etc., for subsequent wild-
cards in the type definition), an alias of the iterator type with name any_iterator (or
any1_iterator , etc., for subsequent wildcards in the type definition), and an alias of the
constant iterator type with name any_const_iterator (or any1_const_iterator , etc.,

July 201468 C++/Tree Mapping User Manual, v4.0.0

2.12.3 Mapping for any with the Sequence Cardinality Class

for subsequent wildcards in the type definition).

The accessor functions come in constant and non-constant versions. The constant accessor func-
tion returns a constant reference to the container and can be used for read-only access. The
non-constant version returns an unrestricted reference to the container and can be used for
read-write access.

The modifier function expects an argument of type reference to constant of the container type.
The modifier function makes a deep copy of its argument. For instance:

<complexType name="object">
 <sequence>
 <any namespace="##other" minOccurs="unbounded"/>
 </sequence>
</complexType>

is mapped to:

class object: public xml_schema::type
{
public:
 // Type definitions.
 //
 typedef element_sequence any_sequence;
 typedef any_sequence::iterator any_iterator;
 typedef any_sequence::const_iterator any_const_iterator;

 // Accessors.
 //
 const any_sequence&
 any () const;

 any_sequence&
 any ();

 // Modifier.
 //
 void
 any (const any_sequence&);

 ...

};

The element_sequence container is a specialization of the sequence class template
described in Section 2.8.3, "Mapping for Members with the Sequence Cardinality Class". Its
interface is similar to the sequence interface as defined by the ISO/ANSI Standard for C++
(ISO/IEC 14882:1998, Section 23.1.1, "Sequences") and is presented below:

69July 2014 C++/Tree Mapping User Manual, v4.0.0

2.12.3 Mapping for any with the Sequence Cardinality Class

class element_sequence
{
public:
 typedef xercesc::DOMElement value_type;
 typedef xercesc::DOMElement* pointer;
 typedef const xercesc::DOMElement* const_pointer;
 typedef xercesc::DOMElement& reference;
 typedef const xercesc::DOMElement& const_reference;

 typedef <implementation-defined> iterator;
 typedef <implementation-defined> const_iterator;
 typedef <implementation-defined> reverse_iterator;
 typedef <implementation-defined> const_reverse_iterator;

 typedef <implementation-defined> size_type;
 typedef <implementation-defined> difference_type;
 typedef <implementation-defined> allocator_type;

public:
 explicit
 element_sequence (xercesc::DOMDocument&);

 // DOMElement cannot be default-constructed.
 //
 // explicit
 // element_sequence (size_type n);

 element_sequence (size_type n,
 const xercesc::DOMElement&,
 xercesc::DOMDocument&);

 template <typename I>
 element_sequence (const I& begin,
 const I& end,
 xercesc::DOMDocument&);

 element_sequence (const element_sequence&, xercesc::DOMDocument&);

 element_sequence&
 operator= (const element_sequence&);

public:
 void
 assign (size_type n, const xercesc::DOMElement&);

 template <typename I>
 void
 assign (const I& begin, const I& end);

public:
 // This version of resize can only be used to shrink the

July 201470 C++/Tree Mapping User Manual, v4.0.0

2.12.3 Mapping for any with the Sequence Cardinality Class

 // sequence because DOMElement cannot be default-constructed.
 //
 void
 resize (size_type);

 void
 resize (size_type, const xercesc::DOMElement&);

public:
 size_type
 size () const;

 size_type
 max_size () const;

 size_type
 capacity () const;

 bool
 empty () const;

 void
 reserve (size_type);

 void
 clear ();

public:
 const_iterator
 begin () const;

 const_iterator
 end () const;

 iterator
 begin ();

 iterator
 end ();

 const_reverse_iterator
 rbegin () const;

 const_reverse_iterator
 rend () const

 reverse_iterator
 rbegin ();

 reverse_iterator
 rend ();

71July 2014 C++/Tree Mapping User Manual, v4.0.0

2.12.3 Mapping for any with the Sequence Cardinality Class

public:
 xercesc::DOMElement&
 operator[] (size_type);

 const xercesc::DOMElement&
 operator[] (size_type) const;

 xercesc::DOMElement&
 at (size_type);

 const xercesc::DOMElement&
 at (size_type) const;

 xercesc::DOMElement&
 front ();

 const xercesc::DOMElement&
 front () const;

 xercesc::DOMElement&
 back ();

 const xercesc::DOMElement&
 back () const;

public:
 // Makes a deep copy.
 //
 void
 push_back (const xercesc::DOMElement&);

 // Assumes ownership.
 //
 void
 push_back (xercesc::DOMElement*);

 void
 pop_back ();

 // Makes a deep copy.
 //
 iterator
 insert (iterator position, const xercesc::DOMElement&);

 // Assumes ownership.
 //
 iterator
 insert (iterator position, xercesc::DOMElement*);

 void

July 201472 C++/Tree Mapping User Manual, v4.0.0

2.12.3 Mapping for any with the Sequence Cardinality Class

 insert (iterator position, size_type n, const xercesc::DOMElement&);

 template <typename I>
 void
 insert (iterator position, const I& begin, const I& end);

 iterator
 erase (iterator position);

 iterator
 erase (iterator begin, iterator end);

public:
 // Note that the DOMDocument object of the two sequences being
 // swapped should be the same.
 //
 void
 swap (sequence& x);
};

inline bool
operator== (const element_sequence&, const element_sequence&);

inline bool
operator!= (const element_sequence&, const element_sequence&);

The following code shows how one could use this mapping:

void
f (object& o, const xercesc::DOMElement& e)
{
 using namespace xercesc;

 object::any_sequence& s (o.any ());

 // Iteration.
 //
 for (object::any_iterator i (s.begin ()); i != s.end (); ++i)
 {
 DOMElement& e (*i);
 }

 // Modification.
 //
 s.push_back (e); // deep copy
 DOMDocument& doc (o.dom_document ());
 s.push_back (doc.createElement (...)); // assumes ownership
}

73July 2014 C++/Tree Mapping User Manual, v4.0.0

2.12.3 Mapping for any with the Sequence Cardinality Class

2.12.4 Element Wildcard Order

Similar to elements, element wildcards in ordered types (Section 2.8.4, "Element Order") are
assigned content ids and are included in the content order sequence. Continuing with the bank
transactions example started in Section 2.8.4, we can extend the batch by allowing custom trans-
actions:

<complexType name="batch">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="withdraw" type="withdraw"/>
 <element name="deposit" type="deposit"/>
 <any namespace="##other" processContents="lax"/>
 </choice>
</complexType>

This will lead to the following changes in the generated batch C++ class:

class batch: public xml_schema::type
{
public:
 ...

 // any
 //
 typedef element_sequence any_sequence;
 typedef any_sequence::iterator any_iterator;
 typedef any_sequence::const_iterator any_const_iterator;

 static const std::size_t any_id = 3UL;

 const any_sequence&
 any () const;

 any_sequence&
 any ();

 void
 any (const any_sequence&);

 ...
};

With this change we also need to update the iteration code to handle the new content id:

for (batch::content_order_const_iterator i (b.content_order ().begin ());
 i != b.content_order ().end ();
 ++i)
{
 switch (i->id)
 {

July 201474 C++/Tree Mapping User Manual, v4.0.0

2.12.4 Element Wildcard Order

 ...

 case batch::any_id:
 {
 const DOMElement& e (b.any ()[i->index]);
 ...
 break;
 }

 ...
 }
}

For the complete working code that shows the use of wildcards in ordered types refer to the
order/element example in the examples/cxx/tree/ directory in the XSD distribution.

