C++/Tree Mapping User Manual

Revision 4.0.0 July 2014
Copyright © 2005-2014 CODE SYNTHESIS TOOLS CC

Permission is granted to copy, distribute and/or modify this document under the terms of the
[GNU Free Documentation License, versior] 1.2; with no Invariant Sections, no Front-Cover Texts
and no Back-Cover Texts.

This document is available in the following formats: XHTVIL, PDF,|and PostScript.

http://www.codesynthesis.com/licenses/fdl-1.2.txt
http://www.codesynthesis.com/products/xsd
http://codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/index.xhtml
http://codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/cxx-tree-manual.pdf

Table of Contents

Table of Contents

: 1
IAbout This Documeht 1
[More Informatioh 1

[1 Introductiop . . 1

[2 C++/Tree Mappirlg . 2
[2.1 Preliminary Informatldn . 2

[2.1.1 C++ Standayd. 2
|2 1.2 Identifiers. . 2
[2.1.3 Character Type and Encoglng 3
[2.1.4 XML Schema Namespace. . 3
[2.1.5 Anonymous Typgs 4
[2.2 Error Handling . . 4
[2.2.1xml| schema: dupllcate |d | 5
(2.3 Mapplng foimport andinclude | 5
231Impoft 5
‘2 3 2 Inclusion with Target Namesghce . 6
[2.3.3 Inclusion without Target Namespgace . 6
[2.4 Mapping for Namespades . . 7
[2.5 Mapping for Built-in Data Typgs . C e 7
[2.5.1 Inheritance from Built-in Data Tygpes 10
2.5.2 Mapping foeanyType |. 11
2.5.3 Mapping foeanySimpleType 12
2.5.4 Mapping foQNamé 13
[2.5.5 Mapping fotDREF 14
[2.5.6 Mapping fobase64Binary andhexBinary | 16
[2.5.7 Time Zone Representaton. 19
2.5.8 Mapping fodate | 20
2.5.9 Mapping fodateTime | e 21
[2.5.10 Mapping foduration | 22
[2.5.11 Mapping fogDay|. 24
2.5.12 Mapping fogMonth| 24
2.5.13 Mapping fogMonthDay] 25
[2.5.14 Mapping fogYear| 26
[2.5.15 Mapping fogYearMonth 27
[2.5.16 Mapping fotme |. 28
[2.6 Mapping for Simple Types . . C e 29
[2.6.1 Mapping for Derivation by Restrlctlon C e 29
[2.6.2 Mapping for Enumeratigns 30
[2.6.3 Mapping for Derivationby Ljst. 31
[2.6.4 Mapping for Derivation by Unibn 32

July 2014 C++/Tree Mapping User Manual, v4.0.0 i

Table of Contents

[2.7 Mapping for Complex Types . .
[2.7.1 Mapping for Derivation by Extenslon
[2.7.2 Mapping for Derivation by Restriction
[2.8 Mapping for Local Elements and AttribUtes
[2.8.1 Mapping for Members with the One Cardinality Qlass .
[2.8.2 Mapping for Members with the Optional Cardinality Glass

[2.8.3 Mapping for Members with the Sequence Cardinality [Class .

[2.8.4 Element Order . .

[2.9 Mapping for Global Elements .
[2.9.1 Element Types.
[2.9.2 Element Mdp .

[2.10 Mapping for Global Attrlbutbs

[2.11 Mapping foxsi:type and Substitution Groubs

[2.12 Mapping foany andanyAttribute [.
[2.12.1 Mapping foany with the One Cardlnallty Cldss .
[2.12.2 Mapping foany with the Optional Cardinality Class .
[2.12.3 Mapping foany with the Sequence Cardinality Clpss
[2.12.4 Element Wildcard Order
[2.12.5 Mapping foanyAttribute |

[2. 13 Mapping for Mixed Content Modgls .

3 Parsing.

(3.1 Inltlallzmg the Xerces C++ Runtlﬂne

[3.2 Flags and Propertjes .

(3.3 Error Handlinp .
[3.3.1xml schema::parsing | .
[3.3.2xml schema::expected element |
[3.3.3xml schema::unexpected element |
[3.3.4xml schema::expected attribute [.
[3.3.5xml schema::unexpected enumerator |
[3.3.6xml schema::expected text content |
[3.3.7xml schema::no type info |
[3.3.8xml schema::not derived [. .
[3.3.9xml schema::no prefix mapping [.

[3.4 Reading from a Local File or URI .

[3.5 Reading fronstd::istream [. . .

[3.6 Reading fronxercesc::InputSource [

|3 7 Reading from DOM

C

[4.1 Initializing the Xerces C++ Runtlﬂne .

|4 2 Namespace Infomap and Character Encpding.

-

|4 4 Error Handllnb .
[4.4.1xml| schema: serlallzatlon |

ii C++/Tree Mapping User Manual, v4.0.0

33
37
37
37
39
41
45
48
55
55
58
59
60
62
64
65
68
74
75
80
82
85
85
86
88
89
89
90
91
91
91
92
92
93
93
94
94
94
96
97
Q9
Q9
100

July 2014

[4.4.2xml schema::unexpected element

[4.4.3xml schema::no type info |
[4.5 Serializing tstd::ostream | .

[4.6 Serializing tocercesc: XMLFormatTarget

[4.7 Serializing to DO
[5 Additional Functionalitly .
(5.1 DOM Association.
[5.2 Binary Serializatign
[Appendix A — Default and Fixed Valqes

July 2014 C++/Tree Mapping User Manual, v4.0.0

Table of Contents

100
100
101
101
102
103
103
106
107

Preface

Preface

About This Document

This document describes the mapping of W3C XML Schema to the C++ programming language
as implemented by CodeSynthesis XSD - an XML Schema to C++ data binding compiler. The
mapping represents information stored in XML instance documents as a statically-typed, tree-like
in-memory data structure and is called C++/Tree.

Revision 4.0.0
This revision of the manual describes the C++/Tree mapping as implemented by CodeSynthesis
XSD version 4.0.0.

This document is available in the following formats: XHT|VIL, PDF,|and PostScript.

More Information

Beyond this manual, you may also find the following sources of information useful:

e [C++/Tree Mapping Getting Started Guide

® (C++/Tree Mapping Customization Gujde

e [C++/Tree Mapping Frequently Asked Questions (HAQ)
°

[J

(XSD Compiler Command Line Man{ial

The examples/cxx/tree/ directory in the XSD distribution contains a collection of
examples and a README file with an overview of each example.

The READMEHile in the XSD distribution explains how to compile the examples on various
platforms.

e The[xsd-usefs mailing list is a place to ask questions. Furthermdre the &rchives may already
have answers to some of your questions.

1 Introduction

C++/Tree is a W3C XML Schema to C++ mapping that represents the data stored in XML as a
statically-typed, vocabulary-specific object model. Based on a formal description of an XML
vocabulary (schema), the C++/Tree mapping produces a tree-like data structure suitable for
in-memory processing as well as XML parsing and serialization code.

A typical application that processes XML documents usually performs the following three steps:
it first reads (parses) an XML instance document to an object model, it then performs some useful
computations on that model which may involve modification of the model, and finally it may
write (serialize) the modified object model back to XML.

July 2014 C++/Tree Mapping User Manual, v4.0.0 1

http://www.codesynthesis.com/products/xsd
http://codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/index.xhtml
http://codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/cxx-tree-manual.pdf
http://codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/cxx-tree-manual.ps
http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/
http://wiki.codesynthesis.com/Tree/Customization_guide
http://wiki.codesynthesis.com/Tree/FAQ
http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml
http://www.codesynthesis.com/mailman/listinfo/xsd-users
http://www.codesynthesis.com/pipermail/xsd-users/

2 C++/Tree Mapping

The C++/Tree mapping consists of C++ types that represent the given vocapulary (Chapter 2,
['C++/Tree Mappind"), a set of parsing functions that convert XML documents to a tree-like
in-memory data structurg (Chapter 3, "Parging"), and a set of serialization functions that convert
the object model back to XML (Chapter 4, "Serialization"). Furthermore, the mapping provides a
number of additional features, such as DOM association and binary serialization, that can be
useful in some applications (Chapter 5, "Additional Functionality").

2 C++/Tree Mapping

2.1 Preliminary Information

2.1.1 C++ Standard

The C++/Tree mapping provides support for ISO/IEC C++ 1998/2003 (C++98) and ISO/IEC
C++ 2011 (C++11). To select the C++ standard for the generated code we ustdtheXSD
compiler command line option. While the majority of the examples in this manual use C++98,
support for the new functionality and library components introduced in C++11 are discussed
throughout the document.

2.1.2 Identifiers

XML Schema names may happen to be reserved C++ keywords or contain characters that are
illegal in C++ identifiers. To avoid C++ compilation problems, such names are changed
(escaped) when mapped to C++. If an XML Schema name is a C++ keyword, the " " suffix is
added to it. All character of an XML Schema name that are not allowed in C++ identifiers are
replaced with "_".

For example, XML Schema nanry will be mapped to C++ identifidry _ . Similarly, XML

Schema namstrange.na-me will be mapped to C++ identifiestrange_na_me

Furthermore, conflicts between type names and function names in the same scope are resolvec
using name escaping. Such conflicts include both a global element (which is mapped to a set of
parsing and/or serialization functions or element types| see Section 2.9, "Mapping for|Global
[Elementg") and a global type sharing the same name as well as a local element or attribute inside
a type having the same name as the type itself.

For example, if we had a global typatalog and a global element with the same name then
the type would be mapped to a C++ class with neat@log while the parsing functions corre-
sponding to the global element would have their names escapathiag)_

2 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.1.3 Character Type and Encoding

By default the mapping uses the so-called K&R (Kernighan and Ritchie) identifier naming
convention which is also used throughout this manual. In this convention both type and function
names are in lower case and words are separated by underscores. If your application code or
schemas use a different notation, you may want to change the naming convention used by the
mapping for consistency. The compiler supports a set of widely-used naming conventions that
you can select with thetype-naming and--function-naming options. You can also

further refine one of the predefined conventions or create a completely custom naming scheme by
using the--*-regex options. For more detailed information on these options refer to the
NAMING CONVENTION section in the XSD Compiler Command Line Mahual.

2.1.3 Character Type and Encoding

The code that implements the mapping, depending or-t¢har-type option, is generated

using eithecchar orwchar_t as the character type. In this document code samples use symbol
C to refer to the character type you have selected when translating your schemas, for example
std::basic_string<C>

Another aspect of the mapping that depends on the character type is character encoding. For the
char character type the default encoding is UTF-8. Other supported encodings are 1SO-8859-1,
Xerces-C++ Local Code Page (LPC), as well as custom encodings and can be selected with the
--char-encoding command line option.

For thewchar_t character type the encoding is automatically selected between UTF-16 and
UTF-32/UCS-4 depending on the size of thehar_t type. On some platforms (for example,
Windows with Visual C++ and AIX with IBM XL C++wchar_t is 2 bytes long. For these
platforms the encoding is UTF-16. On other platformshar t is 4 bytes long and
UTF-32/UCS-4 is used.

2.1.4 XML Schema Namespace

The mapping relies on some predefined types, classes, and functions that are logically defined in
the XML Schema namespace reserved for the XML Schema Ilanguage
(http://www.w3.0rg/2001/XMLSchema). By default, this namespace is mapped to C++
namespacexml_schema . It is automatically accessible from a C++ compilation unit that
includes a header file generated from an XML Schema definition.

Note that, if desired, the default mapping of this namespace can be changed as described in
[Section 2.4, "Mapping for Namespadades".

July 2014 C++/Tree Mapping User Manual, v4.0.0 3

http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml

2.2 Error Handling

2.1.5 Anonymous Types

For the purpose of code generation, anonymous types defined in XML Schema are automatically
assigned names that are derived from enclosing attributes and elements. Otherwise, such types
follows standard mapping rules for simple and complex type definitions[(see Section 2.6,
['Mapping for Simple Types$" arld Section 2.7, "Mapping for Complex Types"). For example, in
the following schema fragment:

<element name="object">
<complexType>

</complexType>
</element>

The anonymous type defined inside elenwect will be given nam@bject . The compiler
has a number of options that control the process of anonymous type naming. For more informa-
tion refer to th¢ XSD Compiler Command Line Manqual.

2.2 Error Handling

The mapping uses the C++ exception handling mechanism as a primary way of reporting error
conditions. All exceptions that are specified in this mapping derive from

xml_schema::exception which itself is derived frorstd::exception
struct exception: virtual std::exception
{

friend

std::basic_ostream<C>&
operator<< (std::basic_ostream<C>& 0s, const exception& €)

{
e.print (0s);
return os;

}

protected:
virtual void
print (std::basic_ostream<C>&) const = 0;

g

The exception hierarchy supports "virtuafjerator<< which allows you to obtain diagnostics
corresponding to the thrown exception using the base exception interface. For example:

4 C++/Tree Mapping User Manual, v4.0.0 July 2014

http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml

2.3 Mapping for import and include

try
{

}...

catch (const xml_schema::exception& e)

{

cerr << e << endl;

}

The following sub-sections describe exceptions thrown by the types that constitute the object
model.| Section 3.3, "Error Handling" pf Chapter 3, "Parsing" describes exceptions and error
handling mechanisms specific to the parsing functions. Section 4.4, "Error Handling" of Chapter
[4, "Serialization!" describes exceptions and error handling mechanisms specific to the serialization
functions.

2.2.1xm _schenma: :duplicate_id

struct duplicate_id: virtual exception

{
duplicate_id (const std::basic_string<C>& id);

const std::basic_string<C>&
id () const;

virtual const char*
what () const throw ();

%

The xml_schema::duplicate_id is thrown when a conflicting instance of
xml_schema::id (sed Section 2.5, "Mapping for Built-in Data Types") is added to a tree. The
offending ID value can be obtained using idhefunction.

2.3 Mapping fori nport andi ncl ude
2.3.1 Import

The XML Schemamport element is mapped to the C++ Preprocegsuelude directive.
The value of theschemalLocation attribute is used to derive the name of the header file that
appears in thginclude directive. For instance:

<import namespace="http://www.codesynthesis.com/test"
schemal.ocation="test.xsd"/>

is mapped to:

July 2014 C++/Tree Mapping User Manual, v4.0.0 5

2.3.2 Inclusion with Target Namespace

#include "test.hxx"

Note that you will need to compile imported schemas separately in order to produce correspond-
ing header files.

2.3.2 Inclusion with Target Namespace

The XML Schemainclude element which refers to a schema with a target nhamespace or
appears in a schema without a target namespace follows the same mapping rules@stthe
element, see Section 2.3.1, "Impprt".

2.3.3 Inclusion without Target Namespace

For the XML Schemanclude element which refers to a schema without a target namespace
and appears in a schema with a target namespace (such inclusion sometimes called "chameleotr
inclusion"), declarations and definitions from the included schema are generated in-line in the
namespace of the including schema as if they were declared and defined there verbatim. For
example, consider the following two schemas:

<-- common.xsd -->
<schema>
<complexType nhame="type">

</complexType>
</schema>

<-- test.xsd -->

<schema targetNamespace="http://www.codesynthesis.com/test">
<include schemalocation="common.xsd"/>

</schema>

The fragment of interest from the generated header filekbixsd would look like this:

/I test.hxx
namespace test

{

class type

{

=
}

6 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.4 Mapping for Namespaces

2.4 Mapping for Namespaces

An XML Schema namespace is mapped to one or more nested C++ namespaces. XML Schema
namespaces are identified by URIs. By default, a namespace URI is mapped to a sequence of
C++ namespace names by removing the protocol and host parts and splitting the rest into a
sequence of names with’’as the name separator. For instance:

<schema targetNamespace="http://www.codesynthesis.com/system/test">

</schema>

is mapped to:

namespace system

{

namespace test

{

=
}

The default mapping of namespace URIs to C++ namespace names can be altered using the
--namespace-map and--namespace-regex options. See the XSD Compiler Commjand

Line Manugl for more information.

2.5 Mapping for Built-in Data Types

The mapping of XML Schema built-in data types to C++ types is summarized in the table below.

Alias in the xm _schema

XML Schema type namespace C++ type
anyType and anySimpleType types
anyType type [Section 2.5.2, "Mapping fanyType "|
anySimpleType simple_type ISet|on 2.5.3, "Mapping fanySimple- |
fixed-length integral types
byte byte signed char
unsignedByte unsigned_byte unsigned char
short short_ short
unsignedShort unsigned_short unsigned short

July 2014 C++/Tree Mapping User Manual, v4.0.0 7

http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml
http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml

2.5 Mapping for Built-in Data Types

int int_ int
unsignedint unsigned_int unsigned int
long long_ long long

unsignedLong

unsigned_long

unsigned long long

arbitrary-length integral types

integer

integer

long long

nonPositivelnteger

non_positive_integer

long long

nonNegativelnteger

non_negative_integer

unsigned long long

positivelnteger

positive_integer

unsigned long long

negativelnteger negative_integer long long
boolean types

boolean boolean bool

fixed-precision floating-point types
float float float
double double_ double

arbitrary-precision floating-point types
decimal decimal double
string types

string string type derived fronstd::basic_string

normalizedString

normalized_string

type derived fronstring

token token type derived froomormalized_string
Name name type derived frontoken

NMTOKEN nmtoken type derived frontoken

NMTOKENS nmtokens type derived fronsequence<nmtoken>
NCName ncname type derived frorname

language language type derived frontoken

qualified name
QName gname [Section 2.5.4, "Mapping fadpNamé|

ID/IDREF types

C++/Tree Mapping User Manual, v4.0.0

July 2014

2.5 Mapping for Built-in Data Types

ID id type derived frormcname
IDREF idref [Section 2.5.5, "Mapping fdDREF"]
IDREFS idrefs type derived fronsequence<idref>
URI types
anyURI uri type derived fronstd::basic_string
binary types
base64Binary base64 binary Section 2.5.6, "Mapping for
hexBinary hex_binary lbase64Binary andhexBinary |
date/time types
date date [Section 2.5.8, "Mapping fatate "|
dateTime date_time [Section 2.5.9, "Mapping fatateTime "|
duration duration [Section 2.5.10, "Mapping faturation |
gDay gday [Section 2.5.11, "Mapping faDay"]
gMonth gmonth [Section 2.5.12, "Mapping fajMonth "|
gMonthDay gmonth_day on 2.5.13, "Mapping faMonth- |
gYear gyear [Section 2.5.14, "Mapping fayYear "|
gYearMonth gyear_month 2'5'15’ "Mapping fgrYear- |
time time [Section 2.5.16, "Mapping fdime "
entity types
ENTITY entity type derived frorname
ENTITIES entities type derived fronmsequence<entity>

All XML Schema built-in types are mapped to C++ classes that are derived from the
xml_schema::simple_type class except where the mapping is to a fundamental C++ type.

