%!PS %%Title: C++/Tree Mapping Getting Started Guide %%Creator: html2ps version 1.0 beta5 %%EndComments save 2000 dict begin /d {bind def} bind def /D {def} d /t true D /f false D /FL [/Times-Roman /Times-Italic /Times-Bold /Times-BoldItalic /Courier /Courier-Oblique /Courier-Bold /Courier-BoldOblique /Helvetica /Helvetica-Oblique /Helvetica-Bold /Helvetica-BoldOblique] D /WF t D /WI 0 D /F 1 D /IW 471 F div D /IL 621 F div D /PS 791 D /EF [0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 2 2] D /EZ [12 10 19 17 15 13 12 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 8 8] D /Ey [0 0 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] D /EG [-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1] D /Tm [1 1 0.8 0.8 0.8 0.8 0.8 0.8 0 0 0 0 0 0 0.5 1 1 1 1 0 0 1.3 0 0] D /Bm [1 1 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0.5 1 1 1 1 0 0 1 0 0] D /Lm [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 0 0 2 0 0 0] D /Rm [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0] D /EU [-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0] D /NO f D /YY [[{()}{ h }][{ h }{()}][{()}{()}]] D /ZZ [[{ (April 2010) }{ Pn }][{ Pn }{ (April 2010) }][{ Ti }{ Ti }]] D /Ts EZ 0 get D /TU f D /Xp t D /AU f D /SN 0 D /Cf t D /Tp t D /Fe f D /TI 2 Ts mul D /Fm 14 D /xL 71 D /xR 71 D /yL 706 D /yR 706 D /Wl 471 F div D /Wr 471 F div D /hL 621 F div D /hR 621 F div D /FE {newpath Fm neg Fm M CP BB IW Fm add Fm L IW Fm add IL Fm add neg L CP BB Fm neg IL Fm add neg L closepath} D /LA {PM 0 eq{/IW Wl D /IL hL D}{/IW Wr D /IL hR D}ie /W IW D /LL W D /LS W D TU PM 0 eq and{IW 56 F div add SA{Sf div}if 0 translate} {PM 0 eq{xL yL}{xR yR}ie translate F SA{Sf mul}if dup scale CS CF FS Cf{CA CL get VC}if /Bb f D}ie 0 0 M TF not Tc or {Cf{gsave SA{1 Sf div dup scale}if Cb VC FE fill grestore}if}if}D /Pi 0 Ts mul D /SG [0.8 1 1] D /Ab 15 D /J 0 D /Tc t D /NH 6 D /Nf f D /Pa f D /LH 1.2 D /XR f D /Xr {/pN E D ( [p ) WB pN WB (] )WB} D /Db [16#FF 16#FF 16#FF] D /Dt [16#00 16#00 16#00] D /eA f D /Fi f D /bT f D /Lc t D /Dl [16#00 16#00 16#00] D /LX f D /Br 0.25 D /IA ([IMAGE]) D /DS {/PF f D()WB NL NP()pop RC ZF} D /Gb f D /Mb t D /Hc [16#00 16#00 16#00] D /Bl 3 D /MI -15.6 D /DX (DRAFT) D /Di 0 D /Tt 113.385826771654 D /Th { ( ) 2 Al()BR ( ) 0 1 -1 H()4 FZ (C++/Tree Mapping) ES()EH ( ) 0 1 -1 H()4 FZ (Getting Started Guide) ES()EH ( ) 0 1 -1 H ( ) EH ( ) 0 1 -1 H ( ) EH ( ) 0 1 -1 H ( ) EH ( ) 0 1 -1 H ( ) EH ( ) 0 1 -1 H ( ) EH ( ) 0 1 -1 H ( ) EH ( ) Ea()BR ( ) 0 P (Copyright © 2005-2010 CODE SYNTHESIS TOOLS CC) EP ( ) 0 P (Permission is granted to copy, distribute and/or modify this document under the terms of the ) R0 2 A (GNU Free Documentation License, version 1.2) EA (; with no Invariant Sections, no Front-Cover Texts and no Back-Cover Texts. ) EP ( ) 0 P (This document is available in the following formats: ) R1 2 A (XHTML) EA (, ) R2 2 A (PDF) EA (, and ) R3 2 A (PostScript) EA (.) EP()} D /tH {()0 1 -1 H (Table of Contents) EH()} D /FD 2 D /Dy 2 D /cD [16#F0 16#F0 16#F0] D /FW 