2.12.5 Mapping for anyAttribute

For anyAttribute the type definitions consist of an alias of the container type with name
any_attribute_set (or any1_attribute_set , etc., for subsequent wildcards in the
type definition), an alias of the iterator type with name any_attribute_iterator (or
any1_attribute_iterator , etc., for subsequent wildcards in the type definition), and an
alias of the constant iterator type with name any_attribute_const_iterator (or
any1_attribute_const_iterator , etc., for subsequent wildcards in the type definition).

The accessor functions come in constant and non-constant versions. The constant accessor func-
tion returns a constant reference to the container and can be used for read-only access. The
non-constant version returns an unrestricted reference to the container and can be used for
read-write access.

The modifier function expects an argument of type reference to constant of the container type.
The modifier function makes a deep copy of its argument. For instance:

<complexType name="object">
 <sequence>
 ...
 </sequence>
 <anyAttribute namespace="##other"/>
</complexType>

is mapped to:

class object: public xml_schema::type
{
public:
 // Type definitions.
 //
 typedef attribute_set any_attribute_set;

75July 2014 C++/Tree Mapping User Manual, v4.0.0

2.12.5 Mapping for anyAttribute

 typedef any_attribute_set::iterator any_attribute_iterator;
 typedef any_attribute_set::const_iterator any_attribute_const_iterator;

 // Accessors.
 //
 const any_attribute_set&
 any_attribute () const;

 any_attribute_set&
 any_attribute ();

 // Modifier.
 //
 void
 any_attribute (const any_attribute_set&);

 ...

};

The attribute_set class is an associative container similar to the std::set class template
as defined by the ISO/ANSI Standard for C++ (ISO/IEC 14882:1998, Section 23.3.3, "Class
template set") with the key being the attribute’s name and namespace. Unlike std::set ,
attribute_set allows searching using names and namespaces instead of
xercesc::DOMAttr objects. It is defined in an implementation-specific namespace and its
interface is presented below:

class attribute_set
{
public:
 typedef xercesc::DOMAttr key_type;
 typedef xercesc::DOMAttr value_type;
 typedef xercesc::DOMAttr* pointer;
 typedef const xercesc::DOMAttr* const_pointer;
 typedef xercesc::DOMAttr& reference;
 typedef const xercesc::DOMAttr& const_reference;

 typedef <implementation-defined> iterator;
 typedef <implementation-defined> const_iterator;
 typedef <implementation-defined> reverse_iterator;
 typedef <implementation-defined> const_reverse_iterator;

 typedef <implementation-defined> size_type;
 typedef <implementation-defined> difference_type;
 typedef <implementation-defined> allocator_type;

public:
 attribute_set (xercesc::DOMDocument&);

 template <typename I>

July 201476 C++/Tree Mapping User Manual, v4.0.0

2.12.5 Mapping for anyAttribute

 attribute_set (const I& begin, const I& end, xercesc::DOMDocument&);

 attribute_set (const attribute_set&, xercesc::DOMDocument&);

 attribute_set&
 operator= (const attribute_set&);

public:
 const_iterator
 begin () const;

 const_iterator
 end () const;

 iterator
 begin ();

 iterator
 end ();

 const_reverse_iterator
 rbegin () const;

 const_reverse_iterator
 rend () const;

 reverse_iterator
 rbegin ();

 reverse_iterator
 rend ();

public:
 size_type
 size () const;

 size_type
 max_size () const;

 bool
 empty () const;

 void
 clear ();

public:
 // Makes a deep copy.
 //
 std::pair<iterator, bool>
 insert (const xercesc::DOMAttr&);

77July 2014 C++/Tree Mapping User Manual, v4.0.0

2.12.5 Mapping for anyAttribute

 // Assumes ownership.
 //
 std::pair<iterator, bool>
 insert (xercesc::DOMAttr*);

 // Makes a deep copy.
 //
 iterator
 insert (iterator position, const xercesc::DOMAttr&);

 // Assumes ownership.
 //
 iterator
 insert (iterator position, xercesc::DOMAttr*);

 template <typename I>
 void
 insert (const I& begin, const I& end);

public:
 void
 erase (iterator position);

 size_type
 erase (const std::basic_string<C>& name);

 size_type
 erase (const std::basic_string<C>& namespace_,
 const std::basic_string<C>& name);

 size_type
 erase (const XMLCh* name);

 size_type
 erase (const XMLCh* namespace_, const XMLCh* name);

 void
 erase (iterator begin, iterator end);

public:
 size_type
 count (const std::basic_string<C>& name) const;

 size_type
 count (const std::basic_string<C>& namespace_,
 const std::basic_string<C>& name) const;

 size_type
 count (const XMLCh* name) const;

 size_type

July 201478 C++/Tree Mapping User Manual, v4.0.0

2.12.5 Mapping for anyAttribute

 count (const XMLCh* namespace_, const XMLCh* name) const;

 iterator
 find (const std::basic_string<C>& name);

 iterator
 find (const std::basic_string<C>& namespace_,
 const std::basic_string<C>& name);

 iterator
 find (const XMLCh* name);

 iterator
 find (const XMLCh* namespace_, const XMLCh* name);

 const_iterator
 find (const std::basic_string<C>& name) const;

 const_iterator
 find (const std::basic_string<C>& namespace_,
 const std::basic_string<C>& name) const;

 const_iterator
 find (const XMLCh* name) const;

 const_iterator
 find (const XMLCh* namespace_, const XMLCh* name) const;

public:
 // Note that the DOMDocument object of the two sets being
 // swapped should be the same.
 //
 void
 swap (attribute_set&);
};

bool
operator== (const attribute_set&, const attribute_set&);

bool
operator!= (const attribute_set&, const attribute_set&);

The following code shows how one could use this mapping:

void
f (object& o, const xercesc::DOMAttr& a)
{
 using namespace xercesc;

 object::any_attribute_set& s (o.any_attribute ());

79July 2014 C++/Tree Mapping User Manual, v4.0.0

2.12.5 Mapping for anyAttribute

 // Iteration.
 //
 for (object::any_attribute_iterator i (s.begin ()); i != s.end (); ++i)
 {
 DOMAttr& a (*i);
 }

 // Modification.
 //
 s.insert (a); // deep copy
 DOMDocument& doc (o.dom_document ());
 s.insert (doc.createAttribute (...)); // assumes ownership

 // Searching.
 //
 object::any_attribute_iterator i (s.find ("name"));
 i = s.find ("http://www.w3.org/XML/1998/namespace", "lang");
}

2.13 Mapping for Mixed Content Models

For XML Schema types with mixed content models C++/Tree provides mapping support only if
the type is marked as ordered (Section 2.8.4, "Element Order"). Use the
--ordered-type-mixed XSD compiler option to automatically mark all types with mixed
content as ordered.

For an ordered type with mixed content, C++/Tree adds an extra text content sequence that is
used to store the text fragments. This text content sequence is also assigned the content id and its
entries are included in the content order sequence, just like elements. As a result, it is possible to
capture the order between elements and text fragments.