Thesequence class template is defined in an implementation-specific hamespace. It conforms
to the sequence interface as defined by the ISO/ANSI Standard for C++ (ISO/IEC 14882:1998,
Section 23.1.1, "Sequences"). Practically, this means that you can treat such a sequence as if i
was std::vector . One notable extension to the standard interface that is available only for
sequences of non-fundamental C++ types is the addition of the overlpadedback and

insert member functions which instead of the constant reference to the element type accept

July 2014 C++/Tree Mapping User Manual, v4.0.0 9

2.5.1 Inheritance from Built-in Data Types

automatic pointerstd::auto_ptr or std::unique_ptr , depending on the C++ standard
selected) to the element type. These functions assume ownership of the pointed to object and
reset the passed automatic pointer.

2.5.1 Inheritance from Built-in Data Types

In cases where the mapping calls for an inheritance from a built-in type which is mapped to a
fundamental C++ type, a proxy type is used instead of the fundamental C++ type (C++ does not
allow inheritance from fundamental types). For instance:

<simpleType name="my_int">
<restriction base="int"/>
</simpleType>

is mapped to:

class my_int; public fundamental_base<int>

{
=

The fundamental_base class template provides a close emulation (though not exact) of a
fundamental C++ type. It is defined in an implementation-specific namespace and has the follow-
ing interface:

template <typename X>
class fundamental_base: public simple_type
{
public:
fundamental_base ();
fundamental_base (X)
fundamental_base (const fundamental_base&)

public:
fundamental_base&
operator= (const X&);

public:
operator const X & () const;
operator X& ();

template <typename Y>
operator Y () const;

template <typename Y>
operator Y ();

3

10 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.5.2 Mapping foranyType

2.5.2 Mapping for anyType

The XML SchemaanyType built-in data type is mapped to tlenl_schema::type C++

class:

class type

{
public:
virtual

~type ();

type ();
type (const type&);

type&
operator= (const type&);

virtual type*
_clone () const;

/I anyType DOM content.
I
public:
typedef element_optional dom_content_optional,

const dom_content_optional&
dom_content () const;

dom_content_optional&
dom_content ();

void
dom_content (const xercesc::DOMElement&);

void
dom_content (xercesc::DOMElement*);

void
dom_content (const dom_content_optional&);

const xercesc::DOMDocument&
dom_content_document () const;

xercesc::DOMDocument&
dom_content_document ();

bool
null_content () const;

/I DOM association.

July 2014 C++/Tree Mapping User Manual, v4.0.0

11

2.5.3 Mapping for anySimpleType

I

public:
const xercesc::DOMNode*
_node () const;

xercesc::DOMNode*
_node ();

h

When xml_schema::type is used to create an instance (as opposed to being a base of a
derived type), it represents the XML ScheargyType type.anyType allows any attributes

and any content in any order. In the C++/Tree mapping this content can be represented as a DOM
fragment, similar to XML Schema wildcards (Section 2.12, "Mappingafoy and anyAt- |

tribute).

To enable automatic extraction ainyType content during parsing, the-gener-
ate-any-type option must be specified. Because the DOM API is used to access such
content, the Xerces-C++ runtime should be initialized by the application prior to parsing and
should remain initialized for the lifetime of objects with the DOM content. For more information
on the Xerces-C++ runtime initialization $ee Section 3.1, "Initializing the Xerces-C++ Ryntime".

The DOM content is stored as the optional DOM element container and the DOM content acces-
sors and modifiers presented above are identical to those generated for an optional element wild-
card. Refer t¢ Section 2.12.2, "Mapping &y with the Optional Cardinality Clags" for details

on their semantics.

The dom_content_document() function returns the DOM document used to store the raw
XML content corresponding to thenyType instance. It is equivalent to theom_docu-
ment() function generated for types with wildcards.

Thenull_content() accessor is an optimization function that allows us to check for the lack
of content without actually creating its empty representation, that is, empty DOM document for
anyType or empty string foranySimpleType (see the following section for details on
anySimpleType).

For more information on DOM association refef to Section 5.1, "DOM Association".

2.5.3 Mapping foranySi npl eType

The XML Schema anySimpleType built-in data type is mapped to the
xml_schema::simple_type C++ class:

class simple_type: public type

{
public:

simple_type ();

12 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.5.4 Mapping for QName

simple_type (const C*);
simple_type (const std::basic_string<C>&);

simple_type (const simple_type&);

simple_type&
operator= (const simple_type&);

virtual simple_type*
_clone () const;

/I anySimpleType text content.
I

public:
const std::basic_string<C>&
text_content () const;

std::basic_string<C>&
text_content ();

void
text_content (const std::basic_string<C>&);
3
Whenxml_schema::simple_type is used to create an instance (as opposed to being a base

of a derived type), it represents the XML SchesmgSimpleType type.anySimpleType
allows any simple content. In the C++/Tree mapping this content can be represented as a string
and accessed or modified with tiext content() functions shown above.

2.5.4 Mapping for QNanme

The XML SchemaQNamebuilt-in data type is mapped to tlxenl_schema:.gname C++
class:

class gqname: public simple_type

{

public:
gname (const nchameg&);
gname (const uri&, const ncnameg&);
gname (const gnameg&);

public:

gname&

operator= (const gnameg&);
public:

virtual gname*

_clone () const;

public:

July 2014 C++/Tree Mapping User Manual, v4.0.0 13

2.5.5 Mapping for IDREF

bool
qualified () const;

const uri&
namespace_ () const;

const nchameé&
name () const;

%

Thequalified accessor function can be used to determine if the name is qualified.

2.5.5 Mapping for| DREF

The XML SchemaDREF built-in data type is mapped to thkxenl_schema::idref C++
class. This class implements the smart pointer C++ idiom:

class idref: public ncname
{
public:
idref (const C* s);
idref (const C* s, std::size_t n);
idref (std::size_tn, C c);
idref (const std::basic_string<C>&);
idref (const std::basic_string<C>&,
std::size_t pos,
std::size_t n = npos);

public:
idref (const idref&);

public:
virtual idref*
_clone () const;

public:
idref&
operator= (C c);

idref&
operator= (const C* s);

idref&
operator= (const std::basic_string<C>&)

idref&
operator= (const idref&);

public:
const type*

14 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.5.5 Mapping for IDREF

operator-> () const;

type*
operator-> ();

const type&
operator* () const;

type&
operator* ();

const type*
get () const;

type*
get ();

/I Conversion to bool.

I
public:

typedef void (idref::*bool_convertible)();
operator bool_convertible () const;

%

The object,dref instance refers to, is the immediate container of the matathinigistance.
For example, with the following instance document and schema:

<l-- test.xml -->
<root>
<object id="obj-1" text="hello"/>
<reference>obj-1</reference>
</root>

<l-- test.xsd -->
<schema>
<complexType name="object_type">
<attribute name="id" type="ID"/>
<attribute name="text" type="string"/>
</complexType>

<complexType name="root_type">
<seguence>
<element name="object" type="object_type"/>
<element name="reference" type="IDREF"/>
</sequence>
</complexType>

<element name="root" type="root_type"/>
</schema>

July 2014 C++/Tree Mapping User Manual, v4.0.0 15

2.5.6 Mapping for base64Binary and hexBinary

Theref instance in the code below will refer to an object of typject_type

root_typeé& root = ...;

xml_schema::idref& ref (root.reference ());
object_type& obj (dynamic_cast<object_type&> (*ref));
cout << obj.text () << endl;

The smart pointer interface of thdref class always returns a pointer or reference to
xml_schema::itype . This means that you will need to manually cast such pointer or reference
to its real (dynamic) type before you can use it (unless all you need is the base interface provided
by xml_schema::itype). As a special extension to the XML Schema language, the mapping
supports static typing afiref references by employing thefType extension attribute. The
following example illustrates this mechanism:

<I-- test.xsd -->

<schema
xmins:xse="http://www.codesynthesis.com/xmins/xml-schema-extension">

<element name="reference" type="IDREF" xse:refType="object type"/>

</schema>

With this modification we do not need to do manual casting anymore:
root_typeé& root = ...;
root_type::reference_typeé& ref (root.reference ());

object_type& obj (*ref);
cout << ref->text () << endl;

2.5.6 Mapping forbase64Bi nary and hexBi nary

The XML Schemabase64Binary andhexBinary built-in data types are mapped to the

xml_schema::base64 binary andxml_schema::hex_binary C++ classes, respec-
tively. Thebase64 binary andhex_binary classes support a simple buffer abstraction by
inheriting from thexml_schema::buffer class:

class bounds: public virtual exception

{

public:

virtual const char*
what () const throw ();

3

class buffer

16 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.5.6 Mapping for base64Binary and hexBinary

{
public:
typedef std::size_t size t;

public:
buffer (size_t size = 0);
buffer (size_t size, size_t capacity);
buffer (const void* data, size_t size);
buffer (const void* data, size_t size, size_t capacity);
buffer (void* data,
size t size,
size_t capacity,
bool assume_ownership);

public:
buffer (const buffer&);

buffer&
operator= (const buffer&);

void
swap (buffer&);

public:
size t
capacity () const;

bool
capacity (size_t);

public:
size t
size () const;

bool
size (size_t);

public:
const char*
data () const;

char*
data ();

const char*
begin () const;

char*
begin ();

const char*

July 2014 C++/Tree Mapping User Manual, v4.0.0 17

2.5.6 Mapping for base64Binary and hexBinary

end () const;

char*
end ();
k

The last overloaded constructor reuses an existing data buffer instead of making a copy. If the
assume_ownership argument igrue , the instance assumes ownership of the memory block
pointed to by thelata argument and will eventually release it by callopgerator delete

Thecapacity andsize maodifier functions returtrue if the underlying buffer has moved.

Thebounds exception is thrown if the constructor arguments violatgstze <= capac-
ity) constraint.

The base64 _binary andhex_binary classes support tHauffer interface and perform
automatic decoding/encoding from/to the Base64 and Hex formats, respectively:

class base64_binary: public simple_type, public buffer
{
public:
base64_binary (size_t size = 0);
base64_binary (size_t size, size_t capacity);
base64_binary (const void* data, size_t size);
base64_binary (const void* data, size_t size, size_t capacity);
base64_binary (void* data,
size t size,
size_t capacity,
bool assume_ownership);

public:
base64_binary (const base64 binary&);

base64_binary&
operator= (const base64_binary&);

virtual base64_binary*
_clone () const;

public:
std::basic_string<C>
encode () const;

%

class hex_binary: public simple_type, public buffer
{
public:
hex_binary (size_t size = 0);
hex_binary (size_t size, size_t capacity);
hex_binary (const void* data, size_t size);
hex_binary (const void* data, size_t size, size_t capacity);

18 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.5.7 Time Zone Representation

hex_binary (void* data,
size_t size,
size_t capacity,
bool assume_ownership);

public:
hex_binary (const hex_binary&);

hex_binary&
operator= (const hex_binary&);

virtual hex_binary*
_clone () const;

public:
std::basic_string<C>
encode () const;

%

2.5.7 Time Zone Representation

The date , dateTime , gDay, gMonth, gMonthDay , gYear , gYearMonth , and time
XML Schema built-in types all include an optional time zone component. The following
xml_schema::time_zone base class is used to represent this information:

class time_zone

{
public:
time_zone ();
time_zone (short hours, short minutes);

bool
zone_present () const;

void
zone_reset ();

short
zone_hours () const;

void
zone_hours (short);

short
zone_minutes () const;

void

zone_minutes (short);

%

July 2014 C++/Tree Mapping User Manual, v4.0.0 19

2.5.8 Mapping for date

bool
operator== (const time_zoneg&, const time_zoneg&);

bool
operator!= (const time_zone&, const time_zoneg&);

The zone_present() accessor function returrtsue if the time zone is specified. The
zone_reset() modifier function resets the time zone object tonbespecified state. If the

time zone offset is negative then both hours and minutes components are represented as negativs
integers.

2.5.8 Mapping fordat e

The XML Schemadate built-in data type is mapped to tlkenl_schema::date C++ class

which represents a year, a day, and a month with an optional time zone. Its interface is presented
below. For more information on the bas®l_schema::time_zone class refer th_Sectipn

[2.5.7, "Time Zone Representatipn”.

class date: public simple_type, public time_zone
{
public:
date (int year, unsigned short month, unsigned short day);
date (int year, unsigned short month, unsigned short day,
short zone_hours, short zone_minutes);

public:
date (const date&);

date&
operator= (const date&);

virtual date*
_clone () const;

public:
int
year () const;

void
year (int);

unsigned short
month () const;

void
month (unsigned short);

unsigned short
day () const;

20 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.5.9 Mapping for dateTime

void
day (unsigned short);
h

bool
operator== (const date&, const date&);

bool
operator!= (const date&, const date&);

2.5.9 Mapping fordat eTi ne

The XML SchemalateTime built-in data type is mapped to the

xml_schema::date_time C++ class which represents a year, a month, a day, hours,
minutes, and seconds with an optional time zone. Its interface is presented below. For more infor-
mation on the bas&ml_schema::time_zone class refer tg Section 2.5.7, "Time Zohe
[Representation”.

class date_time: public simple_type, public time_zone

{

public:

date_time (int year, unsigned short month, unsigned short day,
unsigned short hours, unsigned short minutes,
double seconds);

date_time (int year, unsigned short month, unsigned short day,
unsigned short hours, unsigned short minutes,
double seconds, short zone_hours, short zone_minutes);
public:
date_time (const date_timeg&);

date_time&
operator= (const date_time&);

virtual date_time*
_clone () const;

public:
int
year () const;

void
year (int);

unsigned short
month () const;

void

July 2014 C++/Tree Mapping User Manual, v4.0.0 21

2.5.10 Mapping for duration

month (unsigned short);

unsigned short
day () const;

void
day (unsigned short);

unsigned short
hours () const;

void
hours (unsigned short);

unsigned short
minutes () const;

void
minutes (unsigned short);

double
seconds () const;

void
seconds (double);

h

bool
operator== (const date_time&, const date_time&);

bool
operator!= (const date_time&, const date_time&);

2.5.10 Mapping fordur ati on

The XML Schemauration built-in data type is mapped to tkel_schema::duration
C++ class which represents a potentially negative duration in the form of years, months, days,
hours, minutes, and seconds. Its interface is presented below.

class duration: public simple_type
{
public:
duration (bool negative,
unsigned int years, unsigned int months, unsigned int days,
unsigned int hours, unsigned int minutes, double seconds);
public:
duration (const duration&);

duration&
operator= (const duration&);

22 C++/Tree Mapping User Manual, v4.0.0 July 2014

virtual duration*
_clone () const;

public:
bool
negative () const;

void
negative (bool);

unsigned int
years () const;

void
years (unsigned int);

unsigned int
months () const;

void

months (unsigned int);

unsigned int
days () const;

void
days (unsigned int);

unsigned int
hours () const;

void
hours (unsigned int);

unsigned int
minutes () const;

void

minutes (unsigned int);

double
seconds () const;

void
seconds (double);

h

bool

July 2014

C++/Tree Mapping User Manual, v4.0.0

2.5.10 Mapping for duration

23

2.5.11 Mapping for gDay

operator== (const duration&, const duration&);

bool
operator!= (const duration&, const duration&);

2.5.11 Mapping forgDay

The XML SchemggDay built-in data type is mapped to tkenl_schema::gday = C++ class

which represents a day of the month with an optional time zone. Its interface is presented below.
For more information on the basgenl_schema::time_zone class refer t¢_Section 2.5.7,
['Time Zone Representatign”.

class gday: public simple_type, public time_zone
{
public:
explicit
gday (unsigned short day);
gday (unsigned short day, short zone_hours, short zone_minutes);

public:
gday (const gday&);

gday&
operator= (const gday&);

virtual gday*
_clone () const;

public:
unsigned short
day () const;

void
day (unsigned short);
3

bool
operator== (const gday&, const gday&);

bool
operator!= (const gday&, const gday&);

2.5.12 Mapping forgMont h

The XML SchemagMonth built-in data type is mapped to tkenl_schema::gmonth C++

class which represents a month of the year with an optional time zone. Its interface is presented
below. For more information on the bas®l_schema::time_zone class refer th _Sectipn

[2.5.7, "Time Zone Representatipn”.