0.6 D /FU [16#00 16#00 16#00] D /ET {/RM f D /A0 3 D /PN SN D /OU t D /Ou t D /W IW D /LL W D D1 Ms not TP and{Ip}if /TF f D} D %-- End of variable part -- /MySymbol 10 dict dup begin /FontType 3 D /FontMatrix [.001 0 0 .001 0 0 ] D /FontBBox [25 -10 600 600] D /Encoding 256 array D 0 1 255{Encoding exch /.notdef put}for Encoding (e) 0 get /euro put /Metrics 2 dict D Metrics begin /.notdef 0 D /euro 651 D end /BBox 2 dict D BBox begin /.notdef [0 0 0 0] D /euro [25 -10 600 600] D end /CharacterDefs 2 dict D CharacterDefs begin /.notdef {} D /euro{newpath 114 600 moveto 631 600 lineto 464 200 lineto 573 200 lineto 573 0 lineto -94 0 lineto 31 300 lineto -10 300 lineto closepath clip 50 setlinewidth newpath 656 300 moveto 381 300 275 0 360 arc stroke -19 350 moveto 600 0 rlineto -19 250 moveto 600 0 rlineto stroke}d end /BuildChar{0 begin /char E D /fontdict E D /charname fontdict /Encoding get char get D fontdict begin Metrics charname get 0 BBox charname get aload pop setcachedevice CharacterDefs charname get exec end end}D /BuildChar load 0 3 dict put /UniqueID 1 D end definefont pop /Cd {aload length 2 idiv dup dict begin {D} repeat currentdict end} D /EX {EC cvx exec} D /DU {} d /BB {pop pop}d /ie {ifelse} d /E {exch} d /M {moveto} d /R {rmoveto} d /L {lineto} d /RL {rlineto} d /CP {currentpoint} d /SW {stringwidth} d /GI {getinterval} d /PI {putinterval} d /Sg {setgray} d /LW {setlinewidth} d /S {dup () ne OU and{0 Co R AT 3 eq LB and HF not and A1 0 ne A2 0 ne or and {A2 0 32 A1 0 6 -1 roll awidthshow}{show}ie 0 Co neg R}{pop}ie OU PH 3 eq or{/Ms t D}if} D /U {OU{gsave CP currentfont /FontInfo get /UnderlinePosition get 0 E currentfont /FontMatrix get dtransform E pop add newpath M dup SW pop CJ 0 RL stroke grestore}if} D /B {OU Br 0 gt and{CP Ts neg Ts .33 mul R gsave 0 Sg CP newpath Ts Br mul 0 360 arc closepath UI 2 mod 0 eq{stroke}{fill}ie grestore M CP E Ts Br 1 add mul sub E BB /Ms t D}if}D /NP {Ms TP not or PA and OU and{TP{OR}if f1{mF k2 /mF E D /YC 0 D}if TP TU not PM 0 eq or and{showpage}if DU Ip TE not{LA}if 0.6 LW /CI 0 D /TP t D /Hs f D /hl 6 D /Hv 6 D /HI hi D /Ms f D}if Bs XO BO M} D /Np {LE sub CP E pop gt PL 0 eq and{NP}if}D /Ip {/PN PN 1 add D /Pn RM{1}{4}ie PN Ns D /PM PN SN sub 2 mod D} D /GP {E dup 3 -1 roll get PN 1 add 2 mod get dup type /integertype eq {get 0 get}{E pop}ie}d /Fc {dup 2 GP exec SW pop /S1 E D dup 1 GP exec SW pop /S2 E D 0 GP exec SW pop /S3 E D S1 0 gt{S2 2 mul S1 add S3 2 mul S1 add 2 copy lt{E}if pop}{0}ie S2 S3 add 2 copy lt{E}if pop IW .9 mul div dup 1 gt{1 E div}{pop 1}ie}D /OR {Df{Sd}if tp not{gsave SA{1 Sf div dup scale}if Fe{Cf{FU VC}if FW LW 1 setlinejoin FE stroke}if /YO {60 F div dup 40 gt{pop 40}if}D /cs CS D /cf CF D /CF 0 D /pf PF D /PF f D /Fn FN D /At AT D /AT 0 D /FN EF Hf 1 add get D Fz Fs FS ZZ Fc Fz mul Fs FS EU Hf 1 add get dup type /arraytype eq Cf and{VC}{pop 0 Sg}ie IW IL neg YO sub M ZZ 1 GP exec dup SW pop neg 0 R Sh 0 IL neg YO sub M ZZ 0 GP exec Sh ZZ 2 GP exec dup SW pop IW E sub 2 div IL neg YO sub M Sh Fz Fs