As an example, consider the following schema that describes text with embedded links:

<complexType name="anchor">
 <simpleContent>
 <extension base="string">
 <attribute name="href" type="anyURI" use="required"/>
 </extension>
 </simpleContent>
</complexType>

<complexType name="text" mixed="true">
 <sequence>
 <element name="a" type="anchor" minOccurs="0" maxOccurs="unbounded"/>
 </sequence>
</complexType>

July 201480 C++/Tree Mapping User Manual, v4.0.0

2.13 Mapping for Mixed Content Models

The generated text C++ class will provide the following API (assuming it is marked as
ordered):

class text: public xml_schema::type
{
public:
 // a
 //
 typedef anchor a_type;
 typedef sequence<a_type> a_sequence;
 typedef a_sequence::iterator a_iterator;
 typedef a_sequence::const_iterator a_const_iterator;

 static const std::size_t a_id = 1UL;

 const a_sequence&
 a () const;

 a_sequence&
 a ();

 void
 a (const a_sequence&);

 // text_content
 //
 typedef xml_schema::string text_content_type;
 typedef sequence<text_content_type> text_content_sequence;
 typedef text_content_sequence::iterator text_content_iterator;
 typedef text_content_sequence::const_iterator text_content_const_iterator;

 static const std::size_t text_content_id = 2UL;

 const text_content_sequence&
 text_content () const;

 text_content_sequence&
 text_content ();

 void
 text_content (const text_content_sequence&);

 // content_order
 //
 typedef xml_schema::content_order content_order_type;
 typedef std::vector<content_order_type> content_order_sequence;
 typedef content_order_sequence::iterator content_order_iterator;
 typedef content_order_sequence::const_iterator content_order_const_iterator;

 const content_order_sequence&
 content_order () const;

81July 2014 C++/Tree Mapping User Manual, v4.0.0

2.13 Mapping for Mixed Content Models

 content_order_sequence&
 content_order ();

 void
 content_order (const content_order_sequence&);

 ...
};

Given this interface we can iterate over both link elements and text in content order. The follow-
ing code fragment converts our format to plain text with references.

const text& t = ...

for (text::content_order_const_iterator i (t.content_order ().begin ());
 i != t.content_order ().end ();
 ++i)
{
 switch (i->id)
 {
 case text::a_id:
 {
 const anchor& a (t.a ()[i->index]);
 cerr << a << "[" << a.href () << "]";
 break;
 }
 case text::text_content_id:
 {
 const xml_schema::string& s (t.text_content ()[i->index]);
 cerr << s;
 break;
 }
 default:
 {
 assert (false); // Unknown content id.
 }
 }
}

For the complete working code that shows the use of mixed content in ordered types refer to the
order/mixed example in the examples/cxx/tree/ directory in the XSD distribution.

3 Parsing
This chapter covers various aspects of parsing XML instance documents in order to obtain corre-
sponding tree-like object model.

July 201482 C++/Tree Mapping User Manual, v4.0.0

3 Parsing

Each global XML Schema element in the form:

<element name="name" type="type"/>

is mapped to 14 overloaded C++ functions in the form:

// Read from a URI or a local file.
//

std::[auto|unique]_ptr<type>
name (const std::basic_string<C>& uri,
 xml_schema::flags = 0,
 const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>
name (const std::basic_string<C>& uri,
 xml_schema::error_handler&,
 xml_schema::flags = 0,
 const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>
name (const std::basic_string<C>& uri,
 xercesc::DOMErrorHandler&,
 xml_schema::flags = 0,
 const xml_schema::properties& = xml_schema::properties ());

// Read from std::istream.
//

std::[auto|unique]_ptr<type>
name (std::istream&,
 xml_schema::flags = 0,
 const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>
name (std::istream&,
 xml_schema::error_handler&,
 xml_schema::flags = 0,
 const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>
name (std::istream&,
 xercesc::DOMErrorHandler&,
 xml_schema::flags = 0,
 const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>
name (std::istream&,
 const std::basic_string<C>& id,

83July 2014 C++/Tree Mapping User Manual, v4.0.0

3 Parsing

 xml_schema::flags = 0,
 const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>
name (std::istream&,
 const std::basic_string<C>& id,
 xml_schema::error_handler&,
 xml_schema::flags = 0,
 const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>
name (std::istream&,
 const std::basic_string<C>& id,
 xercesc::DOMErrorHandler&,
 xml_schema::flags = 0,
 const xml_schema::properties& = xml_schema::properties ());

// Read from InputSource.
//

std::[auto|unique]_ptr<type>
name (xercesc::InputSource&,
 xml_schema::flags = 0,
 const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>
name (xercesc::InputSource&,
 xml_schema::error_handler&,
 xml_schema::flags = 0,
 const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>
name (xercesc::InputSource&,
 xercesc::DOMErrorHandler&,
 xml_schema::flags = 0,
 const xml_schema::properties& = xml_schema::properties ());

// Read from DOM.
//

std::[auto|unique]_ptr<type>
name (const xercesc::DOMDocument&,
 xml_schema::flags = 0,
 const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>
name (xml_schema::dom::[auto|unique]_ptr<xercesc::DOMDocument>,
 xml_schema::flags = 0,
 const xml_schema::properties& = xml_schema::properties ());

July 201484 C++/Tree Mapping User Manual, v4.0.0

3 Parsing

You can choose between reading an XML instance from a local file, URI, std::istream ,
xercesc::InputSource , or a pre-parsed DOM instance in the form of
xercesc::DOMDocument . All the parsing functions return a dynamically allocated object
model as either std::auto_ptr or std::unique_ptr , depending on the C++ standard
selected. Each of these parsing functions is discussed in more detail in the following sections.

3.1 Initializing the Xerces-C++ Runtime

Some parsing functions expect you to initialize the Xerces-C++ runtime while others initialize
and terminate it as part of their work. The general rule is as follows: if a function has any argu-
ments or return a value that is an instance of a Xerces-C++ type, then this function expects you to
initialize the Xerces-C++ runtime. Otherwise, the function initializes and terminates the runtime
for you. Note that it is legal to have nested calls to the Xerces-C++ initialize and terminate func-
tions as long as the calls are balanced.

You can instruct parsing functions that initialize and terminate the runtime not to do so by
passing the xml_schema::flags::dont_initialize flag (see Section 3.2, "Flags and
Properties").

3.2 Flags and Properties

Parsing flags and properties are the last two arguments of every parsing function. They allow you
to fine-tune the process of instance validation and parsing. Both arguments are optional.

The following flags are recognized by the parsing functions:

xml_schema::flags::keep_dom
Keep association between DOM nodes and the resulting object model nodes. For more infor-
mation about DOM association refer to Section 5.1, "DOM Association".

xml_schema::flags::own_dom
Assume ownership of the DOM document passed. This flag only makes sense together with
the keep_dom flag in the call to the parsing function with the
xml_schema::dom::[auto|unique]_ptr<DOMDocument> argument.

xml_schema::flags::dont_validate
Do not validate instance documents against schemas.

xml_schema::flags::dont_initialize
Do not initialize the Xerces-C++ runtime.

You can pass several flags by combining them using the bit-wise OR operator. For example:

using xml_schema::flags;

std::auto_ptr<type> r (
 name ("test.xml", flags::keep_dom | flags::dont_validate));

85July 2014 C++/Tree Mapping User Manual, v4.0.0

3.1 Initializing the Xerces-C++ Runtime

By default, validation of instance documents is turned on even though parsers generated by XSD
do not assume instance documents are valid. They include a number of checks that prevent
construction of inconsistent object models. This, however, does not mean that an instance docu-
ment that was successfully parsed by the XSD-generated parsers is valid per the corresponding
schema. If an instance document is not "valid enough" for the generated parsers to construct
consistent object model, one of the exceptions defined in xml_schema namespace is thrown
(see Section 3.3, "Error Handling").

For more information on the Xerces-C++ runtime initialization refer to Section 3.1, "Initializing
the Xerces-C++ Runtime".