24 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.5.13 Mapping for gMonthDay

class gmonth: public simple_type, public time_zone

{
public:
explicit
gmonth (unsigned short month);
gmonth (unsigned short month,
short zone_hours, short zone_minutes);

public:
gmonth (const gmonth&);

gmonth&
operator= (const gmonth&);

virtual gmonth*
_clone () const;

public:
unsigned short
month () const;

void
month (unsigned short);

%

bool
operator== (const gmonth&, const gmonth&);

bool
operator!= (const gmonthé&, const gmonth&);

2.5.13 Mapping forgMont hDay

The XML Schema gMonthDay built-in data type is mapped to the
xml_schema::gmonth_day C++ class which represents a day and a month of the year with
an optional time zone. Its interface is presented below. For more information on the base
xml_schema::time_zone class refer tp Section 2.5.7, "Time Zone Representation".

class gmonth_day: public simple_type, public time_zone
{
public:
gmonth_day (unsigned short month, unsigned short day);
gmonth_day (unsigned short month, unsigned short day,
short zone_hours, short zone_minutes);

public:
gmonth_day (const gmonth_day&);

gmonth_day&
operator= (const gmonth_day&);

July 2014 C++/Tree Mapping User Manual, v4.0.0 25

2.5.14 Mapping for gYear

virtual gmonth_day*
_clone () const;

public:
unsigned short
month () const;

void
month (unsigned short);

unsigned short
day () const;

void
day (unsigned short);
h

bool
operator== (const gmonth_day&, const gmonth_day&);

bool
operator!= (const gmonth_day&, const gmonth_day&);

2.5.14 Mapping forgYear

The XML SchemagYear built-in data type is mapped to tkenl_schema:.gyear C++

class which represents a year with an optional time zone. Its interface is presented below. For
more information on the basenl_schema::time_zone class refer tp Section 2.5.7, "Time
[Zone Representatign".

class gyear: public simple_type, public time_zone
{
public:
explicit
gyear (int year);
gyear (int year, short zone_hours, short zone_minutes);

public:
gyear (const gyear&);

gyear&
operator= (const gyear&);

virtual gyear*
_clone () const;

public:
int
year () const;

26 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.5.15 Mapping for gYearMonth

void
year (int);
3

bool
operator== (const gyear&, const gyear&);

bool
operator!= (const gyear&, const gyear&);

2.5.15 Mapping forgYear Mont h

The XML Schema gYearMonth built-in data type is mapped to the
xml_schema::gyear_month C++ class which represents a year and a month with an
optional time zone. Its interface is presented below. For more information on the base
xml_schema::time_zone class refer tp Section 2.5.7, "Time Zone Representation".

class gyear_month: public simple_type, public time_zone
{
public:
gyear_month (int year, unsigned short month);
gyear_month (int year, unsigned short month,
short zone_hours, short zone_minutes);
public:
gyear_month (const gyear_month&);

gyear_month&
operator= (const gyear_month&);

virtual gyear_month*
_clone () const;

public:
int

year () const;

void
year (int);

unsigned short
month () const;

void
month (unsigned short);

%

bool

July 2014 C++/Tree Mapping User Manual, v4.0.0 27

2.5.16 Mapping for time

operator== (const gyear_monthé&, const gyear _month&);

bool
operator!= (const gyear_month&, const gyear_month&);

2.5.16 Mapping fort i me

The XML Schemaime built-in data type is mapped to tlkenl_schema::time C++ class

which represents hours, minutes, and seconds with an optional time zone. Its interface is
presented below. For more information on the bask schema::time_zone class refer to
[Section 2.5.7, "Time Zone Representatjon".

class time: public simple_type, public time_zone
{
public:
time (unsigned short hours, unsigned short minutes, double seconds);
time (unsigned short hours, unsigned short minutes, double seconds,
short zone_hours, short zone_minutes);

public:
time (const time&);

time&
operator= (const time&);

virtual time*
_clone () const;

public:
unsigned short
hours () const;

void
hours (unsigned short);

unsigned short
minutes () const;

void
minutes (unsigned short);

double
seconds () const;

void
seconds (double);

k

bool

28 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.6 Mapping for Simple Types

operator== (const time&, const timeg&);

bool
operator!= (const time&, const time&);

2.6 Mapping for Simple Types

An XML Schema simple type is mapped to a C++ class with the same name as the simple type.
The class defines a public copy constructor, a public copy assignment operator, and a public
virtual _clone function. The_clone function is declareadonst , does not take any argu-
ments, and returns a pointer to a complete copy of the instance allocated in the free store. The
_clone function shall be used to make copies when static type and dynamic type of the instance
may differ (seg¢ Section 2.11, "Mapping fai:type and Substitution Grougs"). For instance:

<simpleType name="object">
</simpleType>
is mapped to:

class object: ...

{
public:
object (const object&);

public:
object&
operator= (const object&);

public:
virtual object*
_clone () const;

k

The base class specification and the rest of the class definition depend on the type of derivation
used to define the simple type.

2.6.1 Mapping for Derivation by Restriction

XML Schema derivation by restriction is mapped to C++ public inheritance. The base type of the
restriction becomes the base type for the resulting C++ class. In addition to the members
described in _Section 2.6, "Mapping for Simple Types", the resulting C++ class defines a public
constructor with the base type as its single argument. For instance:

July 2014 C++/Tree Mapping User Manual, v4.0.0 29

2.6.2 Mapping for Enumerations

<simpleType name="object">
<restriction base="base">

</restriction>
</simpleType>

is mapped to:

class object: public base

{

public:
object (const base&);
object (const object&);

public:
object&
operator= (const object&);

public:
virtual object*
_clone () const;

3
2.6.2 Mapping for Enumerations

XML Schema restriction by enumeration is mapped to a C++ class with semantics similar to C++
enum. Each XML Schema enumeration element is mapped to a C++ enumerator with the name
derived from thevalue attribute and defined in the class scope. In addition to the members
described in Section 2.6, "Mapping for Simple Types", the resulting C++ class defines a public
constructor that can be called with one of the enumerators as its single argument, a public
constructor that can be called with enumeration’s base value as its single argument, a public
assignment operator that can be used to assign the value of one of the enumerators, and a publi
implicit conversion operator to the underlying C++ enum type.

Furthermore, for string-based enumeration types, the resulting C++ class defines a public
constructor with a single argument of typenst C* and a public constructor with a single
argument of typeonst std::basic_string<C>& . For instance:

<simpleType name="color">
<restriction base="string">
<enumeration value="red"/>
<enumeration value="green"/>
<enumeration value="blue"/>
</restriction>
</simpleType>

30 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.6.3 Mapping for Derivation by List

is mapped to:

class color: public xml_schema::string

public:
enum value

{

red,
green,
blue

I3

public:
color (value);
color (const C*);
color (const std::basic_string<C>&);
color (const xml_schema::string&);
color (const color&);

public:
color&
operator= (value);

color&
operator= (const color&);

public:
virtual color*
_clone () const;

public:
operator value () const;

h
2.6.3 Mapping for Derivation by List

XML Schema derivation by list is mapped to C++ public inheritance from
xml_schema::simple_type (Section 2.5.3, "Mapping fanySimpleType ") and a suit-

able sequence type. The list item type becomes the element type of the sequence. In addition to
the members described [in Section 2.6, "Mapping for Simple Types", the resulting C++ class
defines a public default constructor, a public constructor with the first argument of type
size_type and the second argument of list item type that creates a list object with the specified
number of copies of the specified element value, and a public constructor with the two arguments
of an input iterator type that creates a list object from an iterator range. For instance:

<simpleType name="int_list">
<list itemType="int"/>
</simpleType>

July 2014 C++/Tree Mapping User Manual, v4.0.0 31

2.6.4 Mapping for Derivation by Union

is mapped to:

class int_list: public simple_type,
public sequence<int>

{
public:
int_list ();
int_list (size_type n, int x);

template <typename I>
int_list (const 1& begin, const & end);
int_list (const int_list&);

public:
int_list&
operator= (const int_list&);

public:
virtual int_list*
_clone () const;

h

Thesequence class template is defined in an implementation-specific namespace. It conforms
to the sequence interface as defined by the ISO/ANSI Standard for C++ (ISO/IEC 14882:1998,
Section 23.1.1, "Sequences"). Practically, this means that you can treat such a sequence as if i
was std::vector . One notable extension to the standard interface that is available only for
sequences of non-fundamental C++ types is the addition of the overlpadiedback and

insert member functions which instead of the constant reference to the element type accept
automatic pointerstd::auto_ptr or std::unique_ptr , depending on the C++ standard
selected) to the element type. These functions assume ownership of the pointed to object and
reset the passed automatic pointer.

2.6.4 Mapping for Derivation by Union

XML Schema derivation by union is mapped to C++ public inheritance from
xml_schema::simple_type (Section 2.5.3, "Mapping foranySimpleType ") and
std::basic_string<C> . In addition to the members described in Section 2.6, "Mappihg for
[Simple Typeg", the resulting C++ class defines a public constructor with a single argument of
type const C* and a public constructor with a single argument of tyumst
std::basic_string<C>& . For instance:

<simpleType name="int_string_union">
<xsd:union memberTypes="xsd:int xsd:string"/>
</simpleType>

32 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.7 Mapping for Complex Types

is mapped to:

class int_string_union: public simple_type,
public std::basic_string<C>
{

public:
int_string_union (const C*);
int_string_union (const std::basic_string<C>&);
int_string_union (const int_string_union&);

public:
int_string_union&
operator= (const int_string_union&);

public:
virtual int_string_union*
_clone () const;

h

2.7 Mapping for Complex Types

An XML Schema complex type is mapped to a C++ class with the same name as the complex
type. The class defines a public copy constructor, a public copy assignment operator, and a public
virtual _clone function. The_clone function is declareadonst , does not take any argu-
ments, and returns a pointer to a complete copy of the instance allocated in the free store. The
_clone function shall be used to make copies when static type and dynamic type of the instance
may differ (seg Section 2.11, "Mapping fai:type and Substitution Grougs").

Additionally, the resulting C++ class defines two public constructors that take an initializer for
each member of the complex type and all its base types that belongs to the One cardinality class
(sed Section 2.8, "Mapping for Local Elements and Attributes"). In the first constructor, the argu-
ments are passed as constant references and the newly created instance is initialized with copie:
of the passed objects. In the second constructor, arguments that are complex types (that is, they

themselves contain elements or attributes) are passed asstithauto ptr (C++98) or
std::unique_ptr (C++11), depending on the C++ standard selected. In this case the newly
created instance is directly initialized with and assumes ownership of the pointed to objects and
thestd::[auto|unique]_ptr arguments are reset@o For instance:

<complexType name="complex">
<sequence>
<element name="a" type="int"/>
<element name="b" type="string"/>
</sequence>
</complexType>

<complexType name="object">
<sequence>

July 2014 C++/Tree Mapping User Manual, v4.0.0 33

2.7 Mapping for Complex Types

<element name="s-one" type="boolean"/>
<element name="c-one" type="complex"/>
<element name="optional" type="int" minOccurs="0"/>
<element name="sequence" type="string" maxOccurs="unbounded"/>
</sequence>
</complexType>

is mapped to:

class complex: public xml_schema::type

{

public:
object (const int& a, const xml_schema::string& b);
object (const complex&);

public:
object&
operator= (const complex&);

public:
virtual complex*
_clone () const;

h

class object: public xml_schema::type

{

public:
object (const bool& s_one, const complex& ¢_one);
object (const bool& s_one, std::[auto|unique]_ptr<complex> c_one);
object (const object&);

public:
object&
operator= (const object&);

public:
virtual object*
_clone () const;

3

Notice that the generated complex class does not have the second
(std::[auto|unique]_ptr) version of the constructor since all its required members are of
simple types.

34 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.7 Mapping for Complex Types

If an XML Schema complex type has an ultimate base which is an XML Schema simple type
then the resulting C++ class also defines a public constructor that takes an initializer for the base
type as well as for each member of the complex type and all its base types that belongs to the One
cardinality class. For instance:

<complexType name="object">
<simpleContent>
<extension base="date">
<attribute name="lang" type="language" use="required"/>
</extension>
</simpleContent>
</complexType>

is mapped to:

class object: public xml_schema::string

{
public:
object (const xml_schema::languageé& lang);

object (const xml_schema::date& base,
const xml_schema::languageé& lang);

J3

Furthermore, for string-based XML Schema complex types, the resulting C++ class also defines
two public constructors with the first arguments of typeonst C* and
std::basic_string<C>& , respectively, followed by arguments for each member of the

complex type and all its base types that belongs to the One cardinality class. For enumera-
tion-based complex types the resulting C++ class also defines a public constructor with the first
arguments of the underlying enum type followed by arguments for each member of the complex
type and all its base types that belongs to the One cardinality class. For instance:

<simpleType name="color">
<restriction base="string">
<enumeration value="red"/>
<enumeration value="green"/>
<enumeration value="blue"/>
</restriction>
</simpleType>

<complexType name="object">

<simpleContent>
<extension base="color">

July 2014 C++/Tree Mapping User Manual, v4.0.0 35

2.7 Mapping for Complex Types

<attribute name="lang" type="language" use="required"/>
</extension>
</simpleContent>
</complexType>

is mapped to:

class color: public xml_schema::string
public:
enum value
red,
green,
blue

I3

public:
color (value);
color (const C*);
color (const std::basic_string<C>&);

h

class object: color
{
public:
object (const color& base,
const xml_schema::languageé& lang);

object (const color::value& base,
const xml_schema::languageé& lang);

object (const C* base,
const xml_schema::languageé& lang);

object (const std::basic_string<C>& base,
const xml_schema::languageé& lang);

b

Additional constructors can be requested with thgenerate-default-ctor and
--generate-from-base-ctor options. See the XSD Compiler Command Line Mgnual for
details.

36 C++/Tree Mapping User Manual, v4.0.0 July 2014

http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml

2.8 Mapping for Local Elements and Attributes

If an XML Schema complex type is not explicitly derived from any type, the resulting C++ class
is derived fromxml_schema::itype . In cases where an XML Schema complex type is
defined using derivation by extension or restriction, the resulting C++ base class specification
depends on the type of derivation and is described in the subsequent sections.

The mapping for elements and attributes that are defined in a complex type is described in
[Section 2.8, "Mapping for Local Elements and Attributes".

2.7.1 Mapping for Derivation by Extension

XML Schema derivation by extension is mapped to C++ public inheritance. The base type of the
extension becomes the base type for the resulting C++ class.

2.7.2 Mapping for Derivation by Restriction

XML Schema derivation by restriction is mapped to C++ public inheritance. The base type of the
restriction becomes the base type for the resulting C++ class. XML Schema elements and
attributes defined within restriction do not result in any definitions in the resulting C++ class.
Instead, corresponding (unrestricted) definitions are inherited from the base class. In the future
versions of this mapping, such elements and attributes may result in redefinitions of accessors and
modifiers to reflect their restricted semantics.

2.8 Mapping for Local Elements and Attributes

XML Schema element and attribute definitions are called local if they appear within a complex
type definition, an element group definition, or an attribute group definitions.

Local XML Schema element and attribute definitions have the same C++ mapping. Therefore, in
this section, local elements and attributes are collectively called members.

While there are many different member cardinality combinations (determined byséhe
attribute for attributes and theinOccurs and maxOccurs attributes for elements), the
mapping divides all possible cardinality combinations into three cardinality classes:

one
attributesuse == "required"
attributesuse == "optional” and has default or fixed value
elementsminOccurs =="1" andmaxOccurs == "1"

optional
attributesuse == "optional” and doesn’t have default or fixed value

elementsminOccurs == "0" andmaxOccurs =="1"

July 2014 C++/Tree Mapping User Manual, v4.0.0 37

2.8 Mapping for Local Elements and Attributes

sequence
elementsmaxOccurs > "1"

An optional attribute with a default or fixed value acquires this value if the attribute hasn’'t been
specified in an instance document (see Appendix A, "Default and Fixed Values"). This mapping
places such optional attributes to the One cardinality class.

A member is mapped to a set of public type definitiopysedef s) and a set of public accessor
and modifier functions. Type definitions have names derived from the member's name. The
accessor and modifier functions have the same name as the member. For example:

<complexType name="object">
<sequence>
<element name="member" type="string"/>
</sequence>
</complexType>

is mapped to:

class object: public xml_schema::type

{
public:
typedef xml_schema::string member_type;

const member_type&
member () const;

kh

In addition, if a member has a default or fixed value, a static accessor function is generated that
returns this value. For example:

<complexType name="object">

<attribute name="data" type="string" default="test"/>
</complexType>

is mapped to:
class object: public xml_schema::type
{
public:
typedef xml_schema::string data_type;

const data_type&
data () const;

static const data_type&

38 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.8.1 Mapping for Members with the One Cardinality Class

data_default_value ();

h

Names and semantics of type definitions for the member as well as signatures of the accessor anc
modifier functions depend on the member’s cardinality class and are described in the following
sub-sections.

2.8.1 Mapping for Members with the One Cardinality Class

For the One cardinality class, the type definitions consist of an alias for the member’s type with
the name created by appending thge suffix to the member’s name.

The accessor functions come in constant and non-constant versions. The constant accessor func
tion returns a constant reference to the member and can be used for read-only access. The
non-constant version returns an unrestricted reference to the member and can be used for
read-write access.

The first modifier function expects an argument of type reference to constant of the member’'s
type. It makes a deep copy of its argument. Except for member’s types that are mapped to funda-
mental C++ types, the second modifier function is provided that expects an argument of type
automatic pointerstd::auto_ptr or std::unique_ptr , depending on the C++ standard
selected) to the member’s type. It assumes ownership of the pointed to object and resets the
passed automatic pointer. For instance:

<complexType name="object">
<sequence>
<element name="member" type="string"/>
</sequence>
</complexType>

is mapped to:

class object: public xml_schema::type

{
public:
/I Type definitions.
I
typedef xml_schema::string member_type;

/I Accessors.

1

const member_type&
member () const;

member_type&

July 2014 C++/Tree Mapping User Manual, v4.0.0 39

2.8.1 Mapping for Members with the One Cardinality Class

member ();

/I Modifiers.

I

void

member (const member_type&);

void
member (std::[auto|unique]_ptr<member_type>);
3

In addition, if requested by specifying thgenerate-detach option and only for members
of non-fundamental C++ types, the mapping provides a detach function that returns an automatic
pointer to the member’s type, for example:

class object: public xml_schema::type

{
public:

std::[autounique]_ptr<member_type>
detach_member ();
3

This function detaches the value from the tree leaving the member value uninitialized. Accessing
such an uninitialized value prior to re-initializing it results in undefined behavior.

The following code shows how one could use this mapping:

void
f (object& 0)

using xml_schema::string;

string s (0.member ()); I/l get
object::member_type& sr (o.member ()); // get

o.member ("hello"); I set, deep copy
o.member () = "hello"; /I set, deep copy

/I C++98 version.
I
std:;:auto_ptr<string> p (new string ("hello"));

o.member (p); Il set, assumes ownership
p = o.detach_member (); I/ detach, member is uninitialized
o.member (p); Il re-attach

40 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.8.2 Mapping for Members with the Optional Cardinality Class

/I C++11 version.

I

std::unique_ptr<string> p (new string ("hello"));

o.member (std::move (p)); // set, assumes ownership

p = o.detach_member (); I/ detach, member is uninitialized
o.member (std::move (p)); // re-attach

}

2.8.2 Mapping for Members with the Optional Cardinality Class

For the Optional cardinality class, the type definitions consist of an alias for the member’s type
with the name created by appending thype suffix to the member’'s name and an alias for the
container type with the name created by appending tiptional suffix to the member’s
name.

Unlike accessor functions for the One cardinality class, accessor functions for the Optional cardi-
nality class return references to corresponding containers rather than directly to members. The
accessor functions come in constant and non-constant versions. The constant accessor functior
returns a constant reference to the container and can be used for read-only access. The
non-constant version returns an unrestricted reference to the container and can be used for
read-write access.

The modifier functions are overloaded for the member’s type and the container type. The first
modifier function expects an argument of type reference to constant of the member’s type. It
makes a deep copy of its argument. Except for member’s types that are mapped to fundamental
C++ types, the second modifier function is provided that expects an argument of type automatic
pointer étd::auto_ptr or std::unique_ptr , depending on the C++ standard selected)

to the member’s type. It assumes ownership of the pointed to object and resets the passed auto:
matic pointer. The last modifier function expects an argument of type reference to constant of the
container type. It makes a deep copy of its argument. For instance:

<complexType name="object">
<sequence>
<element name="member" type="string" minOccurs="0"/>
</sequence>
</complexType>

is mapped to:

class object: public xml_schema::type
{
public:
/I Type definitions.
I
typedef xml_schema::string member_type;
typedef optional<member_type> member_optional;

July 2014 C++/Tree Mapping User Manual, v4.0.0 41

2.8.2 Mapping for Members with the Optional Cardinality Class

/I Accessors.