The xml_schema::properties class allows you to programmatically specify schema loca-
tions to be used instead of those specified with the xsi::schemaLocation and
xsi::noNamespaceSchemaLocation attributes in instance documents. The interface of
the properties class is presented below:

class properties
{
public:
 void
 schema_location (const std::basic_string<C>& namespace_,
 const std::basic_string<C>& location);
 void
 no_namespace_schema_location (const std::basic_string<C>& location);
};

Note that all locations are relative to an instance document unless they are URIs. For example, if
you want to use a local file as your schema, then you will need to pass file:///abso-
lute/path/to/your/schema as the location argument.

3.3 Error Handling

As discussed in Section 2.2, "Error Handling", the mapping uses the C++ exception handling
mechanism as its primary way of reporting error conditions. However, to handle recoverable
parsing and validation errors and warnings, a callback interface maybe preferred by the applica-
tion.

To better understand error handling and reporting strategies employed by the parsing functions, it
is useful to know that the transformation of an XML instance document to a statically-typed tree
happens in two stages. The first stage, performed by Xerces-C++, consists of parsing an XML
document into a DOM instance. For short, we will call this stage the XML-DOM stage. Valida-
tion, if not disabled, happens during this stage. The second stage, performed by the generated
parsers, consist of parsing the DOM instance into the statically-typed tree. We will call this stage
the DOM-Tree stage. Additional checks are performed during this stage in order to prevent
construction of inconsistent tree which could otherwise happen when validation is disabled, for

July 201486 C++/Tree Mapping User Manual, v4.0.0

3.3 Error Handling

example.

All parsing functions except the one that operates on a DOM instance come in overloaded triples.
The first function in such a triple reports error conditions exclusively by throwing exceptions. It
accumulates all the parsing and validation errors of the XML-DOM stage and throws them in a
single instance of the xml_schema::parsing exception (described below). The second and
the third functions in the triple use callback interfaces to report parsing and validation errors and
warnings. The two callback interfaces are xml_schema::error_handler and
xercesc::DOMErrorHandler . For more information on the xercesc::DOMErrorHan-
dler interface refer to the Xerces-C++ documentation. The
xml_schema::error_handler interface is presented below:

class error_handler
{
public:
 struct severity
 {
 enum value
 {
 warning,
 error,
 fatal
 };
 };

 virtual bool
 handle (const std::basic_string<C>& id,
 unsigned long line,
 unsigned long column,
 severity,
 const std::basic_string<C>& message) = 0;

 virtual
 ~error_handler ();
};

The id argument of the error_handler::handle function identifies the resource being
parsed (e.g., a file name or URI).

By returning true from the handle function you instruct the parser to recover and continue
parsing. Returning false results in termination of the parsing process. An error with the fatal
severity level results in termination of the parsing process no matter what is returned from the
handle function. It is safe to throw an exception from the handle function.

The DOM-Tree stage reports error conditions exclusively by throwing exceptions. Individual
exceptions thrown by the parsing functions are described in the following sub-sections.

87July 2014 C++/Tree Mapping User Manual, v4.0.0

3.3 Error Handling

3.3.1 xml_schema::parsing

struct severity
{
 enum value
 {
 warning,
 error
 };

 severity (value);
 operator value () const;
};

struct error
{
 error (severity,
 const std::basic_string<C>& id,
 unsigned long line,
 unsigned long column,
 const std::basic_string<C>& message);

 severity
 severity () const;

 const std::basic_string<C>&
 id () const;

 unsigned long
 line () const;

 unsigned long
 column () const;

 const std::basic_string<C>&
 message () const;
};

std::basic_ostream<C>&
operator<< (std::basic_ostream<C>&, const error&);

struct diagnostics: std::vector<error>
{
};

std::basic_ostream<C>&
operator<< (std::basic_ostream<C>&, const diagnostics&);

struct parsing: virtual exception
{
 parsing ();

July 201488 C++/Tree Mapping User Manual, v4.0.0

3.3.1 xml_schema::parsing

 parsing (const diagnostics&);

 const diagnostics&
 diagnostics () const;

 virtual const char*
 what () const throw ();
};

The xml_schema::parsing exception is thrown if there were parsing or validation errors
reported during the XML-DOM stage. If no callback interface was provided to the parsing func-
tion, the exception contains a list of errors and warnings accessible using the diagnostics
function. The usual conditions when this exception is thrown include malformed XML instances
and, if validation is turned on, invalid instance documents.

3.3.2 xml_schema::expected_element

struct expected_element: virtual exception
{
 expected_element (const std::basic_string<C>& name,
 const std::basic_string<C>& namespace_);

 const std::basic_string<C>&
 name () const;

 const std::basic_string<C>&
 namespace_ () const;

 virtual const char*
 what () const throw ();
};

The xml_schema::expected_element exception is thrown when an expected element is
not encountered by the DOM-Tree stage. The name and namespace of the expected element can
be obtained using the name and namespace_ functions respectively.

3.3.3 xml_schema::unexpected_element

struct unexpected_element: virtual exception
{
 unexpected_element (const std::basic_string<C>& encountered_name,
 const std::basic_string<C>& encountered_namespace,
 const std::basic_string<C>& expected_name,
 const std::basic_string<C>& expected_namespace)

 const std::basic_string<C>&

89July 2014 C++/Tree Mapping User Manual, v4.0.0

3.3.2 xml_schema::expected_element

 encountered_name () const;

 const std::basic_string<C>&
 encountered_namespace () const;

 const std::basic_string<C>&
 expected_name () const;

 const std::basic_string<C>&
 expected_namespace () const;

 virtual const char*
 what () const throw ();
};

The xml_schema::unexpected_element exception is thrown when an unexpected
element is encountered by the DOM-Tree stage. The name and namespace of the encountered
element can be obtained using the encountered_name and encountered_namespace
functions respectively. If an element was expected instead of the encountered one, its name and
namespace can be obtained using the expected_name and expected_namespace func-
tions respectively. Otherwise these functions return empty strings.

3.3.4 xml_schema::expected_attribute

struct expected_attribute: virtual exception
{
 expected_attribute (const std::basic_string<C>& name,
 const std::basic_string<C>& namespace_);

 const std::basic_string<C>&
 name () const;

 const std::basic_string<C>&
 namespace_ () const;

 virtual const char*
 what () const throw ();
};

The xml_schema::expected_attribute exception is thrown when an expected attribute
is not encountered by the DOM-Tree stage. The name and namespace of the expected attribute
can be obtained using the name and namespace_ functions respectively.

July 201490 C++/Tree Mapping User Manual, v4.0.0

3.3.4 xml_schema::expected_attribute

3.3.5 xml_schema::unexpected_enumerator

struct unexpected_enumerator: virtual exception
{
 unexpected_enumerator (const std::basic_string<C>& enumerator);

 const std::basic_string<C>&
 enumerator () const;

 virtual const char*
 what () const throw ();
};

The xml_schema::unexpected_enumerator exception is thrown when an unexpected
enumerator is encountered by the DOM-Tree stage. The enumerator can be obtained using the
enumerator functions.

3.3.6 xml_schema::expected_text_content

struct expected_text_content: virtual exception
{
 virtual const char*
 what () const throw ();
};

The xml_schema::expected_text_content exception is thrown when a content other
than text is encountered and the text content was expected by the DOM-Tree stage.

3.3.7 xml_schema::no_type_info

struct no_type_info: virtual exception
{
 no_type_info (const std::basic_string<C>& type_name,
 const std::basic_string<C>& type_namespace);

 const std::basic_string<C>&
 type_name () const;

 const std::basic_string<C>&
 type_namespace () const;

 virtual const char*
 what () const throw ();
};

The xml_schema::no_type_info exception is thrown when there is no type information
associated with a type specified by the xsi:type attribute. This exception is thrown by the
DOM-Tree stage. The name and namespace of the type in question can be obtained using the

91July 2014 C++/Tree Mapping User Manual, v4.0.0

3.3.5 xml_schema::unexpected_enumerator

type_name and type_namespace functions respectively. Usually, catching this exception
means that you haven’t linked the code generated from the schema defining the type in question
with your application or this schema has been compiled without the --generate-polymor-
phic option.

3.3.8 xml_schema::not_derived

struct not_derived: virtual exception
{
 not_derived (const std::basic_string<C>& base_type_name,
 const std::basic_string<C>& base_type_namespace,
 const std::basic_string<C>& derived_type_name,
 const std::basic_string<C>& derived_type_namespace);

 const std::basic_string<C>&
 base_type_name () const;

 const std::basic_string<C>&
 base_type_namespace () const;

 const std::basic_string<C>&
 derived_type_name () const;

 const std::basic_string<C>&
 derived_type_namespace () const;

 virtual const char*
 what () const throw ();
};

The xml_schema::not_derived exception is thrown when a type specified by the
xsi:type attribute is not derived from the expected base type. This exception is thrown by the
DOM-Tree stage. The name and namespace of the expected base type can be obtained using the
base_type_name and base_type_namespace functions respectively. The name and
namespace of the offending type can be obtained using the derived_type_name and
derived_type_namespace functions respectively.

3.3.9 xml_schema::no_prefix_mapping

struct no_prefix_mapping: virtual exception
{
 no_prefix_mapping (const std::basic_string<C>& prefix);

 const std::basic_string<C>&
 prefix () const;

July 201492 C++/Tree Mapping User Manual, v4.0.0

3.3.8 xml_schema::not_derived

 virtual const char*
 what () const throw ();
};

The xml_schema::no_prefix_mapping exception is thrown during the DOM-Tree stage
if a namespace prefix is encountered for which a prefix-namespace mapping hasn’t been
provided. The namespace prefix in question can be obtained using the prefix function.

3.4 Reading from a Local File or URI

Using a local file or URI is the simplest way to parse an XML instance. For example:

using std::auto_ptr;

auto_ptr<type> r1 (name ("test.xml"));
auto_ptr<type> r2 (name ("http://www.codesynthesis.com/test.xml"));

Or, in the C++11 mode:

using std::unique_ptr;

unique_ptr<type> r1 (name ("test.xml"));
unique_ptr<type> r2 (name ("http://www.codesynthesis.com/test.xml"));

3.5 Reading from std::istream

When using an std::istream instance, you may also pass an optional resource id. This id is
used to identify the resource (for example in error messages) as well as to resolve relative paths.
For instance:

using std::auto_ptr;

{
 std::ifstream ifs ("test.xml");
 auto_ptr<type> r (name (ifs, "test.xml"));
}

{
 std::string str ("..."); // Some XML fragment.
 std::istringstream iss (str);
 auto_ptr<type> r (name (iss));
}

93July 2014 C++/Tree Mapping User Manual, v4.0.0

3.4 Reading from a Local File or URI

3.6 Reading from xercesc::InputSource

Reading from a xercesc::InputSource instance is similar to the std::istream case
except the resource id is maintained by the InputSource object. For instance:

xercesc::StdInInputSource is;
std::auto_ptr<type> r (name (is));

3.7 Reading from DOM

Reading from a xercesc::DOMDocument instance allows you to setup a custom XML-DOM
stage. Things like DOM parser reuse, schema pre-parsing, and schema caching can be achieved
with this approach. For more information on how to obtain DOM representation from an XML
instance refer to the Xerces-C++ documentation. In addition, the C++/Tree Mapping FAQ shows
how to parse an XML instance to a Xerces-C++ DOM document using the XSD runtime utilities.

The last parsing function is useful when you would like to perform your own XML-to-DOM
parsing and associate the resulting DOM document with the object model nodes. The automatic
DOMDocument pointer is reset and the resulting object model assumes ownership of the DOM
document passed. For example:

// C++98 version.
//
xml_schema::dom::auto_ptr<xercesc::DOMDocument> doc = ...

std::auto_ptr<type> r (
 name (doc, xml_schema::flags::keep_dom | xml_schema::flags::own_dom));

// At this point doc is reset to 0.

// C++11 version.
//
xml_schema::dom::unique_ptr<xercesc::DOMDocument> doc = ...

std::unique_ptr<type> r (
 name (std::move (doc),
 xml_schema::flags::keep_dom | xml_schema::flags::own_dom));

// At this point doc is reset to 0.

4 Serialization
This chapter covers various aspects of serializing a tree-like object model to DOM or XML. In
this regard, serialization is complimentary to the reverse process of parsing a DOM or XML
instance into an object model which is discussed in Chapter 3, "Parsing". Note that the generation
of the serialization code is optional and should be explicitly requested with the --gener-

July 201494 C++/Tree Mapping User Manual, v4.0.0

4 Serialization

http://wiki.codesynthesis.com/Tree/FAQ

ate-serialization option. See the XSD Compiler Command Line Manual for more infor-
mation.

Each global XML Schema element in the form:

<xsd:element name="name" type="type"/>

is mapped to 8 overloaded C++ functions in the form:

// Serialize to std::ostream.
//
void
name (std::ostream&,
 const type&,
 const xml_schema::namespace_fomap& =
 xml_schema::namespace_infomap (),
 const std::basic_string<C>& encoding = "UTF-8",
 xml_schema::flags = 0);

void
name (std::ostream&,
 const type&,
 xml_schema::error_handler&,
 const xml_schema::namespace_infomap& =
 xml_schema::namespace_infomap (),
 const std::basic_string<C>& encoding = "UTF-8",
 xml_schema::flags = 0);

void
name (std::ostream&,
 const type&,
 xercesc::DOMErrorHandler&,
 const xml_schema::namespace_infomap& =
 xml_schema::namespace_infomap (),
 const std::basic_string<C>& encoding = "UTF-8",
 xml_schema::flags = 0);

// Serialize to XMLFormatTarget.
//
void
name (xercesc::XMLFormatTarget&,
 const type&,
 const xml_schema::namespace_infomap& =
 xml_schema::namespace_infomap (),
 const std::basic_string<C>& encoding = "UTF-8",
 xml_schema::flags = 0);

void
name (xercesc::XMLFormatTarget&,

95July 2014 C++/Tree Mapping User Manual, v4.0.0

4 Serialization

http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml

 const type&,
 xml_schema::error_handler&,
 const xml_schema::namespace_infomap& =
 xml_schema::namespace_infomap (),
 const std::basic_string<C>& encoding = "UTF-8",
 xml_schema::flags = 0);

void
name (xercesc::XMLFormatTarget&,
 const type&,
 xercesc::DOMErrorHandler&,
 const xml_schema::namespace_infomap& =
 xml_schema::namespace_infomap (),
 const std::basic_string<C>& encoding = "UTF-8",
 xml_schema::flags = 0);

// Serialize to DOM.
//
xml_schema::dom::[auto|unique]_ptr<xercesc::DOMDocument>
name (const type&,
 const xml_schema::namespace_infomap&
 xml_schema::namespace_infomap (),
 xml_schema::flags = 0);

void
name (xercesc::DOMDocument&,
 const type&,
 xml_schema::flags = 0);

You can choose between writing XML to std::ostream or xercesc::XMLFormatTar-
get and creating a DOM instance in the form of xercesc::DOMDocument . Serialization to
ostream or XMLFormatTarget requires a considerably less work while serialization to
DOM provides for greater flexibility. Each of these serialization functions is discussed in more
detail in the following sections.