I

const member_optional&
member () const;

member_optional&
member ();

/I Modifiers.

I

void

member (const member_type&);

void
member (std::[auto|unique]_ptr<member_type>);

void
member (const member_optional&);

h

Theoptional class template is defined in an implementation-specific namespace and has the
following interface. Theauto|unique]_ptr -based constructor and modifier function are
only available if the template argument is not a fundamental C++ type.

template <typename X>
class optional
{
public:
optional ();

/l Makes a deep copy.
I

explicit

optional (const X&);

/I Assumes ownership.
I
explicit
optional (std::[auto|unique]_ptr<X>);
optional (const optional&);
public:
optional&
operator= (const X&);

optional&

42 C++/Tree Mapping User Manual, v4.0.0 July 2014

operator= (const optional&);

/I Pointer-like interface.
I
public:
const X*
operator-> () const;

X*
operator-> ();

const X&
operator* () const;

X&
operator* ();

typedef void (optional::*bool_convertible) ();
operator bool_convertible () const;

/I Get/set interface.
I
public:
bool
present () const;

const X&
get () const;

X&
get ();

/l Makes a deep copy.
I

void

set (const X&);

/I Assumes ownership.

I

void

set (std::[auto|unique]_ptr<X>);

/I Detach and return the contained value.
I

std::[auto|unique]_ptr<X>

detach ();

void
reset ();

h

2.8.2 Mapping for Members with the Optional Cardinality Class

July 2014 C++/Tree Mapping User Manual, v4.0.0 43

2.8.2 Mapping for Members with the Optional Cardinality Class

template <typename X>
bool
operator== (const optional<X>&, const optional<X>&);

template <typename X>
bool
operator!= (const optional<X>&, const optional<X>&);

template <typename X>
bool
operator< (const optional<X>&, const optional<X>&);

template <typename X>
bool
operator> (const optional<X>&, const optional<X>&);

template <typename X>
bool
operator<= (const optional<X>&, const optional<X>&);

template <typename X>
bool
operator>= (const optional<X>&, const optional<X>&);

The following code shows how one could use this mapping:

void
f (object& 0)
{

using xml_schema::string;

if (0.member ().present ()) /I test

{
string& s (o.member ().get ()); // get
o.member ("hello"); Il set, deep copy
o.member ().set ("hello"); // set, deep copy
o.member ().reset (); I reset

}

/I Same as above but using pointer notation:
I

if (0.member ()) Il test

string& s (*o.member ()); // get

o.member ("hello"); Il set, deep copy
*o.member () = "hello"; /I set, deep copy
o.member ().reset (); I reset

}

/I C++98 version.

I

44 C++/Tree Mapping User Manual, v4.0.0

July 2014

2.8.3 Mapping for Members with the Sequence Cardinality Class

std:;:auto_ptr<string> p (new string ("hello"));
o.member (p); /I set, assumes ownership

p = new string ("hello");

o.member ().set (p); /I set, assumes ownership
p = o.member ().detach (); /I detach, member is reset
o.member ().set (p); // re-attach

/I C++11 version.

I

std::unique_ptr<string> p (new string ("hello"));

o.member (std::move (p)); I set, assumes ownership

p.reset (new string ("hello"));
o.member ().set (std::move (p)); // set, assumes ownership

p = o.member ().detach (); /I detach, member is reset
o.member ().set (std::move (p)); // re-attach

}

2.8.3 Mapping for Members with the Sequence Cardinality Class

For the Sequence cardinality class, the type definitions consist of an alias for the member’s type
with the name created by appending thgpe suffix to the member's name, an alias of the
container type with the name created by appending sieguence suffix to the member’'s

name, an alias of the iterator type with the name created by appendintgthtor suffix to

the member’s name, and an alias of the constant iterator type with the name created by appending
the_const_iterator suffix to the member’s name.

The accessor functions come in constant and non-constant versions. The constant accessor func
tion returns a constant reference to the container and can be used for read-only access. The
non-constant version returns an unrestricted reference to the container and can be used for
read-write access.

The modifier function expects an argument of type reference to constant of the container type.
The modifier function makes a deep copy of its argument. For instance:

<complexType name="object">
<sequence>
<element name="member" type="string" minOccurs="unbounded"/>
</sequence>
</complexType>

is mapped to:

July 2014 C++/Tree Mapping User Manual, v4.0.0 45

2.8.3 Mapping for Members with the Sequence Cardinality Class

class object: public xml_schema::type

{
public:
/I Type definitions.
I
typedef xml_schema::string member_type;
typedef sequence<member_type> member_sequence;
typedef member_sequence::iterator member _iterator;
typedef member_sequence::const_iterator member_const_iterator;

/I Accessors.

I

const member_sequence&
member () const;

member_sequence&
member ();

/I Maodifier.

I

void

member (const member_sequenceg&);

h

Thesequence class template is defined in an implementation-specific namespace. It conforms
to the sequence interface as defined by the ISO/ANSI Standard for C++ (ISO/IEC 14882:1998,
Section 23.1.1, "Sequences"). Practically, this means that you can treat such a sequence as if i
wasstd::vector . Two notable extensions to the standard interface that are available only for
sequences of non-fundamental C++ types are the addition of the overfmstedack and

insert as well as thedetach_back and detach member functions. The additional
push_back and insert functions accept an automatic pointestd(:auto_ptr or
std::unique_ptr , depending on the C++ standard selected) to the element type instead of
the constant reference. They assume ownership of the pointed to object and reset the passed autc
matic pointer. Thedetach_back anddetach functions detach the element value from the
sequence container and, by default, remove the element from the sequence. These additional
functions have the following signatures:

template <typename X>
class sequence

{
public:

void
push_back (std::[auto|unique]_ptr<X>)

46 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.8.3 Mapping for Members with the Sequence Cardinality Class

iterator
insert (iterator position, std::[auto|unique]_ptr<X>)

std::[auto|unique]_ptr<X>
detach_back (bool pop = true);

iterator

detach (iterator position,
std::[auto|unique]_ptr<X>& result,
bool erase = true)

}...

The following code shows how one could use this mapping:

void
f (object& 0)

using xml_schema::string;
object::member_sequence& s (0.member ());

/I lteration.
I
for (object::member_iterator i (s.begin ()); i I=s.end (); ++i)

{

string& value (*i);
}
/I Modification.
I
s.push_back ("hello"); // deep copy

/I C++98 version.

I
std:;:auto_ptr<string> p (new string ("hello"));
s.push_back (p); I/l assumes ownership

p = s.detach_back (); // detach and pop
s.push_back (p); Il re-append

/I C++11 version.

I

std::unique_ptr<string> p (new string ("hello"));
s.push_back (std::move (p)); // assumes ownership
p = s.detach_back (); /I detach and pop
s.push_back (std::move (p)); // re-append

/I Setting a new container.

I
object::member_sequence n;

July 2014 C++/Tree Mapping User Manual, v4.0.0

a7

2.8.4 Element Order

n.push_back ("one");
n.push_back ("two");
o.member (n); /[deep copy

}
2.8.4 Element Order

C++/Tree is a "flattening” mapping in a sense that many levels of nested compasitice (
andsequence), all potentially with their own cardinalities, are in the end mapped to a flat set of
elements with one of the three cardinality classes discussed in the previous sections. While this
results in a simple and easy to use API for most types, in certain cases, the order of elements in
the actual XML documents is not preserved once parsed into the object model. And sometimes
such order has application-specific significance. As an example, consider a schema that defines a
batch of bank transactions:

<complexType name="withdraw">
<sequence>
<element name="account" type="unsignedInt"/>
<element name="amount" type="unsignedint"/>
</sequence>
</complexType>

<complexType name="deposit">
<sequence>
<element name="account" type="unsignedInt"/>
<element name="amount" type="unsignedint"/>
</sequence>
</complexType>

<complexType name="batch">
<choice minOccurs="0" maxOccurs="unbounded">
<element name="withdraw" type="withdraw"/>
<element name="deposit" type="deposit"/>
</choice>
</complexType>

The batch can contain any number of transactions in any order but the order of transactions in
each actual batch is significant. For instance, consider what could happen if we reorder the trans-
actions and apply all the withdrawals before deposits.

For thebatch schema type defined above the default C++/Tree mapping will produce a C++
class that contains a pair of sequence containers, one for each of the two elements. While this will
capture the content (transactions), the order of this content as it appears in XML will be lost.
Also, if we try to serialize the batch we just loaded back to XML, all the withdrawal transactions
will appear before deposits.

48 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.8.4 Element Order

To overcome this limitation of a flattening mapping, C++/Tree allows us to mark certain XML
Schema types, for which content order is important, as ordered.

There are several command line options that control which schema types are treated as ordered.
To make an individual type ordered, we use-tbedered-type option, for example:

--ordered-type batch

To automatically treat all the types that are derived from an ordered type also ordered, we use the
--ordered-type-derived option. This is primarily useful if you would like to iterate over
the complete hierarchy’s content using the content order sequence (discussed below).

Ordered types are also useful for handling mixed content. To automatically mark all the types
with mixed content as ordered we use H#wgdered-type-mixed option. For more infor-
mation on handling mixed content $ee Section 2.13, "Mapping for Mixed Content Models".

Finally, we can mark all the types in the schema we are compiling with the
--ordered-type-all option. You should only resort to this option if all the types in your
schema truly suffer from the loss of content order since, as we will discuss shortly, ordered types
require extra effort to access and, especially, modify. Seg the XSD Compiler Command Line
for more information on these options.

Once a type is marked ordered, C++/Tree alters its mapping in several ways. Firstly, for each
local element, element wildcand (Section 2.12.4, "Element Wildcard Qrder"), and mixed content
text (Section 2.13, "Mapping for Mixed Content Modgls") in this type, a content id constant is
generated. Secondly, an addition sequence is added to the class that captures the content orde
Here is how the mapping of obatch class changes once we make it ordered:

class batch: public xml_schema::type
{
public:
/I withdraw
I
typedef withdraw withdraw_type;
typedef sequence<withdraw_type> withdraw_sequence;
typedef withdraw_sequence::iterator withdraw_iterator;
typedef withdraw_sequence::const_iterator withdraw_const_iterator;

static const std::size_t withdraw_id = 1;

const withdraw_sequence&
withdraw () const;

withdraw_sequence&
withdraw ();

void

July 2014 C++/Tree Mapping User Manual, v4.0.0 49

http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml
http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml

2.8.4 Element Order

withdraw (const withdraw_sequence&);

/I deposit

I

typedef deposit deposit_type;

typedef sequence<deposit_type> deposit_sequence;

typedef deposit_sequence::iterator deposit_iterator;

typedef deposit_sequence::const_iterator deposit_const_iterator;

static const std::size_t deposit_id = 2;

const deposit_sequence&
deposit () const;

deposit_sequence&
deposit ();

void
deposit (const deposit_sequence&);

/I content_order

I

typedef xml_schema::content_order content_order_type;

typedef std::vector<content_order_type> content_order_sequence;

typedef content_order_sequence::iterator content_order_iterator;

typedef content_order_sequence::const_iterator content_order_const_iterator;

const content_order_sequence&
content_order () const;

content_order_sequence&
content_order ();

void
content_order (const content_order_sequenceg&);

};...

Notice the withdraw _id and deposit_id content ids as well as the extra
content_order sequence that does not correspond to any element in the schema definition.
The other changes to the mapping for ordered types has to do with XML parsing and serialization
code. During parsing the content order is captured inctimtent_order sequence while
during serialization this sequence is used to determine the order in which content is serialized.
The content_order sequence is also copied during copy construction and assigned during
copy assignment. It is also taken into account during comparison.

50 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.8.4 Element Order

The entry type of theontent_order sequence is theml_schema::content_order
type that has the following interface:

namespace xml_schema

{

struct content_order

{

content_order (std::size_tid, std::size_t index = 0);

std::size tid;
std::size_t index;

I3

bool
operator== (const content_order&, const content_order&);

bool
operator!= (const content_order&, const content_order&);

bool
operator< (const content_order&, const content_order&);

}

The content_order sequence describes the order of content (elements, including wildcards,
as well as mixed content text). Each entry in this sequence consists of the content id (for example,
withdraw_id ordeposit_id in our case) as well as, for elements of the sequence cardinal-

ity class, an index into the corresponding sequence container (the index is unused for the one and
optional cardinality classes). For example, in our case, if the contenwithdvraw _id , then

the index will point into thevithdraw element sequence.

With all this information we can now examine how to iterate over transaction in the batch in
content order:

batch& b = ...

for (batch::content_order_const_iterator i (b.content_order ().begin ());
i = b.content_order ().end ();
++i)

switch (i->id)

{

case batch::withdraw_id:

{

const withdraw& t (b.withdraw ()[i->index]);
cerr << t.account () << " withdraw " << t.amount () << endl;
break;

}

case batch::deposit_id:

{

July 2014 C++/Tree Mapping User Manual, v4.0.0 51

2.8.4 Element Order

const deposit& t (b.deposit ()[i->index]);
cerr << t.account () << " deposit " << t.amount () << endl;
break;

}

default:

{

assert (false); // Unknown content id.

}
}
}

If we serialized our batch back to XML, we would also see that the order of transactions in the
output is exactly the same as in the input rather than all the withdrawals first followed by all the
deposits.

The most complex aspect of working with ordered types is modifications. Now we not only need
to change the content, but also remember to update the order information corresponding to this
change. As a first example, we add a deposit transaction to the batch:

using xml_schema::content_order;
batch::deposit_sequence& d (b.deposit ());
batch::withdraw_sequence& w (b.withdraw ());

batch::content_order_sequence& co (b.content_order ());

d.push_back (deposit (123456789, 100000));
co.push_back (content_order (batch::deposit_id, d.size () - 1));

In the above example we first added the content (deposit transaction) and then updated the
content order information by adding an entry wd#posit_id content id and the index of the
just added deposit transaction.

Removing the last transaction can be easy if we know which transaction (deposit or withdrawal)
is last:

d.pop_back ();
co.pop_back ();

If, however, we do not know which transaction is last, then things get a bit more complicated:
switch (co.back ().id)

{

case batch::withdraw_id:

d.pop_back ();
break;

case batch::deposit_id:

{

52 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.8.4 Element Order

w.pop_back ();
break;

}
}

co.pop_back ();

The following example shows how to add a transaction at the beginning of the batch:

w.push_back (withdraw (123456789, 100000));
co.insert (co.begin (),
content_order (batch::withdraw_id, w.size () - 1));

Note also that when we merely modify the content of one of the elements in place, we do not
need to update its order since it doesn’t change. For example, here is how we can change the
amount in the first withdrawal:

w[0].amount (10000);

For the complete working code shown in this section refer torther/element example in
theexamples/cxx/tree/ directory in the XSD distribution.

If both the base and derived types are ordered, then the content order sequence is only added tc
the base and the content ids are unique within the whole hierarchy. In this case the content order
sequence for the derived type contains ordering information for both base and derived content.

In some applications we may need to perform more complex content processing. For example, in
our case, we may need to remove all the withdrawal transactions. The default container,

std::vector , IS not particularly suitable for such operations. What may be required by some
applications is a multi-index container that not only allows us to iterate in content order similar to
std::vector but also search by the content id as well as the content id and index pair.

While C++/Tree does not provide this functionality by default, it allows us to specify a custom
container type for content order with th@rder-container command line option. The
only requirement from the generated code side for such a container is to providettine -like
push_back() ,size() ,and const iteration interfaces.

As an example, here is how we can use the Boost Multi-Index container for content order. First
we create theontent-order-container.hxx header with the following definition (in
C++11, use the alias template instead):

#ifndef CONTENT_ORDER_CONTAINER
#define CONTENT_ORDER_CONTAINER

#include <cstddef> // std::size t

#include <boost/multi_index_container.hpp>

July 2014 C++/Tree Mapping User Manual, v4.0.0 53

2.8.4 Element Order

#include <boost/multi_index/member.hpp>

#include <boost/multi_index/identity.hpp>

#include <boost/multi_index/ordered_index.hpp>
#include <boost/multi_index/random_access_index.hpp>

struct by_id {};
struct by _id_index {};

template <typename T>
struct content_order_container:
boost::multi_index::multi_index_container<
T,
boost::multi_index::indexed_by<
boost::multi_index::random_access<>,
boost::multi_index::ordered_unique<
boost::multi_index::tag<by_id_index>,
boost::multi_index::identity<T>
>l
boost::multi_index::ordered_non_unique<
boost::multi_index::tag<by_id>,
boost::multi_index::member<T, std::size_t, &T::id>
>
>
>

&

#endif

Next we add the following two XSD compiler options to include this header into every generated
header file and to use the custom container type (see the XSD compiler command line manual for
more information on shell quoting for the first option):

--hxx-prologue "#include "content-order-container.hxx"
--order-container content_order_container

With these changes we can now use the multi-index functionality, for example, to search for a
specific content id:

typedef batch::content_order_sequence::index<by_id>::type id_set;
typedef id_set::iterator id_iterator;

const id_set& ids (b.content_order ().get<by_id> ());

std::pair<id_iterator, id_iterator> r (
ids.equal_range (std::size_t (batch::deposit_id));

for (id_iterator i (r.first); i = r.second; ++i)

54 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.9 Mapping for Global Elements

{
const deposit& t (b.deposit ()[i->index]);
cerr << t.account () << " deposit " << t.amount () << endl;

}

2.9 Mapping for Global Elements

An XML Schema element definition is called global if it appears directly undesdhema

element. A global element is a valid root of an instance document. By default, a global element is
mapped to a set of overloaded parsing and, optionally, serialization functions with the same name
as the element. It is also possible to generate types for root elements instead of parsing and serial
ization functions. This is primarily useful to distinguish object models with the same root type but
with different root elements. Spe Section 2.9.1, "Element Types" for details. It is also possible to
request the generation of an element map which allows uniform parsing and serialization of
multiple root elements. Sge Section 2.9.2, "Element Map" for details.

The parsing functions read XML instance documents and return corresponding object models as
an automatic pointers{d::auto_ptr or std::unique_ptr , depending on the C++ stan-

dard selected). Their signatures have the following pattgpe (denotes element’s type and
name denotes element’s name):

std::[autojunique]_ptr<type>
name (....);

The process of parsing, including the exact signatures of the parsing functions, is the subject of
[Chapter 3, "Parsing".

The serialization functions write object models back to XML instance documents. Their signa-
tures have the following pattern:

void
name (<stream type>&, const typeg&,);

The process of serialization, including the exact signatures of the serialization functions, is the
subject of Chapter 4, "Serializatipn".

2.9.1 Element Types

The generation of element types is requested with-tienerate-element-map option.

With this option each global element is mapped to a C++ class with the same name as the
element. Such a class is derived framl_schema:.element_type and contains the same

set of type definitions, constructors, and member function as would a type containing a single
element with the One cardinality class namedlue” . In addition, the element type also
contains a set of member functions for accessing the element name and namespace as well as it
value in a uniform manner. For example:

July 2014 C++/Tree Mapping User Manual, v4.0.0 55

2.9.1 Element Types

<complexType name="type">
<sequence>

</sequence>
</complexType>

<element name="root" type="type"/>

is mapped to:

class type

{
=

class root:; public xml_schema::element_type

{
public:
/I Element value.
I
typedef type value_type;

const value_type&
value () const;

value_type&
value ();

void
value (const value_type&);

void
value (std::[auto|unique]_ptr<value_type>);

/I Constructors.

I

root (const value_type&);

root (std::[autojunique]_ptr<value_type>);

root (const xercesc::DOMElement&, xml_schema::flags = 0);

root (const root&, xml_schema::flags = 0);

virtual root*
_clone (xml_schema::flags = 0) const;

/I Element name and namespace.
I

static const std::string&

name ();

56 C++/Tree Mapping User Manual, v4.0.0

July 2014

2.9.1 Element Types

static const std::string&
namespace_ ();

virtual const std::string&
_name () const;

virtual const std::string&
__namespace () const;

/I Element value as xml_schema::type.
I

virtual const xml_schema::type*
_value () const;

virtual xml_schema::type*
_value ();

h

void
operator<< (xercesc::DOMElement&, const root&);

Thexml_schema::element_type class is a common base type for all element types and is
defined as follows:

namespace xml_schema
{
class element_type
{
public:
virtual
~element_type ();

virtual element_type*
_clone (flags f = 0) const = 0;

virtual const std::basic_string<C>&
_name () const = 0;

virtual const std::basic_string<C>&
_namespace () const = 0;

virtual xml_schema::type*
_value () =0;

virtual const xml_schema::type*
_value () const = 0;
3
}

July 2014 C++/Tree Mapping User Manual, v4.0.0 57

2.9.2 Element Map

The _value() member function returns a pointer to the element value or O if the element is of a
fundamental C++ type and therefore is not derived fxath schema::type

Unlike parsing and serialization functions, element types are only capable of parsing and serializ-
ing from/to aDOMElement object. This means that the application will need to perform its own
XML-to-DOM parsing and DOM-to-XML serialization. The following section describes a mech-
anism provided by the mapping to uniformly parse and serialize multiple root elements.

2.9.2 Element Map

When element types are generated for root elements it is also possible to request the generation o

an element map with thegenerate-element-map option. The element map allows
uniform parsing and serialization of multiple root elements via the common
xml_schema::element_type base type. Thexml_schema::element_map class is

defined as follows:

namespace xml_schema

{

class element_map

{

public:
static std::[autojunique]_ptr<xml_schema::element_type>
parse (const xercesc::DOMElement&, flags = 0);

static void
serialize (xercesc::DOMElement&, const element_type&);
2

}
Theparse() function creates the corresponding element type object based on the element name
and namespace and returns it as an automatic poinséd::a(ito ptr or
std::unique_ptr , depending on the C++ standard selected) to
xml_schema::element_type . Theserialize() function serializes the passed element
object toDOMEIlement. Note that in case &ferialize() , theDOMElement object should
have the correct name and namespace. If no element type is available for an element, both func-
tions throw thexml_schema::no_element_info exception:

struct no_element_info: virtual exception

{

no_element_info (const std::basic_string<C>& element_name,
const std::basic_string<C>& element_namespace);

const std::basic_string<C>&
element_name () const;

const std::basic_string<C>&
element_namespace () const;

58 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.10 Mapping for Global Attributes

virtual const char*
what () const throw ();

%

The application can discover the actual type of the element object returpedsiey) either
usingdynamic_cast or by comparing element names and namespaces. The following code
fragments illustrate how the element map can be used:

/[Parsing.
I
DOMElement& e = ... // Parse XML to DOM.

auto_ptr<xml_schema::element_type>r (
xml_schema::element_map::parse (e));

if (rootl rl = dynamic_cast<rootl*> (r.get ()))
{
else if (r->_name == root2::name () &&

r->_namespace () == root2::namespace_ ())
{

root2& r2 (static_cast<root2&> (*1));

}...

/I Serialization.
I
xml_schema::element_type&r = ...

string name (r._name ());
string ns (r._namespace ());

DOMDocument& doc = ... // Create a new DOMDocument with name and ns.
DOMElement& e (*doc->getDocumentElement ());

xml_schema::element_map::serialize (e, r);

/I Serialize DOMDocument to XML.

2.10 Mapping for Global Attributes

An XML Schema attribute definition is called global if it appears directly undes¢chema
element. A global attribute does not have any mapping.

July 2014 C++/Tree Mapping User Manual, v4.0.0 59

2.11 Mapping for xsi:type and Substitution Groups

2.11 Mapping forxsi : t ype and Substitution Groups

The mapping provides optional support for the XML Schema polymorphism features
and substitution groups) which can be requested with-tfemerate-poly-

morphic option. When used, the dynamic type of a member may be different from its static
type. Consider the following schema definition and instance document:

(xsi:type

<I-- test.xsd -->
<schema>

<complexType nhame="base">
<attribute name="text" type="string"/>
</complexType>

<complexType name="derived">
<complexContent>
<extension base="base">
<attribute name="extra-text" type="string"/>
</extension>
</complexContent>
</complexType>

<complexType name="root_type">
<sequence>
<element name="item" type="base" maxOccurs="unbounded"/>
</sequence>
</complexType>

<element name="root" type="root_type"/>

</schema>

<

I-- test.xml -->

<root xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<item text="hello"/>
<item text="hello" extra-text="world" xsi:type="derived"/>

</root>

In the resulting object model, the container for toet:.item
elements: the first element’s type will base while the second element’s (dynamic) type will

be derived . This can be discovered using tbgnamic_cast

following example:

void

f
{

60

(root& r)
for (root::item_const_iterator i (r.item ().begin ());
i I=r.item ().end ()

++i)

if (derived* d = dynamic_cast<derived*> (&(*)))

C++/Tree Mapping User Manual, v4.0.0

member will have two

operator as shown in the

2.11 Mapping for xsi:type and Substitution Groups

{
[/l derived

}

else

/I base

}
}
}

The _clone virtual function should be used instead of copy constructors to make copies of
members that might use polymorphism:

void
f (root& r)
{

for (root::item_const_iterator i (r.item ().begin ());
i I=r.item ().end ()
++i)

{

std::auto_ptr<base> c (i->_clone ());
}
}

The mapping can often automatically determine which types are polymorphic based on the substi-
tution group declarations. However, if your XML vocabulary is not using substitution groups or if
substitution groups are defined in a separate schema, then you will need to-ysa\threor-

phic-type option to specify which types are polymorphic. When using this option you only
need to specify the root of a polymorphic type hierarchy and the mapping will assume that all the
derived types are also polymorphic. Also note that you need to specify this option when compil-
ing every schema file that references the polymorphic type. Consider the following two schemas
as an example:

<l-- base.xsd -->
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:complexType name="base">
<xs:sequence>
<xs:element name="b" type="xs:int"/>
</xs:sequence>
</xs:complexType>

<!-- substitution group root -->
<xs:element name="base" type="base"/>

</xs:schema>

July 2014 C++/Tree Mapping User Manual, v4.0.0 61

2.12 Mapping for any and anyAttribute

<l-- derived.xsd -->
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<include schemalocation="base.xsd"/>

<xs:complexType name="derived">
<xs:complexContent>
<xs:extension base="base">
<xs:sequence>

</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

<xs:element name="derived" type="derived" substitutionGroup="base"/>

</xs:schema>

In this example we need to specifygolymorphic-type base " when compiling both
schemas because the substitution group is declared in a schema other than the one defining type
base .

You can also indicate that all types should be treated as polymorphic witipdigmnor-
phic-type-all . However, this may result in slower generated code with a greater footprint.

2.12 Mapping forany andanyAttri but e

For the XML Schemaany and anyAttribute wildcards an optional mapping can be
requested with the-generate-wildcard option. The mapping represents the content
matched by wildcards as DOM fragments. Because the DOM API is used to access such content,
the Xerces-C++ runtime should be initialized by the application prior to parsing and should
remain initialized for the lifetime of objects with the wildcard content. For more information on
the Xerces-C++ runtime initialization dee Section 3.1, "Initializing the Xerces-C++ Runtime".

The mapping foany is similar to the mapping for local elements (see Section 2.8, "Mapp|ng for
[Local Elements and Attributgs") except that the type used in the wildcard mapping is
xercesc::DOMElement . As with local elements, the mapping divides all possible cardinality
combinations into three cardinality classase, optional, andsequence.

The mapping foanyAttribute represents the attributes matched by this wildcard as a set of
xercesc::DOMALtr objects with a key being the attribute’s name and namespace.

Similar to local elements and attributes, #my andanyAttribute wildcards are mapped to
a set of public type definitions (typedefs) and a set of public accessor and modifier functions.
Type definitions have names derived frotany” for the any wildcard and

62 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.12 Mapping for any and anyAttribute

"any_attribute" for the anyAttribute wildcard. The accessor and modifier functions
are namedany" for theany wildcard and"any_attribute" for the anyAttribute
wildcard. Subsequent wildcards in the same type have escaped names $Sankilas or
"any_attributel"

Because Xerces-C++ DOM nodes always belongD@®&Document each type with a wildcard
has an associatddlOMDocumentobject. The reference to this object can be obtained using the
accessor function calledbm_document . The access to the document object from the applica-
tion code may be necessary to create or modify the wildcard content. For example:

<complexType name="object">
<sequence>
<any namespace="##other"/>
</sequence>
<anyAttribute namespace="##other"/>
</complexType>

is mapped to:

class object: public xml_schema::type
{
public:

/[any

I

const xercesc::DOMElement&

any () const;

void
any (const xercesc::DOMElement&);

/[any_attribute

1

typedef attribute_set any_attribute_set;

typedef any_attribute_set::iterator any_attribute_iterator;

typedef any_attribute_set::const_iterator any_attribute_const_iterator;

const any_attribute_set&
any_attribute () const;

any_attribute_set&
any_attribute ();

/I DOMDocument object for wildcard content.
1
const xercesc::DOMDocument&

July 2014 C++/Tree Mapping User Manual, v4.0.0 63

2.12.1 Mapping for any with the One Cardinality Class

dom_document () const;

xercesc::.DOMDocument&
dom_document ();

};_

Names and semantics of type definitions for the wildcards as well as signatures of the accessor
and modifier functions depend on the wildcard type as well as the cardinality class dorthe
wildcard. They are described in the following sub-sections.

2.12.1 Mapping forany with the One Cardinality Class

For any with the One cardinality class, there are no type definitions. The accessor functions
come in constant and non-constant versions. The constant accessor function returns a constan
reference txercesc::DOMElement and can be used for read-only access. The non-constant
version returns an unrestricted referencexeéocesc::DOMElement and can be used for
read-write access.

The first modifier function expects an argument of type reference to constant
xercesc::DOMElement and makes a deep copy of its argument. The second modifier func-
tion expects an argument of type pointexéocesc::DOMElement . This modifier function
assumes ownership of its argument and expects the element object to be created using the DOM
document associated with this instance. For example:

<complexType name="object">
<sequence>
<any namespace="##other"/>
</sequence>
</complexType>

is mapped to:

class object: public xml_schema::type

{
public:
/I Accessors.
I
const xercesc::DOMElement&
any () const;

xercesc::DOMElement&
any ();

/I Modifiers.
Il
void

64 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.12.2 Mapping for any with the Optional Cardinality Class

any (const xercesc::DOMElement&);

void
any (xercesc::DOMElement?*);

3
The following code shows how one could use this mapping:

void
f (object& o, const xercesc::DOMElement& e)

{

using namespace xercesc;

DOMElement& el (o.any ()); Il get

o.any (e) Il set, deep copy
DOMDocument& doc (o.dom_document ());

o.any (doc.createElement (...)); /I set, assumes ownership

}

2.12.2 Mapping forany with the Optional Cardinality Class

For any with the Optional cardinality class, the type definitions consist of an alias for the
container type with namany_optional (or anyl optional , etc., for subsequent wild-
cards in the type definition).

Unlike accessor functions for the One cardinality class, accessor functions for the Optional cardi-
nality class return references to corresponding containers rather than dirde@Miglement.

The accessor functions come in constant and non-constant versions. The constant accessor func
tion returns a constant reference to the container and can be used for read-only access. The
non-constant version returns an unrestricted reference to the container and can be used for
read-write access.

The modifier functions are overloaded fogrcesc::DOMElement and the container type.

The first modifier function expects an argument of type reference to constant
xercesc::DOMElement and makes a deep copy of its argument. The second modifier func-
tion expects an argument of type pointexéocesc::DOMElement . This modifier function
assumes ownership of its argument and expects the element object to be created using the DOM
document associated with this instance. The third modifier function expects an argument of type
reference to constant of the container type and makes a deep copy of its argument. For instance:

July 2014 C++/Tree Mapping User Manual, v4.0.0 65

2.12.2 Mapping for any with the Optional Cardinality Class

<complexType name="object">
<sequence>
<any namespace="##other" minOccurs="0"/>
</sequence>
</complexType>

is mapped to:

class object: public xml_schema::type

{
public:
/I Type definitions.
I
typedef element_optional any_optional;

/I Accessors.

I

const any_optional&
any () const;

any_optional&
any ();

/I Modifiers.

I

void

any (const xercesc::DOMElement&);

void
any (xercesc::DOMElement?*);

void
any (const any_optional&);

h

The element_optional container is a specialization of traptional class template
described ip Section 2.8.2, "Mapping for Members with the Optional Cardinality IClass". Its inter-
face is presented below:

class element_optional

{
public:
explicit
element_optional (xercesc::DOMDocument&);

/l Makes a deep copy.
1

66 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.12.2 Mapping for any with the Optional Cardinality Class

element_optional (const xercesc::DOMElement&, xercesc::DOMDocument&);

/I Assumes ownership.
I

element_optional (xercesc::DOMElement*, xercesc::DOMDocument&);

element_optional (const element_optional&, xercesc::DOMDocument&);

public:
element_optional&
operator= (const xercesc::DOMElement&);

element_optional&
operator= (const element_optional&);

/I Pointer-like interface.
I
public:
const xercesc::DOMElement*
operator-> () const;

xercesc::DOMElement*
operator-> ();

const xercesc::DOMElement&
operator* () const;

xercesc::DOMElement&
operator* ();

typedef void (element_optional::*bool_convertible) ();
operator bool_convertible () const;

/I Get/set interface.
I
public:
bool
present () const;

const xercesc::DOMElement&
get () const;

xercesc::DOMElement&

get ();

/l Makes a deep copy.

I

void

set (const xercesc::DOMElement&);

/I Assumes ownership.

July 2014 C++/Tree Mapping User Manual, v4.0.0

67

2.12.3 Mapping for any with the Sequence Cardinality Class

I
void
set (xercesc::DOMElement*);

void
reset ();

h

bool
operator== (const element_optional&, const element_optional&);

bool
operator!= (const element_optional&, const element_optional&);

The following code shows how one could use this mapping:

void
f (object& o, const xercesc::DOMElement& e)

{

using namespace xercesc;
DOMDocument& doc (o.dom_document ());
if (0.any ().present ()) /I test

DOMElement& el (o.any ().get ()); // get

o.any ().set (e); /I set, deep copy

o.any ().set (doc.createElement (...)); // set, assumes ownership
o.any ().reset (); I reset

}

/I Same as above but using pointer notation:
I
if (0.member ()) /I test

{
DOMElement& el (*o.any ()); Il get

o.any (e); I set, deep copy
o.any (doc.createElement (...)); /I set, assumes ownership
o.any ().reset (); I reset

}
2.12.3 Mapping forany with the Sequence Cardinality Class

For any with the Sequence cardinality class, the type definitions consist of an alias of the
container type with namany_sequence (or anyl sequence , etc., for subsequent wild-

cards in the type definition), an alias of the iterator type with namge iterator (or
anyl _iterator , etc., for subsequent wildcards in the type definition), and an alias of the
constant iterator type with nama@y_const_iterator (oranyl_const_iterator , etc.,

68 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.12.3 Mapping for any with the Sequence Cardinality Class

for subsequent wildcards in the type definition).

The accessor functions come in constant and non-constant versions. The constant accessor func
tion returns a constant reference to the container and can be used for read-only access. The
non-constant version returns an unrestricted reference to the container and can be used for
read-write access.

The modifier function expects an argument of type reference to constant of the container type.
The modifier function makes a deep copy of its argument. For instance:

<complexType name="object">
<sequence>
<any namespace="##other" minOccurs="unbounded"/>
</sequence>
</complexType>

is mapped to:

class object: public xml_schema::type

{
public:
/I Type definitions.
I
typedef element_sequence any_sequence;
typedef any_sequence::iterator any_iterator;
typedef any_sequence::const_iterator any_const_iterator;

/I Accessors.

1

const any_sequence&
any () const;

any_sequence&
any ();

/I Modifier.