4.1 Initializing the Xerces-C++ Runtime

Some serialization functions expect you to initialize the Xerces-C++ runtime while others initial-
ize and terminate it as part of their work. The general rule is as follows: if a function has any
arguments or return a value that is an instance of a Xerces-C++ type, then this function expects
you to initialize the Xerces-C++ runtime. Otherwise, the function initializes and terminates the
runtime for you. Note that it is legal to have nested calls to the Xerces-C++ initialize and termi-
nate functions as long as the calls are balanced.

July 201496 C++/Tree Mapping User Manual, v4.0.0

4.1 Initializing the Xerces-C++ Runtime

You can instruct serialization functions that initialize and terminate the runtime not to do so by
passing the xml_schema::flags::dont_initialize flag (see Section 4.3, "Flags").

4.2 Namespace Infomap and Character Encoding

When a document being serialized uses XML namespaces, custom prefix-namespace associations
can to be established. If custom prefix-namespace mapping is not provided then generic prefixes
(p1 , p2 , etc) are automatically assigned to namespaces as needed. Also, if you would like the
resulting instance document to contain the schemaLocation or noNamespaceSchemaLo-
cation attributes, you will need to provide namespace-schema associations. The
xml_schema::namespace_infomap class is used to capture this information:

struct namespace_info
{
 namespace_info ();
 namespace_info (const std::basic_string<C>& name,
 const std::basic_string<C>& schema);

 std::basic_string<C> name;
 std::basic_string<C> schema;
};

// Map of namespace prefix to namespace_info.
//
struct namespace_infomap: public std::map<std::basic_string<C>,
 namespace_info>
{
};

Consider the following associations as an example:

xml_schema::namespace_infomap map;

map["t"].name = "http://www.codesynthesis.com/test";
map["t"].schema = "test.xsd";

This map, if passed to one of the serialization functions, could result in the following XML frag-
ment:

<?xml version="1.0" ?>
<t:name xmlns:t="http://www.codesynthesis.com/test"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.codesynthesis.com/test test.xsd">

As you can see, the serialization function automatically added namespace mapping for the xsi
prefix. You can change this by providing your own prefix:

97July 2014 C++/Tree Mapping User Manual, v4.0.0

4.2 Namespace Infomap and Character Encoding

xml_schema::namespace_infomap map;

map["xsn"].name = "http://www.w3.org/2001/XMLSchema-instance";

map["t"].name = "http://www.codesynthesis.com/test";
map["t"].schema = "test.xsd";

This could result in the following XML fragment:

<?xml version="1.0" ?>
<t:name xmlns:t="http://www.codesynthesis.com/test"
 xmlns:xsn="http://www.w3.org/2001/XMLSchema-instance"
 xsn:schemaLocation="http://www.codesynthesis.com/test test.xsd">

To specify the location of a schema without a namespace you can use an empty prefix as in the
example below:

xml_schema::namespace_infomap map;

map[""].schema = "test.xsd";

This would result in the following XML fragment:

<?xml version="1.0" ?>
<name xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="test.xsd">

To make a particular namespace default you can use an empty prefix, for example:

xml_schema::namespace_infomap map;

map[""].name = "http://www.codesynthesis.com/test";
map[""].schema = "test.xsd";

This could result in the following XML fragment:

<?xml version="1.0" ?>
<name xmlns="http://www.codesynthesis.com/test"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.codesynthesis.com/test test.xsd">

Another bit of information that you can pass to the serialization functions is the character encod-
ing method that you would like to use. Common values for this argument are "US-ASCII" ,
"ISO8859-1" , "UTF-8" , "UTF-16BE" , "UTF-16LE" , "UCS-4BE" , and "UCS-4LE" .
The default encoding is "UTF-8" . For more information on encoding methods see the "Charac-
ter Encoding" article from Wikipedia.

July 201498 C++/Tree Mapping User Manual, v4.0.0

4.2 Namespace Infomap and Character Encoding

http://en.wikipedia.org/wiki/Character_code
http://en.wikipedia.org/wiki/Character_code

4.3 Flags

Serialization flags are the last argument of every serialization function. They allow you to
fine-tune the process of serialization. The flags argument is optional.

The following flags are recognized by the serialization functions:

xml_schema::flags::dont_initialize
Do not initialize the Xerces-C++ runtime.

xml_schema::flags::dont_pretty_print
Do not add extra spaces or new lines that make the resulting XML slightly bigger but easier
to read.

xml_schema::flags::no_xml_declaration
Do not write XML declaration (<?xml ... ?>).

You can pass several flags by combining them using the bit-wise OR operator. For example:

std::auto_ptr<type> r = ...
std::ofstream ofs ("test.xml");
xml_schema::namespace_infomap map;
name (ofs,
 *r,
 map,
 "UTF-8",
 xml_schema::flags::no_xml_declaration |
 xml_schema::flags::dont_pretty_print);

For more information on the Xerces-C++ runtime initialization refer to Section 4.1, "Initializing
the Xerces-C++ Runtime".

4.4 Error Handling

As with the parsing functions (see Section 3.3, "Error Handling"), to better understand error
handling and reporting strategies employed by the serialization functions, it is useful to know that
the transformation of a statically-typed tree to an XML instance document happens in two stages.
The first stage, performed by the generated code, consist of building a DOM instance from the
statically-typed tree . For short, we will call this stage the Tree-DOM stage. The second stage,
performed by Xerces-C++, consists of serializing the DOM instance into the XML document. We
will call this stage the DOM-XML stage.

All serialization functions except the two that serialize into a DOM instance come in overloaded
triples. The first function in such a triple reports error conditions exclusively by throwing excep-
tions. It accumulates all the serialization errors of the DOM-XML stage and throws them in a
single instance of the xml_schema::serialization exception (described below). The
second and the third functions in the triple use callback interfaces to report serialization errors

99July 2014 C++/Tree Mapping User Manual, v4.0.0

4.3 Flags

and warnings. The two callback interfaces are xml_schema::error_handler and
xercesc::DOMErrorHandler . The xml_schema::error_handler interface is
described in Section 3.3, "Error Handling". For more information on the xercesc::DOMEr-
rorHandler interface refer to the Xerces-C++ documentation.

The Tree-DOM stage reports error conditions exclusively by throwing exceptions. Individual
exceptions thrown by the serialization functions are described in the following sub-sections.

4.4.1 xml_schema::serialization

struct serialization: virtual exception
{
 serialization ();
 serialization (const diagnostics&);

 const diagnostics&
 diagnostics () const;

 virtual const char*
 what () const throw ();
};

The xml_schema::diagnostics class is described in Section 3.3.1,
"xml_schema::parsing ". The xml_schema::serialization exception is thrown if
there were serialization errors reported during the DOM-XML stage. If no callback interface was
provided to the serialization function, the exception contains a list of errors and warnings accessi-
ble using the diagnostics function.

4.4.2 xml_schema::unexpected_element

The xml_schema::unexpected_element exception is described in Section 3.3.3,
"xml_schema::unexpected_element ". It is thrown by the serialization functions during
the Tree-DOM stage if the root element name of the provided DOM instance does not match with
the name of the element this serialization function is for.