I

void

any (const any_sequenceg&);

h

The element_sequence container is a specialization of treequence class template
described il Section 2.8.3, "Mapping for Members with the Sequence Cardinality] Class". Its
interface is similar to the sequence interface as defined by the ISO/ANSI Standard for C++
(ISO/IEC 14882:1998, Section 23.1.1, "Sequences") and is presented below:

July 2014 C++/Tree Mapping User Manual, v4.0.0 69

2.12.3 Mapping for any with the Sequence Cardinality Class

class element_sequence
{
public:
typedef xercesc::DOMElement value_type;
typedef xercesc::DOMElement* pointer;
typedef const xercesc::DOMElement* const_pointer;
typedef xercesc::DOMElement& reference;
typedef const xercesc::DOMElement& const_reference;

typedef <implementation-defined> iterator;

typedef <implementation-defined> const_iterator;
typedef <implementation-defined> reverse_iterator;
typedef <implementation-defined> const_reverse_iterator;

typedef <implementation-defined> size_type;
typedef <implementation-defined> difference_type;
typedef <implementation-defined> allocator_type;

public:
explicit
element_sequence (xercesc::DOMDocument&);

/I DOMElement cannot be default-constructed.
I

Il explicit

/I element_sequence (size_type n);

element_sequence (size_type n,
const xercesc::DOMElement&,
xercesc::DOMDocument&);

template <typename I>

element_sequence (const 1& begin,
const 1& end,
xercesc::DOMDocument&);

element_sequence (const element_sequence&, xercesc::DOMDocument&);

element_sequence&
operator= (const element_sequenceg&);

public:
void
assign (size_type n, const xercesc::DOMElement&);

template <typename I>
void
assign (const 1& begin, const 1& end);

public:
/I This version of resize can only be used to shrink the

70 C++/Tree Mapping User Manual, v4.0.0

July 2014

2.12.3 Mapping for any with the Sequence Cardinality Class

/I sequence because DOMEIlement cannot be default-constructed.
I

void

resize (size_type);

void
resize (size_type, const xercesc::DOMElement&);

public:
size_type
size () const;

size_type
max_size () const;

size_type
capacity () const;

bool
empty () const;

void
reserve (size_type);

void

clear ();
public:

const_iterator

begin () const;

const_iterator
end () const;

iterator
begin ();

iterator
end ();

const_reverse_iterator
rbegin () const;

const_reverse_iterator
rend () const

reverse_iterator
rbegin ();

reverse_iterator
rend ();

July 2014 C++/Tree Mapping User Manual, v4.0.0 71

2.12.3 Mapping for any with the Sequence Cardinality Class

public:
xercesc::DOMElement&
operator[] (size_type);

const xercesc::DOMElement&
operator[] (size_type) const;

xercesc::DOMElement&
at (size_type);

const xercesc::DOMElement&
at (size_type) const;

xercesc::DOMElement&
front ();

const xercesc::DOMElement&
front () const;

xercesc::DOMElement&
back ();

const xercesc::DOMElement&
back () const;

public:
/l Makes a deep copy.
I
void
push_back (const xercesc::DOMElement&);

/I Assumes ownership.

I

void

push_back (xercesc::DOMElement®);

void
pop_back ();

/l Makes a deep copy.

I

iterator

insert (iterator position, const xercesc::DOMElement&);

/I Assumes ownership.

I

iterator

insert (iterator position, xercesc::DOMElement*);

void

72 C++/Tree Mapping User Manual, v4.0.0

July 2014

2.12.3 Mapping for any with the Sequence Cardinality Class

insert (iterator position, size_type n, const xercesc::DOMElement&);

template <typename I>
void
insert (iterator position, const I& begin, const I1& end);

iterator
erase (iterator position);

iterator
erase (iterator begin, iterator end);

public:

/I Note that the DOMDocument object of the two sequences being
/I swapped should be the same.

I

void

swap (sequence& X);

%

inline bool
operator== (const element_sequence&, const element_sequence&);

inline bool
operator!= (const element_sequence&, const element_sequence&);

The following code shows how one could use this mapping:

void
f (object& o, const xercesc::DOMElement& e)

{

using namespace xercesc;
object::any_sequence& s (0.any ());

/I lteration.
1
for (object::any_iterator i (s.begin ()); i '= s.end (); ++i)
{
DOMElement& e (*i);

}

/I Modification.

I

s.push_back (e); /I deep copy
DOMDocument& doc (o.dom_document ());

s.push_back (doc.createElement (...)); // assumes ownership

July 2014 C++/Tree Mapping User Manual, v4.0.0 73

2.12.4 Element Wildcard Order

2.12.4 Element Wildcard Order

Similar to elements, element wildcards in ordered types (Section 2.8.4, "Element] Order") are
assigned content ids and are included in the content order sequence. Continuing with the bank
transactions example started in Section 2.8.4, we can extend the batch by allowing custom trans-
actions:

<complexType name="batch">
<choice minOccurs="0" maxOccurs="unbounded">
<element name="withdraw" type="withdraw"/>
<element name="deposit" type="deposit"/>
<any namespace="##other" processContents="lax"/>
</choice>
</complexType>

This will lead to the following changes in the generdtatth C++ class:

class batch: public xml_schema::type

{
public:

/[any

I

typedef element_sequence any_sequence;

typedef any_sequence::iterator any_iterator;

typedef any_sequence::const_iterator any_const_iterator;

static const std::size_t any_id = 3UL;

const any_sequence&
any () const;

any_sequence&
any ();

void
any (const any_sequenceg&);
J3
With this change we also need to update the iteration code to handle the new content id:

for (batch::content_order_const_iterator i (b.content_order ().begin ());
i = b.content_order ().end ();
++i)

switch (i->id)

{

74 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.12.5 Mapping for anyAttribute

case batch::any _id:

{
const DOMElementé& e (b.any ()[i->index]);

break;

}

=
}

For the complete working code that shows the use of wildcards in ordered types refer to the
order/element example in thexamples/cxx/tree/ directory in the XSD distribution.

2.12.5 Mapping foranyAt tri but e

For anyAttribute the type definitions consist of an alias of the container type with name
any_attribute_set (or anyl_attribute_set , etc., for subsequent wildcards in the
type definition), an alias of the iterator type with naargy_attribute_iterator (or
anyl attribute_iterator , etc., for subsequent wildcards in the type definition), and an
alias of the constant iterator type with narapy_attribute const_iterator (or
anyl attribute const_iterator , etc., for subsequent wildcards in the type definition).

The accessor functions come in constant and non-constant versions. The constant accessor func
tion returns a constant reference to the container and can be used for read-only access. The
non-constant version returns an unrestricted reference to the container and can be used for
read-write access.

The modifier function expects an argument of type reference to constant of the container type.
The modifier function makes a deep copy of its argument. For instance:

<complexType name="object">
<sequence>

</sequence>
<anyAttribute namespace="##other"/>
</complexType>

is mapped to:

class object: public xml_schema::type

{
public:
/I Type definitions.
I
typedef attribute_set any_attribute_set;

July 2014 C++/Tree Mapping User Manual, v4.0.0 75

2.12.5 Mapping for anyAttribute

typedef any_attribute_set::iterator any_attribute_iterator;
typedef any_attribute_set::const_iterator any_attribute_const_iterator;

/I Accessors.

I

const any_attribute_set&
any_attribute () const;

any_attribute_set&
any_attribute ();

/I Maodifier.

I

void

any_attribute (const any_attribute_set&);

h

Theattribute_set class is an associative container similar tostide set class template

as defined by the ISO/ANSI Standard for C++ (ISO/IEC 14882:1998, Section 23.3.3, "Class
template set") with the key being the attribute’s name and namespace. bhdlilset |
attribute_set allows searching using names and namespaces instead of
xercesc::DOMALtr objects. It is defined in an implementation-specific namespace and its
interface is presented below:

class attribute_set
{
public:
typedef xercesc::DOMALtr key type;
typedef xercesc::DOMALtr value_type;
typedef xercesc::DOMALttr* pointer;
typedef const xercesc::DOMALttr* const_pointer;
typedef xercesc::DOMALttr& reference;
typedef const xercesc::DOMAttr& const_reference;

typedef <implementation-defined> iterator;

typedef <implementation-defined> const_iterator;

typedef <implementation-defined> reverse_iterator;
typedef <implementation-defined> const_reverse_iterator;

typedef <implementation-defined> size_type;
typedef <implementation-defined> difference_type;
typedef <implementation-defined> allocator_type;

public:
attribute_set (xercesc::DOMDocument&);

template <typename I>

76 C++/Tree Mapping User Manual, v4.0.0 July 2014

2.12.5 Mapping for anyAttribute

attribute_set (const I& begin, const 1& end, xercesc::DOMDocument&);
attribute_set (const attribute_set&, xercesc::DOMDocument&);

attribute_set&
operator= (const attribute_set&);

public:
const_iterator
begin () const;

const_iterator
end () const;

iterator
begin ();

iterator
end ();

const_reverse_iterator
rbegin () const;

const_reverse_iterator
rend () const;

reverse_iterator
rbegin ();

reverse_iterator
rend ();

public:
size_type
size () const;

size_type
max_size () const;

bool
empty () const;

void
clear ();

public:
/l Makes a deep copy.
I
std::pair<iterator, bool>
insert (const xercesc::DOMALtr&);

July 2014 C++/Tree Mapping User Manual, v4.0.0 77

2.12.5 Mapping for anyAttribute

/I Assumes ownership.

I

std::pair<iterator, bool>
insert (xercesc::DOMALtr*);

/l Makes a deep copy.

I

iterator

insert (iterator position, const xercesc::DOMALttr&);

/I Assumes ownership.

I

iterator

insert (iterator position, xercesc::DOMALtr*);

template <typename I>
void
insert (const I1& begin, const 1& end);

public:
void
erase (iterator position);

size_type
erase (const std::basic_string<C>& name);

size_type
erase (const std::basic_string<C>& namespace_,
const std::basic_string<C>& name);

size_type
erase (const XMLCh* name);

size_type
erase (const XMLCh* namespace_, const XMLCh* name);

void
erase (iterator begin, iterator end);

public:
size_type
count (const std::basic_string<C>& name) const;

size_type
count (const std::basic_string<C>& namespace_,
const std::basic_string<C>& name) const;

size_type
count (const XMLCh* name) const;

size_type

78 C++/Tree Mapping User Manual, v4.0.0

July 2014

2.12.5 Mapping for anyAttribute

count (const XMLCh* namespace_, const XMLCh* name) const;

iterator
find (const std::basic_string<C>& name);

iterator
find (const std::basic_string<C>& namespace_,
const std::basic_string<C>& name);

iterator
find (const XMLCh* name);

iterator
find (const XMLCh* namespace_, const XMLCh* name);

const_iterator
find (const std::basic_string<C>& name) const;

const_iterator
find (const std::basic_string<C>& namespace_,
const std::basic_string<C>& name) const;

const_iterator
find (const XMLCh* name) const;

const_iterator
find (const XMLCh* namespace_, const XMLCh* name) const;

public:

/I Note that the DOMDocument object of the two sets being
/I swapped should be the same.

I

void

swap (attribute_set&);

%

bool
operator== (const attribute_set&, const attribute_set&);

bool
operator!= (const attribute_set&, const attribute_set&);

The following code shows how one could use this mapping:
void

f (object& o, const xercesc::DOMALtr& a)

{

using namespace xercesc;

object::any_attribute_set& s (o.any_attribute ());

July 2014 C++/Tree Mapping User Manual, v4.0.0 79

2.13 Mapping for Mixed Content Models

/I lteration.
I
for (object::any_attribute_iterator i (s.begin ()); i !=s.end (); ++i)

{
DOMALtr& a (*i);

}

/I Modification.

I

s.insert (a); I/l deep copy
DOMDocument& doc (o.dom_document ());

s.insert (doc.createAttribute (...)); // assumes ownership

/I Searching.

I

object::any_attribute_iterator i (s.find ("name"));

i = s.find ("http://www.w3.0rg/XML/1998/namespace", "lang");

2.13 Mapping for Mixed Content Models

For XML Schema types with mixed content models C++/Tree provides mapping support only if
the type is marked as ordered (Section 2.8.4, "Element Order"). Use the
--ordered-type-mixed XSD compiler option to automatically mark all types with mixed
content as ordered.

For an ordered type with mixed content, C++/Tree adds an extra text content sequence that is
used to store the text fragments. This text content sequence is also assigned the content id and it:
entries are included in the content order sequence, just like elements. As a result, it is possible to
capture the order between elements and text fragments.

As an example, consider the following schema that describes text with embedded links:

<complexType name="anchor">
<simpleContent>
<extension base="string">
<attribute name="href" type="anyURI" use="required"/>
</extension>
</simpleContent>
</complexType>

<complexType name="text" mixed="true">
<sequence>
<element name="a" type="anchor" minOccurs="0" maxOccurs="unbounded"/>
</sequence>
</complexType>

80 C++/Tree Mapping User Manual, v4.0.0 July 2014

The generatedext C++ class will provide the following

ordered):

class text: public xml_schema::type
{
public:
Il a
1
typedef anchor a_type;
typedef sequence<a_type> a_sequence;
typedef a_sequence::iterator a_iterator;
typedef a_sequence::const_iterator a_const_iterator;

static const std::size_ta_id = 1UL;

const a_sequence&
a () const;

a_sequence&

a();

void
a (const a_sequenceg&);

/Il text_content
1
typedef xml_schema::string text_content_type;

typedef sequence<text_content_type> text_content_sequence;
typedef text_content_sequence::iterator text_content_iterator;

2.13 Mapping for Mixed Content Models

APl (assuming it is marked as

typedef text_content_sequence::const_iterator text_content_const_iterator;

static const std::size_t text_content_id = 2UL;

const text_content_sequence&
text_content () const;

text_content_sequence&
text_content ();

void
text_content (const text_content_sequenceg&);

/I content_order
1

typedef xml_schema::content_order content_order_type;
typedef std::vector<content_order_type> content_order_sequence;
typedef content_order_sequence::iterator content_order_iterator;

typedef content_order_sequence::const_iterator content_order_const_iterator;

const content_order_sequence&
content_order () const;

July 2014 C++/Tree Mapping User Manual, v4.0.0

81

3 Parsing

content_order_sequence&
content_order ();

void
content_order (const content_order_sequenceg&);
3

Given this interface we can iterate over both link elements and text in content order. The follow-
ing code fragment converts our format to plain text with references.

consttext&t = ...

for (text::content_order_const_iterator i (t.content_order ().begin ());
i I=t.content_order ().end ();

++i)

switch (i->id)

{

case text::a_id:
{

const anchor& a (t.a ()[i->index]);
cerr << a << "[" << a.href () << "
break;

}

case text::text_content _id:

{
const xml_schema::string& s (t.text_content ()[i->index]);
cerr <<s;
break;

}

default:

{

assert (false); // Unknown content id.

}
}
}

For the complete working code that shows the use of mixed content in ordered types refer to the
order/mixed example in thexamples/cxx/tree/ directory in the XSD distribution.

3 Parsing

This chapter covers various aspects of parsing XML instance documents in order to obtain corre-
sponding tree-like object model.

82 C++/Tree Mapping User Manual, v4.0.0 July 2014

Each global XML Schema element in the form:

<element name="name" type="type"/>

is mapped to 14 overloaded C++ functions in the form:

/I Read from a URI or a local file.
1

std::[auto|unique]_ptr<type>
name (const std::basic_string<C>& uri,
xml_schema::flags = 0,
const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>

name (const std::basic_string<C>& uri,
xml_schema::error_handler&,
xml_schema::flags = 0,
const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>

name (const std::basic_string<C>& uri,
xercesc::DOMErrorHandler&,
xml_schema::flags = 0,
const xml_schema::properties& = xml_schema::properties ());

/I Read from std::istream.
1

std::[auto|unique]_ptr<type>
name (std::istream&,
xml_schema::flags = 0,
const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>
name (std::istream&,
xml_schema::error_handler&,
xml_schema::flags = 0,
const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>
name (std::istream&,
xercesc::DOMErrorHandler&,
xml_schema::flags = 0,
const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>
name (std::istream&,
const std::basic_string<C>& id,

July 2014 C++/Tree Mapping User Manual, v4.0.0

3 Parsing

83

3 Parsing

xml_schema::flags = 0,
const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>
name (std::istream&,
const std::basic_string<C>& id,
xml_schema::error_handler&,
xml_schema::flags = 0,
const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>
name (std::istream&,
const std::basic_string<C>& id,
xercesc::DOMErrorHandler&,
xml_schema::flags = 0,
const xml_schema::properties& = xml_schema::properties ());

/I Read from InputSource.
I

std::[auto|unique]_ptr<type>
name (xercesc::InputSource&,
xml_schema::flags = 0,
const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>
name (xercesc::InputSource&,
xml_schema::error_handler&,
xml_schema::flags = 0,
const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>
name (xercesc::InputSource&,
xercesc::DOMErrorHandler&,
xml_schema::flags = 0,
const xml_schema::properties& = xml_schema::properties ());

/I Read from DOM.
1

std::[auto|unique]_ptr<type>
name (const xercesc::DOMDocumentg&,
xml_schema::flags = 0,
const xml_schema::properties& = xml_schema::properties ());

std::[auto|unique]_ptr<type>

name (xml_schema::dom::[auto|unique]_ptr<xercesc::DOMDocument>,
xml_schema::flags = 0,
const xml_schema::properties& = xml_schema::properties ());

84 C++/Tree Mapping User Manual, v4.0.0 July 2014

3.1 Initializing the Xerces-C++ Runtime

You can choose between reading an XML instance from a local file, dtidRlistream ,

xercesc::InputSource , or a pre-parsed DOM instance in the form of
xercesc::DOMDocument . All the parsing functions return a dynamically allocated object
model as eithestd::auto_ptr or std::unique_ptr , depending on the C++ standard

selected. Each of these parsing functions is discussed in more detail in the following sections.

3.1 Initializing the Xerces-C++ Runtime

Some parsing functions expect you to initialize the Xerces-C++ runtime while others initialize
and terminate it as part of their work. The general rule is as follows: if a function has any argu-
ments or return a value that is an instance of a Xerces-C++ type, then this function expects you to
initialize the Xerces-C++ runtime. Otherwise, the function initializes and terminates the runtime
for you. Note that it is legal to have nested calls to the Xerces-C++ initialize and terminate func-
tions as long as the calls are balanced.

You can instruct parsing functions that initialize and terminate the runtime not to do so by
passing thexml_schema::flags::dont_initialize flag (sed Section 3.2, "Flags and

[Propertied").

3.2 Flags and Properties

Parsing flags and properties are the last two arguments of every parsing function. They allow you
to fine-tune the process of instance validation and parsing. Both arguments are optional.

The following flags are recognized by the parsing functions:

xml_schema::flags::keep_dom
Keep association between DOM nodes and the resulting object model nodes. For more infor-
mation about DOM association refeff to Section 5.1, "DOM Association".
xml_schema::flags::own_dom
Assume ownership of the DOM document passed. This flag only makes sense together with
the keep dom flag in the «call to the parsing function with the
xml_schema::dom::[auto|unique]_ptr<DOMDocument> argument.
xml_schema::flags::dont_validate
Do not validate instance documents against schemas.
xml_schema::flags::dont_initialize
Do not initialize the Xerces-C++ runtime.

You can pass several flags by combining them using the bit-wise OR operator. For example:
using xml_schema::flags;

std::auto_ptr<type>r (
name ("test.xml", flags::keep_dom | flags::dont_validate));

July 2014 C++/Tree Mapping User Manual, v4.0.0 85

3.3 Error Handling

By default, validation of instance documents is turned on even though parsers generated by XSD
do not assume instance documents are valid. They include a number of checks that prevent
construction of inconsistent object models. This, however, does not mean that an instance docu-
ment that was successfully parsed by the XSD-generated parsers is valid per the corresponding
schema. If an instance document is not "valid enough" for the generated parsers to construct
consistent object model, one of the exceptions definedninschema namespace is thrown

(seq Section 3.3, "Error Handling").