4.4.3 xml_schema::no_type_info

The xml_schema::no_type_info exception is described in Section 3.3.7,
"xml_schema::no_type_info ". It is thrown by the serialization functions during the
Tree-DOM stage when there is no type information associated with a dynamic type of an
element. Usually, catching this exception means that you haven’t linked the code generated from
the schema defining the type in question with your application or this schema has been compiled
without the --generate-polymorphic option.

July 2014100 C++/Tree Mapping User Manual, v4.0.0

4.4.1 xml_schema::serialization

4.5 Serializing to std::ostream

In order to serialize to std::ostream you will need an object model, an output stream and,
optionally, a namespace infomap. For instance:

// Obtain the object model.
//
std::auto_ptr<type> r = ...

// Prepare namespace mapping and schema location information.
//
xml_schema::namespace_infomap map;

map["t"].name = "http://www.codesynthesis.com/test";
map["t"].schema = "test.xsd";

// Write it out.
//
name (std::cout, *r, map);

Note that the output stream is treated as a binary stream. This becomes important when you use a
character encoding that is wider than 8-bit char , for instance UTF-16 or UCS-4. For example,
things will most likely break if you try to serialize to std::ostringstream with UTF-16 or
UCS-4 as an encoding. This is due to the special value, ’\0’ , that will most likely occur as part
of such serialization and it won’t have the special meaning assumed by
std::ostringstream .

4.6 Serializing to xercesc::XMLFormatTarget

Serializing to an xercesc::XMLFormatTarget instance is similar the std::ostream
case. For instance:

using std::auto_ptr;

// Obtain the object model.
//
auto_ptr<type> r = ...

// Prepare namespace mapping and schema location information.
//
xml_schema::namespace_infomap map;

map["t"].name = "http://www.codesynthesis.com/test";
map["t"].schema = "test.xsd";

using namespace xercesc;

XMLPlatformUtils::Initialize ();

101July 2014 C++/Tree Mapping User Manual, v4.0.0

4.5 Serializing to std::ostream

{
 // Choose a target.
 //
 auto_ptr<XMLFormatTarget> ft;

 if (argc != 2)
 {
 ft = auto_ptr<XMLFormatTarget> (new StdOutFormatTarget ());
 }
 else
 {
 ft = auto_ptr<XMLFormatTarget> (
 new LocalFileFormatTarget (argv[1]));
 }

 // Write it out.
 //
 name (*ft, *r, map);
}

XMLPlatformUtils::Terminate ();

Note that we had to initialize the Xerces-C++ runtime before we could call this serialization func-
tion.

4.7 Serializing to DOM

The mapping provides two overloaded functions that implement serialization to a DOM instance.
The first creates a DOM instance for you and the second serializes to an existing DOM instance.
While serializing to a new DOM instance is similar to serializing to std::ostream or
xercesc::XMLFormatTarget , serializing to an existing DOM instance requires quite a bit
of work from your side. You will need to set all the custom namespace mapping attributes as well
as the schemaLocation and/or noNamespaceSchemaLocation attributes. The following
listing should give you an idea about what needs to be done:

// Obtain the object model.
//
std::auto_ptr<type> r = ...

using namespace xercesc;

XMLPlatformUtils::Initialize ();

{
 // Create a DOM instance. Set custom namespace mapping and schema
 // location attributes.
 //
 DOMDocument& doc = ...

July 2014102 C++/Tree Mapping User Manual, v4.0.0

4.7 Serializing to DOM

 // Serialize to DOM.
 //
 name (doc, *r);

 // Serialize the DOM document to XML.
 //
 ...
}

XMLPlatformUtils::Terminate ();

For more information on how to create and serialize a DOM instance refer to the Xerces-C++
documentation. In addition, the C++/Tree Mapping FAQ shows how to implement these opera-
tions using the XSD runtime utilities.

5 Additional Functionality
The C++/Tree mapping provides a number of optional features that can be useful in certain situa-
tions. They are described in the following sections.

5.1 DOM Association

Normally, after parsing is complete, the DOM document which was used to extract the data is
discarded. However, the parsing functions can be instructed to preserve the DOM document and
create an association between the DOM nodes and object model nodes. When there is an associa-
tion between the DOM and object model nodes, you can obtain the corresponding DOM element
or attribute node from an object model node as well as perform the reverse transition: obtain the
corresponding object model from a DOM element or attribute node.

Maintaining DOM association is normally useful when the application needs access to XML
constructs that are not preserved in the object model, for example, XML comments. Another
useful aspect of DOM association is the ability of the application to navigate the document tree
using the generic DOM interface (for example, with the help of an XPath processor) and then
move back to the statically-typed object model. Note also that while you can change the underly-
ing DOM document, these changes are not reflected in the object model and will be ignored
during serialization. If you need to not only access but also modify some aspects of XML that are
not preserved in the object model, then type customization with custom parsing constructors and
serialization operators should be used instead.

To request DOM association you will need to pass the xml_schema::flags::keep_dom
flag to one of the parsing functions (see Section 3.2, "Flags and Properties" for more informa-
tion). In this case the DOM document is retained and will be released when the object model is
deleted. Note that since DOM nodes "out-live" the parsing function call, you need to initialize the

103July 2014 C++/Tree Mapping User Manual, v4.0.0

5 Additional Functionality

http://wiki.codesynthesis.com/Tree/FAQ

Xerces-C++ runtime before calling one of the parsing functions with the keep_dom flag and
terminate it after the object model is destroyed (see Section 3.1, "Initializing the Xerces-C++
Runtime").

If the keep_dom flag is passed as the second argument to the copy constructor and the copy
being made is of a complete tree, then the DOM association is also maintained in the copy by
cloning the underlying DOM document and reestablishing the associations. For example:

using namespace xercesc;

XMLPlatformUtils::Initialize ();

{
 // Parse XML to object model.
 //
 std::auto_ptr<type> r (root (
 "root.xml",
 xml_schema::flags::keep_dom |
 xml_schema::flags::dont_initialize));

 // Copy without DOM association.
 //
 type copy1 (*r);

 // Copy with DOM association.
 //
 type copy2 (*r, xml_schema::flags::keep_dom);
}

XMLPlatformUtils::Terminate ();

To obtain the corresponding DOM node from an object model node you will need to call the
_node accessor function which returns a pointer to DOMNode. You can then query this DOM
node’s type and cast it to either DOMAttr* or DOMElement* . To obtain the corresponding
object model node from a DOM node, the DOM user data API is used. The
xml_schema::dom::tree_node_key variable contains the key for object model nodes.
The following schema and code fragment show how to navigate from DOM to object model
nodes and in the opposite direction:

<complexType name="object">
 <sequence>
 <element name="a" type="string"/>
 </sequence>
</complexType>

<element name="root" type="object"/>

July 2014104 C++/Tree Mapping User Manual, v4.0.0

5.1 DOM Association

using namespace xercesc;

XMLPlatformUtils::Initialize ();

{
 // Parse XML to object model.
 //
 std::auto_ptr<type> r (root (
 "root.xml",
 xml_schema::flags::keep_dom |
 xml_schema::flags::dont_initialize));

 DOMNode* n = root->_node ();
 assert (n->getNodeType () == DOMNode::ELEMENT_NODE);
 DOMElement* re = static_cast<DOMElement*> (n);

 // Get the ’a’ element. Note that it is not necessarily the
 // first child node of ’root’ since there could be whitespace
 // nodes before it.
 //
 DOMElement* ae;

 for (n = re->getFirstChild (); n != 0; n = n->getNextSibling ())
 {
 if (n->getNodeType () == DOMNode::ELEMENT_NODE)
 {
 ae = static_cast<DOMElement*> (n);
 break;
 }
 }

 // Get from the ’a’ DOM element to xml_schema::string object model
 // node.
 //
 xml_schema::type& t (
 reinterpret_cast<xml_schema::type> (
 ae->getUserData (xml_schema::dom::tree_node_key)));

 xml_schema::string& a (dynamic_cast<xml_schema::string&> (t));
}

XMLPlatformUtils::Terminate ();

The ’mixed’ example which can be found in the XSD distribution shows how to handle the mixed
content using DOM association.

105July 2014 C++/Tree Mapping User Manual, v4.0.0

5.1 DOM Association

5.2 Binary Serialization

Besides reading from and writing to XML, the C++/Tree mapping also allows you to save the
object model to and load it from a number of predefined as well as custom data representation
formats. The predefined binary formats are CDR (Common Data Representation) and XDR
(eXternal Data Representation). A custom format can easily be supported by providing insertion
and extraction operators for basic types.

Binary serialization saves only the data without any meta information or markup. As a result,
saving to and loading from a binary representation can be an order of magnitude faster than
parsing and serializing the same data in XML. Furthermore, the resulting representation is
normally several times smaller than the equivalent XML representation. These properties make
binary serialization ideal for internal data exchange and storage. A typical application that uses
this facility stores the data and communicates within the system using a binary format and
reads/writes the data in XML when communicating with the outside world.

In order to request the generation of insertion operators and extraction constructors for a specific
predefined or custom data representation stream, you will need to use the --gener-
ate-insertion and --generate-extraction compiler options. See the XSD Compiler
Command Line Manual for more information.

Once the insertion operators and extraction constructors are generated, you can use the
xml_schema::istream and xml_schema::ostream wrapper stream templates to save
the object model to and load it from a specific format. The following code fragment shows how
to do this using ACE (Adaptive Communication Environment) CDR streams as an example:

<complexType name="object">
 <sequence>
 <element name="a" type="string"/>
 <element name="b" type="int"/>
 </sequence>
</complexType>

<element name="root" type="object"/>

// Parse XML to object model.
//
std::auto_ptr<type> r (root ("root.xml"));

// Save to a CDR stream.
//
ACE_OutputCDR ace_ocdr;
xml_schema::ostream<ACE_OutputCDR> ocdr (ace_ocdr);

ocdr << *r;

// Load from a CDR stream.

July 2014106 C++/Tree Mapping User Manual, v4.0.0

5.2 Binary Serialization

http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml
http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml

//
ACE_InputCDR ace_icdr (buf, size);
xml_schema::istream<ACE_InputCDR> icdr (ace_icdr);

std::auto_ptr<object> copy (new object (icdr));

// Serialize to XML.
//
root (std::cout, *copy);

The XSD distribution contains a number of examples that show how to save the object model to
and load it from CDR, XDR, and a custom format.

Appendix A — Default and Fixed Values
The following table summarizes the effect of default and fixed values (specified with the
default and fixed attributes, respectively) on attribute and element values. The default
and fixed attributes are mutually exclusive. It is also worthwhile to note that the fixed value
semantics is a superset of the default value semantics.

default fixed

element

not
present

optional required optional required

not present
invalid
instance

not present invalid instance

empty default value is used fixed value is used

value value is used
value is used provided it’s the same as
fixed

attribute

not
present

optional required optional required

default value is
used

invalid
schema

fixed value is used invalid instance

empty empty value is used
empty value is used provided it’s the
same as fixed

value value is used
value is used provided it’s the same as
fixed

107July 2014 C++/Tree Mapping User Manual, v4.0.0

Appendix A — Default and Fixed Values

	Preface
	About This Document
	More Information

	1 Introduction
	2 C++/Tree Mapping
	2.1 Preliminary Information
	2.1.1 C++ Standard
	2.1.2 Identifiers
	2.1.3 Character Type and Encoding
	2.1.4 XML Schema Namespace
	2.1.5 Anonymous Types

	2.2 Error Handling
	2.2.1 xml_schema::duplicate_id

	2.3 Mapping for import and include
	2.3.1 Import
	2.3.2 Inclusion with Target Namespace
	2.3.3 Inclusion without Target Namespace

	2.4 Mapping for Namespaces
	2.5 Mapping for Built-in Data Types
	2.5.1 Inheritance from Built-in Data Types
	2.5.2 Mapping for anyType
	2.5.3 Mapping for anySimpleType
	2.5.4 Mapping for QName
	2.5.5 Mapping for IDREF
	2.5.6 Mapping for base64Binary and hexBinary

	2.5.7 Time Zone Representation
	2.5.8 Mapping for date
	2.5.9 Mapping for dateTime
	2.5.10 Mapping for duration
	2.5.11 Mapping for gDay
	2.5.12 Mapping for gMonth
	2.5.13 Mapping for gMonthDay
	2.5.14 Mapping for gYear
	2.5.15 Mapping for gYearMonth
	2.5.16 Mapping for time
	2.6 Mapping for Simple Types
	2.6.1 Mapping for Derivation by Restriction
	2.6.2 Mapping for Enumerations
	2.6.3 Mapping for Derivation by List
	2.6.4 Mapping for Derivation by Union

	2.7 Mapping for Complex Types
	2.7.1 Mapping for Derivation by Extension
	2.7.2 Mapping for Derivation by Restriction

	2.8 Mapping for Local Elements and Attributes
	2.8.1 Mapping for Members with the One Cardinality Class
	2.8.2 Mapping for Members with the Optional Cardinality Class
	2.8.3 Mapping for Members with the Sequence Cardinality Class
	2.8.4 Element Order

	2.9 Mapping for Global Elements
	2.9.1 Element Types
	2.9.2 Element Map

	2.10 Mapping for Global Attributes
	2.11 Mapping for xsi:type and Substitution Groups
	2.12 Mapping for any and anyAttribute
	2.12.1 Mapping for any with the One Cardinality Class
	2.12.2 Mapping for any with the Optional Cardinality Class
	2.12.3 Mapping for any with the Sequence Cardinality Class
	2.12.4 Element Wildcard Order
	2.12.5 Mapping for anyAttribute

	2.13 Mapping for Mixed Content Models

	3 Parsing
	3.1 Initializing the Xerces-C++ Runtime
	3.2 Flags and Properties
	3.3 Error Handling
	3.3.1 xml_schema::parsing
	3.3.2 xml_schema::expected_element
	3.3.3 xml_schema::unexpected_element
	3.3.4 xml_schema::expected_attribute
	3.3.5 xml_schema::unexpected_enumerator
	3.3.6 xml_schema::expected_text_content
	3.3.7 xml_schema::no_type_info
	3.3.8 xml_schema::not_derived
	3.3.9 xml_schema::no_prefix_mapping

	3.4 Reading from a Local File or URI
	3.5 Reading from std::istream
	3.6 Reading from xercesc::InputSource
	3.7 Reading from DOM

	4 Serialization
	4.1 Initializing the Xerces-C++ Runtime
	4.2 Namespace Infomap and Character Encoding
	4.3 Flags
	4.4 Error Handling
	4.4.1 xml_schema::serialization
	4.4.2 xml_schema::unexpected_element
	4.4.3 xml_schema::no_type_info

	4.5 Serializing to std::ostream
	4.6 Serializing to xercesc::XMLFormatTarget
	4.7 Serializing to DOM

	5 Additional Functionality
	5.1 DOM Association
	5.2 Binary Serialization

	Appendix A ž Default and Fixed Values