For more information on the Xerces-C++ runtime initialization refg¢r to Section 3.1, "Initializing
[the Xerces-C++ Runtimg".

The xml_schema::properties class allows you to programmatically specify schema loca-
tions to be used instead of those specified with Xs&:schemalocation and
xsi::noNamespaceSchemalocation attributes in instance documents. The interface of
the properties class is presented below:

class properties

{
public:
void
schema_location (const std::basic_string<C>& namespace_,
const std::basic_string<C>& location);
void
no_namespace_schema_location (const std::basic_string<C>& location);

%

Note that all locations are relative to an instance document unless they are URIs. For example, if
you want to use a local file as your schema, then you will need tofigabso-
lute/path/to/your/schema as the location argument.

3.3 Error Handling

As discussed ip Section 2.2, "Error Handling", the mapping uses the C++ exception handling
mechanism as its primary way of reporting error conditions. However, to handle recoverable
parsing and validation errors and warnings, a callback interface maybe preferred by the applica-
tion.

To better understand error handling and reporting strategies employed by the parsing functions, it
is useful to know that the transformation of an XML instance document to a statically-typed tree
happens in two stages. The first stage, performed by Xerces-C++, consists of parsing an XML
document into a DOM instance. For short, we will call this stage the XML-DOM stage. Valida-
tion, if not disabled, happens during this stage. The second stage, performed by the generated
parsers, consist of parsing the DOM instance into the statically-typed tree. We will call this stage
the DOM-Tree stage. Additional checks are performed during this stage in order to prevent
construction of inconsistent tree which could otherwise happen when validation is disabled, for

86 C++/Tree Mapping User Manual, v4.0.0 July 2014

3.3 Error Handling

example.

All parsing functions except the one that operates on a DOM instance come in overloaded triples.
The first function in such a triple reports error conditions exclusively by throwing exceptions. It
accumulates all the parsing and validation errors of the XML-DOM stage and throws them in a

single instance of theml_schema::parsing exception (described below). The second and
the third functions in the triple use callback interfaces to report parsing and validation errors and
warnings. The two callback interfaces aneml_schema:.error_handler and
xercesc::DOMErrorHandler . For more information on theercesc::DOMErrorHan-
dler interface refer to the Xerces-C++ documentation. The
xml_schema::error_handler interface is presented below:
class error_handler
{
public:
struct severity
{
enum value
{
warning,
error,
fatal
2
2
virtual bool

handle (const std::basic_string<C>& id,
unsigned long line,
unsigned long column,
severity,
const std::basic_string<C>& message) = 0;

virtual
~error_handler ();

I3

The id argument of thesrror_handler::handle function identifies the resource being
parsed (e.g., a file name or URI).

By returningtrue from thehandle function you instruct the parser to recover and continue
parsing. Returninfalse results in termination of the parsing process. An error witfiatiad

severity level results in termination of the parsing process no matter what is returned from the
handle function. It is safe to throw an exception from kt@adle function.

The DOM-Tree stage reports error conditions exclusively by throwing exceptions. Individual
exceptions thrown by the parsing functions are described in the following sub-sections.

July 2014 C++/Tree Mapping User Manual, v4.0.0 87

3.3.1 xml_schema::parsing

3.3.1xm _schena: : par si ng

struct severity

{

enum value
warning,
error

I3

severity (value);
operator value () const;

%

struct error
{
error (severity,
const std::basic_string<C>& id,
unsigned long line,
unsigned long column,
const std::basic_string<C>& message);

severity
severity () const;

const std::basic_string<C>&
id () const;

unsigned long
line () const;

unsigned long
column () const;

const std::basic_string<C>&
message () const;

h

std::basic_ostream<C>&
operator<< (std::basic_ostream<C>&, const error&);

struct diagnostics: std::vector<error>

{
h

std::basic_ostream<C>&
operator<< (std::basic_ostream<C>&, const diagnostics&);

struct parsing: virtual exception

{
parsing ();

88 C++/Tree Mapping User Manual, v4.0.0

July 2014

3.3.2 xml_schema::expected_element

parsing (const diagnostics&);

const diagnostics&
diagnostics () const;

virtual const char*
what () const throw ();

h

The xml_schema::parsing exception is thrown if there were parsing or validation errors
reported during the XML-DOM stage. If no callback interface was provided to the parsing func-
tion, the exception contains a list of errors and warnings accessible usidiaghestics

function. The usual conditions when this exception is thrown include malformed XML instances
and, if validation is turned on, invalid instance documents.

3.3.2xm _schena: : expect ed_el enent

struct expected_element: virtual exception

{

expected_element (const std::basic_string<C>& name,
const std::basic_string<C>& namespace_);

const std::basic_string<C>&
name () const;

const std::basic_string<C>&
namespace_ () const;

virtual const char*
what () const throw ();

g

The xml_schema:.expected_element exception is thrown when an expected element is
not encountered by the DOM-Tree stage. The name and namespace of the expected element ca
be obtained using theame andnamespace_ functions respectively.

3.3.3xm _schema: : unexpect ed_el enent

struct unexpected_element: virtual exception

{

unexpected_element (const std::basic_string<C>& encountered_name,
const std::basic_string<C>& encountered_namespace,
const std::basic_string<C>& expected_name,
const std::basic_string<C>& expected_namespace)

const std::basic_string<C>&

July 2014 C++/Tree Mapping User Manual, v4.0.0 89

3.3.4 xml_schema::expected_attribute

encountered_name () const;

const std::basic_string<C>&
encountered_namespace () const;

const std::basic_string<C>&
expected_name () const;

const std::basic_string<C>&
expected_namespace () const;

virtual const char*
what () const throw ();

%

The xml_schema::unexpected_element exception is thrown when an unexpected
element is encountered by the DOM-Tree stage. The name and namespace of the encounterec
element can be obtained using #mecountered_name andencountered_namespace

functions respectively. If an element was expected instead of the encountered one, its name and
namespace can be obtained usingdkgected name andexpected _namespace func-

tions respectively. Otherwise these functions return empty strings.

3.3.4xm _schenm: : expected attribute

struct expected_attribute: virtual exception

{

expected_attribute (const std::basic_string<C>& name,
const std::basic_string<C>& namespace_);

const std::basic_string<C>&
name () const;

const std::basic_string<C>&
namespace_ () const;

virtual const char*
what () const throw ();

%

Thexml_schema::expected_attribute exception is thrown when an expected attribute
is not encountered by the DOM-Tree stage. The name and namespace of the expected attribute
can be obtained using theame andnamespace_ functions respectively.

90 C++/Tree Mapping User Manual, v4.0.0 July 2014

3.3.5 xml_schema::unexpected_enumerator

3.3.5xm _schena: : unexpect ed_enuner at or

struct unexpected_enumerator: virtual exception

{

unexpected _enumerator (const std::basic_string<C>& enumerator);

const std::basic_string<C>&
enumerator () const;

virtual const char*
what () const throw ();

%

The xml_schema::unexpected_enumerator exception is thrown when an unexpected
enumerator is encountered by the DOM-Tree stage. The enumerator can be obtained using the
enumerator functions.

3.3.6xm _schenmm: : expected_text content

struct expected_text_content: virtual exception

{

virtual const char*
what () const throw ();

h

The xml_schema::expected_text_content exception is thrown when a content other
than text is encountered and the text content was expected by the DOM-Tree stage.

3.3.7xm _schema::no_type_info

struct no_type_info: virtual exception

{
no_type_info (const std::basic_string<C>& type_name,
const std::basic_string<C>& type_namespace);

const std::basic_string<C>&
type_name () const;

const std::basic_string<C>&
type_namespace () const;

virtual const char*
what () const throw ();

h

The xml_schema::no_type_info exception is thrown when there is no type information
associated with a type specified by tke:type attribute. This exception is thrown by the
DOM-Tree stage. The name and namespace of the type in question can be obtained using the

July 2014 C++/Tree Mapping User Manual, v4.0.0 91

3.3.8 xml_schema::not_derived

type_name andtype namespace functions respectively. Usually, catching this exception
means that you haven’t linked the code generated from the schema defining the type in question
with your application or this schema has been compiled withoutdkeerate-polymor-

phic option.

3.3.8xm _schema: : not derived

struct not_derived: virtual exception

{

not_derived (const std::basic_string<C>& base_type name,
const std::basic_string<C>& base_type namespace,
const std::basic_string<C>& derived_type_name,
const std::basic_string<C>& derived_type _namespace);

const std::basic_string<C>&
base type name () const;

const std::basic_string<C>&
base type namespace () const;

const std::basic_string<C>&
derived_type name () const;

const std::basic_string<C>&
derived_type namespace () const;

virtual const char*
what () const throw ();

k

The xml_schema::not_derived exception is thrown when a type specified by the
xsi:type attribute is not derived from the expected base type. This exception is thrown by the
DOM-Tree stage. The name and namespace of the expected base type can be obtained using th
base type name and base type namespace functions respectively. The name and
namespace of the offending type can be obtained usingdéheed type name and
derived_type_namespace functions respectively.

3.3.9xm _schenma: : no_prefi x_mappi ng
struct no_prefix_mapping: virtual exception
{

no_prefix_mapping (const std::basic_string<C>& prefix);

const std::basic_string<C>&
prefix () const;

92 C++/Tree Mapping User Manual, v4.0.0 July 2014

3.4 Reading from a Local File or URI

virtual const char*
what () const throw ();

%

The xml_schema::no_prefix_mapping exception is thrown during the DOM-Tree stage
if a namespace prefix is encountered for which a prefix-namespace mapping hasn’t been
provided. The namespace prefix in question can be obtained usimgtixe function.

3.4 Reading from a Local File or URI

Using a local file or URI is the simplest way to parse an XML instance. For example:
using std::auto_ptr;

auto_ptr<type>rl (name ("test.xml"));
auto_ptr<type> r2 (name ("http://www.codesynthesis.com/test.xml"));

Or, in the C++11 mode:
using std::unique_ptr;

unique_ptr<type>rl (name ("test.xml"));
unique_ptr<type> r2 (name ("http://www.codesynthesis.com/test.xml"));

3.5 Reading fromst d: : i st ream

When using arstd::istream instance, you may also pass an optional resource id. This id is
used to identify the resource (for example in error messages) as well as to resolve relative paths.
For instance:

using std::auto_ptr;

{

std::ifstream ifs (“test.xml");
auto_ptr<type> r (name (ifs, "test.xml"));

}

{
std::string str ("..."); // Some XML fragment.

std::istringstream iss (str);
auto_ptr<type> r (name (iss));

}

July 2014 C++/Tree Mapping User Manual, v4.0.0 93

4 Serialization

3.6 Reading fromxer cesc: : | nput Sour ce

Reading from axercesc::InputSource instance is similar to thstd::istream case
except the resource id is maintained byltimutSource object. For instance:

xercesc::StdIninputSource is;
std::auto_ptr<type> r (name (is));

3.7 Reading from DOM

Reading from xercesc::DOMDocument instance allows you to setup a custom XML-DOM
stage. Things like DOM parser reuse, schema pre-parsing, and schema caching can be achievet
with this approach. For more information on how to obtain DOM representation from an XML
instance refer to the Xerces-C++ documentation. In additiop, the C++/Tree Mapping FAQ shows
how to parse an XML instance to a Xerces-C++ DOM document using the XSD runtime utilities.

The last parsing function is useful when you would like to perform your own XML-to-DOM
parsing and associate the resulting DOM document with the object model nodes. The automatic
DOMDocumentpointer is reset and the resulting object model assumes ownership of the DOM
document passed. For example:

/I C++98 version.
1
xml_schema::dom::auto_ptr<xercesc::DOMDocument> doc = ...

std::auto_ptr<type>r (
name (doc, xml_schema::flags::keep_dom | xml_schema::flags::own_dom));

/I At this point doc is reset to O.

/I C++11 version.
1
xml_schema::dom::unique_ptr<xercesc::DOMDocument> doc = ...

std::unique_ptr<type>r (
name (std::move (doc),
xml_schema::flags::keep_dom | xml_schema::flags::own_dom));

/I At this point doc is reset to O.

4 Serialization

This chapter covers various aspects of serializing a tree-like object model to DOM or XML. In
this regard, serialization is complimentary to the reverse process of parsing a DOM or XML
instance into an object model which is discuss¢d in Chapter 3, "Parsing". Note that the generation
of the serialization code is optional and should be explicitly requested withgtbeer-

94 C++/Tree Mapping User Manual, v4.0.0 July 2014

http://wiki.codesynthesis.com/Tree/FAQ

4 Serialization

ate-serialization option. See the XSD Compiler Command Line Manual for more infor-
mation.

Each global XML Schema element in the form:

<xsd:element name="name" type="type"/>

is mapped to 8 overloaded C++ functions in the form:

/I Serialize to std::ostream.
1
void
name (std::ostream&,
const type&,
const xml_schema::namespace_fomap& =
xml_schema::namespace_infomap (),
const std::basic_string<C>& encoding = "UTF-8",
xml_schema::flags = 0);

void
name (std::ostream&,
const type&,
xml_schema::error_handler&,
const xml_schema::namespace_infomap& =
xml_schema::namespace_infomap (),
const std::basic_string<C>& encoding = "UTF-8",
xml_schema::flags = 0);

void
name (std::ostream&,
const type&,
xercesc::DOMErrorHandler&,
const xml_schema::namespace_infomap& =
xml_schema::namespace_infomap (),
const std::basic_string<C>& encoding = "UTF-8",
xml_schema::flags = 0);

/I Serialize to XMLFormatTarget.
1
void
name (xercesc::XMLFormatTarget&,
const type&,
const xml_schema::namespace_infomap& =
xml_schema::namespace_infomap (),
const std::basic_string<C>& encoding = "UTF-8",
xml_schema::flags = 0);

void
name (xercesc::XMLFormatTarget&,

July 2014 C++/Tree Mapping User Manual, v4.0.0 95

http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml

4.1 Initializing the Xerces-C++ Runtime

const type&,

xml_schema::error_handler&,

const xml_schema::namespace_infomap& =
xml_schema::namespace_infomap (),

const std::basic_string<C>& encoding = "UTF-8",

xml_schema::flags = 0);

void
name (xercesc::XMLFormatTarget&,
const type&,
xercesc::DOMErrorHandler&,
const xml_schema::namespace_infomap& =
xml_schema::namespace_infomap (),
const std::basic_string<C>& encoding = "UTF-8",
xml_schema::flags = 0);

/I Serialize to DOM.
I
xml_schema::dom::[auto|unique]_ptr<xercesc::DOMDocument>
name (const type&,
const xml_schema::namespace_infomap&
xml_schema::namespace_infomap (),
xml_schema::flags = 0);

void

name (xercesc::DOMDocument&,
const type&,
xml_schema::flags = 0);

You can choose between writing XML $bd::ostream or xercesc::XMLFormatTar-

get and creating a DOM instance in the formxefcesc::DOMDocument . Serialization to
ostream or XMLFormatTarget requires a considerably less work while serialization to
DOM provides for greater flexibility. Each of these serialization functions is discussed in more
detail in the following sections.

4.1 Initializing the Xerces-C++ Runtime

Some serialization functions expect you to initialize the Xerces-C++ runtime while others initial-
ize and terminate it as part of their work. The general rule is as follows: if a function has any
arguments or return a value that is an instance of a Xerces-C++ type, then this function expects
you to initialize the Xerces-C++ runtime. Otherwise, the function initializes and terminates the
runtime for you. Note that it is legal to have nested calls to the Xerces-C++ initialize and termi-
nate functions as long as the calls are balanced.

96 C++/Tree Mapping User Manual, v4.0.0 July 2014

4.2 Namespace Infomap and Character Encoding

You can instruct serialization functions that initialize and terminate the runtime not to do so by
passing theml_schema::flags::dont_initialize flag (see Section 4.3, "Flags").

4.2 Namespace Infomap and Character Encoding

When a document being serialized uses XML namespaces, custom prefix-namespace associations
can to be established. If custom prefix-namespace mapping is not provided then generic prefixes
(p1, p2, etc) are automatically assigned to namespaces as needed. Also, if you would like the
resulting instance document to contain skkemalLocation or noNamespaceSchemalo-

cation attributes, you will need to provide namespace-schema associations. The
xml_schema::namespace_infomap class is used to capture this information:

struct namespace_info

{

namespace_info ();
namespace_info (const std::basic_string<C>& name,
const std::basic_string<C>& schema);

std::basic_string<C> name,;
std::basic_string<C> schema;

g

/I Map of namespace prefix to namespace_info.

I

struct namespace_infomap: public std::map<std::basic_string<C>,
namespace_info>

{
k

Consider the following associations as an example:
xml_schema::namespace_infomap map;

map["t"].name = "http://www.codesynthesis.com/test";
map["t"].schema = "test.xsd";

This map, if passed to one of the serialization functions, could result in the following XML frag-
ment:

<?xml version="1.0" ?>

<t:name xmins:t="http://www.codesynthesis.com/test"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.codesynthesis.com/test test.xsd">

As you can see, the serialization function automatically added namespace mappingsor the
prefix. You can change this by providing your own prefix:

July 2014 C++/Tree Mapping User Manual, v4.0.0 97

4.2 Namespace Infomap and Character Encoding

xml_schema::namespace_infomap map;
map["xsn"].name = "http://www.w3.0rg/2001/XMLSchema-instance";

map["t*].name = "http://www.codesynthesis.com/test";
map["t"].schema = "test.xsd";

This could result in the following XML fragment:

<?xml version="1.0" ?>

<t:name xmins:t="http://www.codesynthesis.com/test"
xmins:xsn="http://www.w3.0rg/2001/XMLSchema-instance"
xsn:schemalocation="http://www.codesynthesis.com/test test.xsd">

To specify the location of a schema without a namespace you can use an empty prefix as in the
example below:

xml_schema::namespace_infomap map;

map["'].schema = "test.xsd";

This would result in the following XML fragment:

<?xml version="1.0" ?>
<name xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="test.xsd">

To make a particular namespace default you can use an empty prefix, for example:
xml_schema::namespace_infomap map;

map["'].name = "http://www.codesynthesis.com/test”;
map["'].schema = "test.xsd";

This could result in the following XML fragment:

<?xml version="1.0" ?>

<name xmlIns="http://www.codesynthesis.com/test"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal.ocation="http://www.codesynthesis.com/test test.xsd">

Another bit of information that you can pass to the serialization functions is the character encod-
ing method that you would like to use. Common values for this argumefUSFASCII"
"ISO8859-1" , "UTF-8" , "UTF-16BE" , "UTF-16LE" , "UCS-4BE" , and"UCS-4LE" .

The default encoding IJTF-8" . For more information on encoding methods see[the "Charac-

ter Encoding” article from Wikipedia.

98 C++/Tree Mapping User Manual, v4.0.0 July 2014

http://en.wikipedia.org/wiki/Character_code
http://en.wikipedia.org/wiki/Character_code

4.3 Flags

4.3 Flags

Serialization flags are the last argument of every serialization function. They allow you to
fine-tune the process of serialization. The flags argument is optional.

The following flags are recognized by the serialization functions:

xml_schema::flags::dont_initialize
Do not initialize the Xerces-C++ runtime.
xml_schema::flags::dont_pretty print
Do not add extra spaces or new lines that make the resulting XML slightly bigger but easier
to read.
xml_schema::flags::no_xml_declaration
Do not write XML declaration (<?xml ... ?>).

You can pass several flags by combining them using the bit-wise OR operator. For example:

std:;auto_ptr<type>r = ...
std::ofstream ofs ("test.xml");
xml_schema::namespace_infomap map;
name (ofs,
*r,
map,
"UTF-8",
xml_schema::flags::no_xml_declaration |
xml_schema::flags::dont_pretty print);

For more information on the Xerces-C++ runtime initialization refg¢r to Section 4.1, "Initializing
[the Xerces-C++ Runtimg".

4.4 Error Handling

As with the parsing functions (sge Section 3.3, "Error Handling"), to better understand error
handling and reporting strategies employed by the serialization functions, it is useful to know that
the transformation of a statically-typed tree to an XML instance document happens in two stages.
The first stage, performed by the generated code, consist of building a DOM instance from the
statically-typed tree . For short, we will call this stage the Tree-DOM stage. The second stage,
performed by Xerces-C++, consists of serializing the DOM instance into the XML document. We
will call this stage the DOM-XML stage.

All serialization functions except the two that serialize into a DOM instance come in overloaded
triples. The first function in such a triple reports error conditions exclusively by throwing excep-
tions. It accumulates all the serialization errors of the DOM-XML stage and throws them in a
single instance of thaml_schema::serialization exception (described below). The
second and the third functions in the triple use callback interfaces to report serialization errors

July 2014 C++/Tree Mapping User Manual, v4.0.0 99

4.4.1 xml_schema::serialization

and warnings. The two callback interfaces amml_schema::.error_handler and
xercesc::DOMErrorHandler . The xml_schema::error_handler interface is
described in Section 3.3, "Error Handlihg". For more information orxé¢neesc::DOMEr-
rorHandler interface refer to the Xerces-C++ documentation.

The Tree-DOM stage reports error conditions exclusively by throwing exceptions. Individual
exceptions thrown by the serialization functions are described in the following sub-sections.

4.4.1xm _schema: :serialization

struct serialization: virtual exception

{

serialization ();
serialization (const diagnostics&);

const diagnostics&
diagnostics () const;

virtual const char*
what () const throw ();

b
Thexml_schema::diagnostics class is described [in Section 3.3.1,
['xml schema::parsing "l The xml_schema::serialization exception is thrown if

there were serialization errors reported during the DOM-XML stage. If no callback interface was
provided to the serialization function, the exception contains a list of errors and warnings accessi-
ble using thaliagnostics function.

4.4.2xm _schema: : unexpect ed_el enent

The xml_schema::unexpected_element exception is described in Section 3.3]3,
['xml schema::unexpected element "l It is thrown by the serialization functions during

the Tree-DOM stage if the root element name of the provided DOM instance does not match with
the name of the element this serialization function is for.

4.4.3xm _schema::no_type_info

The xml_schema::no_type_info exception is described in[Section 3.3.1,
['xml schema::no type info "| It is thrown by the serialization functions during the
Tree-DOM stage when there is no type information associated with a dynamic type of an
element. Usually, catching this exception means that you haven't linked the code generated from
the schema defining the type in question with your application or this schema has been compiled
without the--generate-polymorphic option.

100 C++/Tree Mapping User Manual, v4.0.0 July 2014

4.5 Serializing to std::ostream

4.5 Serializing tost d: : ost ream

In order to serialize tstd::ostream you will need an object model, an output stream and,
optionally, a namespace infomap. For instance:

/I Obtain the object model.
I
std::auto_ptr<type>r = ...

/I Prepare namespace mapping and schema location information.
I
xml_schema::namespace_infomap map;

map["t"].name = "http://www.codesynthesis.com/test";
map["t"].schema = "test.xsd";

/I Write it out.
I
name (std::cout, *r, map);

Note that the output stream is treated as a binary stream. This becomes important when you use &
character encoding that is wider than 8dbiarr , for instance UTF-16 or UCS-4. For example,
things will most likely break if you try to serialize $td::ostringstream with UTF-16 or

UCS-4 as an encoding. This is due to the special valle, , that will most likely occur as part

of such serialization and it won't have the special meaning assumed by
std::ostringstream

4.6 Serializing toxer cesc: : XM_For mat Tar get

Serializing to anxercesc::XMLFormatTarget instance is similar thetd::ostream
case. For instance:

using std::auto_ptr;

/I Obtain the object model.

guto_ptr<type> r=..

Z Prepare namespace mapping and schema location information.

xml_schema::namespace_infomap map;

map["t"].name = "http://www.codesynthesis.com/test";
map["t"].schema = "test.xsd";

using namespace xercesc;

XMLPlatformUtils::Initialize ();

July 2014 C++/Tree Mapping User Manual, v4.0.0 101

4.7 Serializing to DOM

/I Choose a target.
I
auto_ptr<XMLFormatTarget> ft;

if (argc 1= 2)
{
ft = auto_ptr<XMLFormatTarget> (new StdOutFormatTarget ());
}
else
{

ft = auto_ptr<XMLFormatTarget> (
new LocalFileFormatTarget (argv[1]));

}

/I Write it out.
I
name (*ft, *r, map);

}

XMLPlatformUtils::Terminate ();

Note that we had to initialize the Xerces-C++ runtime before we could call this serialization func-
tion.

4.7 Serializing to DOM

The mapping provides two overloaded functions that implement serialization to a DOM instance.
The first creates a DOM instance for you and the second serializes to an existing DOM instance.
While serializing to a new DOM instance is similar to serializingsta::ostream or
xercesc::XMLFormatTarget , serializing to an existing DOM instance requires quite a bit

of work from your side. You will need to set all the custom namespace mapping attributes as well
as theschemalocation and/ornoNamespaceSchemalocation attributes. The following

listing should give you an idea about what needs to be done:

/I Obtain the object model.
I
std::auto_ptr<type>r = ...

using namespace xercesc;

XMLPIlatformUtils::Initialize ();

{

/I Create a DOM instance. Set custom namespace mapping and schema
/' location attributes.

1

DOMDocumenté& doc = ...

102 C++/Tree Mapping User Manual, v4.0.0 July 2014

5 Additional Functionality

/I Serialize to DOM.
I
name (doc, *r);

/I Serialize the DOM document to XML.
I

}...

XMLPlatformUtils::Terminate ();

For more information on how to create and serialize a DOM instance refer to the Xerces-C++
documentation. In addition, tihe C++/Tree Mapping FAQ shows how to implement these opera-
tions using the XSD runtime utilities.

5 Additional Functionality

The C++/Tree mapping provides a number of optional features that can be useful in certain situa-
tions. They are described in the following sections.

5.1 DOM Association

Normally, after parsing is complete, the DOM document which was used to extract the data is
discarded. However, the parsing functions can be instructed to preserve the DOM document and
create an association between the DOM nodes and object model nodes. When there is an associs
tion between the DOM and object model nodes, you can obtain the corresponding DOM element
or attribute node from an object model node as well as perform the reverse transition: obtain the
corresponding object model from a DOM element or attribute node.

Maintaining DOM association is normally useful when the application needs access to XML
constructs that are not preserved in the object model, for example, XML comments. Another
useful aspect of DOM association is the ability of the application to navigate the document tree
using the generic DOM interface (for example, with the help of an XPath processor) and then
move back to the statically-typed object model. Note also that while you can change the underly-
ing DOM document, these changes are not reflected in the object model and will be ignored
during serialization. If you need to not only access but also modify some aspects of XML that are
not preserved in the object model, then type customization with custom parsing constructors and
serialization operators should be used instead.

To request DOM association you will need to passxthe schema::flags::keep_dom

flag to one of the parsing functions ($ee Section 3.2, "Flags and Properties" for more informa-
tion). In this case the DOM document is retained and will be released when the object model is
deleted. Note that since DOM nodes "out-live" the parsing function call, you need to initialize the

July 2014 C++/Tree Mapping User Manual, v4.0.0 103

http://wiki.codesynthesis.com/Tree/FAQ

5.1 DOM Association

Xerces-C++ runtime before calling one of the parsing functions wittkekee dom flag and
terminate it after the object model is destroyed [see Section 3.1, "Initializing the Xercg¢s-C++

Runtime).

If the keep_dom flag is passed as the second argument to the copy constructor and the copy
being made is of a complete tree, then the DOM association is also maintained in the copy by
cloning the underlying DOM document and reestablishing the associations. For example:

using namespace xercesc;

XMLPIlatformUtils::Initialize ();

{
/I Parse XML to object model.

I

std:;:auto_ptr<type> r (root (
"root.xml",
xml_schema::flags::keep_dom |
xml_schema::flags::dont_initialize));

/I Copy without DOM association.
I

type copyl (*r);

/I Copy with DOM association.
I
type copy2 (*r, xml_schema::flags::keep_dom);

}

XMLPlatformUtils::Terminate ();

To obtain the corresponding DOM node from an object model node you will need to call the
_node accessor function which returns a pointeD®©MNode You can then query this DOM
node’s type and cast it to eithBIOMAttr* or DOMElement*. To obtain the corresponding
object model node from a DOM node, the DOM user data APl is used. The
xml_schema::dom::tree_node_key variable contains the key for object model nodes.
The following schema and code fragment show how to navigate from DOM to object model
nodes and in the opposite direction:

<complexType name="object">
<sequence>
<element name="a" type="string"/>
</sequence>
</complexType>

<element name="root" type="object"/>

104 C++/Tree Mapping User Manual, v4.0.0 July 2014

5.1 DOM Association

using namespace Xxercesc;

XMLPIlatformUtils::Initialize ();

{
/I Parse XML to object model.

I

std:;auto_ptr<type> r (root (
"root.xml",
xml_schema::flags::keep_dom |
xml_schema::flags::dont_initialize));

DOMNode* n = root->_node ();
assert (n->getNodeType () == DOMNode::ELEMENT_NODE);
DOMEIlement* re = static_cast<DOMElement*> (n);

/I Get the 'a’ element. Note that it is not necessarily the

/I first child node of 'root’ since there could be whitespace
/I nodes before it.

I

DOMElement* ae;

for (n = re->getFirstChild (); n = 0; n = n->getNextSibling ())
{
if (n->getNodeType () == DOMNode::ELEMENT_NODE)

{

ae = static_cast<DOMElement*> (n);
break;

}
}

/I Get from the 'a’ DOM element to xml_schema::string object model
/l node.
I
xml_schema::type&t (
reinterpret_cast<xml_schema::type> (
ae->getUserData (xml_schema::dom::tree_node_key)));

xml_schema::string& a (dynamic_cast<xml_schema::string&> (t));

}

XMLPlatformUtils::Terminate ();

The 'mixed’ example which can be found in the XSD distribution shows how to handle the mixed
content using DOM association.

July 2014 C++/Tree Mapping User Manual, v4.0.0 105

5.2 Binary Serialization

5.2 Binary Serialization

Besides reading from and writing to XML, the C++/Tree mapping also allows you to save the
object model to and load it from a number of predefined as well as custom data representation
formats. The predefined binary formats are CDR (Common Data Representation) and XDR
(eXternal Data Representation). A custom format can easily be supported by providing insertion
and extraction operators for basic types.

Binary serialization saves only the data without any meta information or markup. As a result,

saving to and loading from a binary representation can be an order of magnitude faster than
parsing and serializing the same data in XML. Furthermore, the resulting representation is
normally several times smaller than the equivalent XML representation. These properties make
binary serialization ideal for internal data exchange and storage. A typical application that uses
this facility stores the data and communicates within the system using a binary format and
reads/writes the data in XML when communicating with the outside world.

In order to request the generation of insertion operators and extraction constructors for a specific
predefined or custom data representation stream, you will need to usegémer-
ate-insertion and--generate-extraction compiler options. See the XSD Compgliler
[Command Line Manugl for more information.

Once the insertion operators and extraction constructors are generated, you can use the
xml_schema::istream andxml_schema::ostream wrapper stream templates to save

the object model to and load it from a specific format. The following code fragment shows how
to do this using ACE (Adaptive Communication Environment) CDR streams as an example:

<complexType name="object">
<sequence>
<element name="a" type="string"/>
<element name="b" type="int"/>
</sequence>
</complexType>

<element name="root" type="object"/>

/I Parse XML to object model.

{s/td::auto_ptr<type> r (root ("root.xml");

I/l Save to a CDR stream.

ZCE_OutputCDR ace_ocdr,;
xml_schema::ostream<ACE_OutputCDR> ocdr (ace_ocdr);

ocdr << *r;

/I Load from a CDR stream.

106 C++/Tree Mapping User Manual, v4.0.0 July 2014

http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml
http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml

Appendix A — Default and Fixed Values

I
ACE_InputCDR ace_icdr (buf, size);
xml_schema::istream<ACE_InputCDR> icdr (ace_icdr);

std::auto_ptr<object> copy (new object (icdr));

/I Serialize to XML.
I
root (std::cout, *copy);

The XSD distribution contains a number of examples that show how to save the object model to
and load it from CDR, XDR, and a custom format.

Appendix A — Default and Fixed Values

The following table summarizes the effect of default and fixed values (specified with the
default andfixed attributes, respectively) on attribute and element valuesdéfaailt
andfixed attributes are mutually exclusive. It is also worthwhile to note that the fixed value
semantics is a superset of the default value semantics.

default fixed
optional required optional required
not _ _
present | not present invalid not present invalid instance
instance
element
empty | default value is used fixed value is used
. value is used provided it's the same @s
value |value is used !
fixed
optional required optional required
not —t -
present | defaultvalue is invalid fixed value is used | invalid instance
used schema
attribute . empty value is used provided it's the
empty | empty value is used .
same as fixed
. value is used provided it's the same @s
value |value is used fixed

July 2014 C++/Tree Mapping User Manual, v4.0.0 107

	Preface
	About This Document
	More Information

	1 Introduction
	2 C++/Tree Mapping
	2.1 Preliminary Information
	2.1.1 C++ Standard
	2.1.2 Identifiers
	2.1.3 Character Type and Encoding
	2.1.4 XML Schema Namespace
	2.1.5 Anonymous Types

	2.2 Error Handling
	2.2.1 xml_schema::duplicate_id

	2.3 Mapping for import and include
	2.3.1 Import
	2.3.2 Inclusion with Target Namespace
	2.3.3 Inclusion without Target Namespace

	2.4 Mapping for Namespaces
	2.5 Mapping for Built-in Data Types
	2.5.1 Inheritance from Built-in Data Types
	2.5.2 Mapping for anyType
	2.5.3 Mapping for anySimpleType
	2.5.4 Mapping for QName
	2.5.5 Mapping for IDREF
	2.5.6 Mapping for base64Binary and hexBinary

	2.5.7 Time Zone Representation
	2.5.8 Mapping for date
	2.5.9 Mapping for dateTime
	2.5.10 Mapping for duration
	2.5.11 Mapping for gDay
	2.5.12 Mapping for gMonth
	2.5.13 Mapping for gMonthDay
	2.5.14 Mapping for gYear
	2.5.15 Mapping for gYearMonth
	2.5.16 Mapping for time
	2.6 Mapping for Simple Types
	2.6.1 Mapping for Derivation by Restriction
	2.6.2 Mapping for Enumerations
	2.6.3 Mapping for Derivation by List
	2.6.4 Mapping for Derivation by Union

	2.7 Mapping for Complex Types
	2.7.1 Mapping for Derivation by Extension
	2.7.2 Mapping for Derivation by Restriction

	2.8 Mapping for Local Elements and Attributes
	2.8.1 Mapping for Members with the One Cardinality Class
	2.8.2 Mapping for Members with the Optional Cardinality Class
	2.8.3 Mapping for Members with the Sequence Cardinality Class
	2.8.4 Element Order

	2.9 Mapping for Global Elements
	2.9.1 Element Types
	2.9.2 Element Map

	2.10 Mapping for Global Attributes
	2.11 Mapping for xsi:type and Substitution Groups
	2.12 Mapping for any and anyAttribute
	2.12.1 Mapping for any with the One Cardinality Class
	2.12.2 Mapping for any with the Optional Cardinality Class
	2.12.3 Mapping for any with the Sequence Cardinality Class
	2.12.4 Element Wildcard Order
	2.12.5 Mapping for anyAttribute

	2.13 Mapping for Mixed Content Models

	3 Parsing
	3.1 Initializing the Xerces-C++ Runtime
	3.2 Flags and Properties
	3.3 Error Handling
	3.3.1 xml_schema::parsing
	3.3.2 xml_schema::expected_element
	3.3.3 xml_schema::unexpected_element
	3.3.4 xml_schema::expected_attribute
	3.3.5 xml_schema::unexpected_enumerator
	3.3.6 xml_schema::expected_text_content
	3.3.7 xml_schema::no_type_info
	3.3.8 xml_schema::not_derived
	3.3.9 xml_schema::no_prefix_mapping

	3.4 Reading from a Local File or URI
	3.5 Reading from std::istream
	3.6 Reading from xercesc::InputSource
	3.7 Reading from DOM

	4 Serialization
	4.1 Initializing the Xerces-C++ Runtime
	4.2 Namespace Infomap and Character Encoding
	4.3 Flags
	4.4 Error Handling
	4.4.1 xml_schema::serialization
	4.4.2 xml_schema::unexpected_element
	4.4.3 xml_schema::no_type_info

	4.5 Serializing to std::ostream
	4.6 Serializing to xercesc::XMLFormatTarget
	4.7 Serializing to DOM

	5 Additional Functionality
	5.1 DOM Association
	5.2 Binary Serialization

	Appendix A ž Default and Fixed Values