FS NO{/AW IW Pn SW pop sub D AW 2 div IL neg YO sub S1 0 gt S2 AW .45 mul gt or S3 AW .45 mul gt or{Fz 2 mul sub}if M Pn Sh}if EU Hf get dup type /arraytype eq Cf and{VC}{pop 0 Sg}ie YY Fc /FN EF Hf get D Hz mul HS FS IW YO M YY 1 GP exec dup SW pop neg 0 R Sh 0 YO M YY 0 GP exec Sh YY 2 GP exec dup SW pop IW E sub 2 div YO M Sh /FN Fn D /AT At D t Pb XO SZ SL get neg R /PF pf D grestore /CF 0 D cs cf FS}if}D /Sh {dup () ne{CP Hz 4 div sub BB show CP CS add BB}{pop}ie}D /Pb {/OU E D /Ou OU D /PB t D 0 0 M Ba{/Sa save D /BP t D /Fl t D RC /PL 0 D /PH 0 D /W IW D /LE IL .7 mul D /EO 0 D SI ZF /YA 0 D /BO 0 D /C1 () D BA 0 Ts neg R Bb{Xl Yl Xh Yh}if Bb CP Sa restore M {/Yh E D /Xh E D /Yl E D /Xl E D}if /Fl t D}if BL /OU t D /HM f D /Ou t D /PB f D} D /Bs {/BP Ba not D}D /reencodeISO { dup dup findfont dup length dict begin{1 index /FID ne{D}{pop pop}ie}forall /Encoding ISOLatin1Encoding D currentdict end definefont} D /ISOLatin1Encoding [ /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /space/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright /parenleft/parenright/asterisk/plus/comma/hyphen/period/slash /zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon /less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N /O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright /asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m /n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef /.notdef/space/exclamdown/cent/sterling/currency/yen/brokenbar /section/dieresis/copyright/ordfeminine/guillemotleft/logicalnot /hyphen/registered/macron/degree/plusminus/twosuperior/threesuperior /acute/mu/paragraph/periodcentered/cedilla/onesuperior/ordmasculine /guillemotright/onequarter/onehalf/threequarters/questiondown /Agrave/Aacute/Acircumflex/Atilde/Adieresis/Aring/AE/Ccedilla /Egrave/Eacute/Ecircumflex/Edieresis/Igrave/Iacute/Icircumflex /Idieresis/Eth/Ntilde/Ograve/Oacute/Ocircumflex/Otilde/Odieresis /multiply/Oslash/Ugrave/Uacute/Ucircumflex/Udieresis/Yacute /Thorn/germandbls/agrave/aacute/acircumflex/atilde/adieresis /aring/ae/ccedilla/egrave/eacute/ecircumflex/edieresis/igrave /iacute/icircumflex/idieresis/eth/ntilde/ograve/oacute/ocircumflex /otilde/odieresis/divide/oslash/ugrave/uacute/ucircumflex/udieresis /yacute/thorn/ydieresis ] D [128/backslash 129/parenleft 130/parenright 141/circumflex 142/tilde 143/perthousand 144/dagger 145/daggerdbl 146/Ydieresis 147/scaron 148/Scaron 149/oe 150/OE 151/guilsinglleft 152/guilsinglright 153/quotesinglbase 154/quotedblbase 155/quotedblleft 156/quotedblright 157/endash 158/emdash 159/trademark] aload length 2 idiv 1 1 3 -1 roll{pop ISOLatin1Encoding 3 1 roll put}for /colorimage where{pop}{ /colorimage { pop pop /Pr E D {/Cv Pr D /Gr Cv length 3 idiv string D 0 1 Gr length 1 sub {Gr E dup /i E 3 mul D Cv i get 0.299 mul Cv i 1 add get 0.587 mul add Cv i 2 add get 0.114 mul add cvi put}for Gr} image} D }ie /pdfmark where{pop}{userdict /pdfmark /cleartomark load put}ie WF{FL{reencodeISO D}forall}{4 1 FL length 1 sub{FL E get reencodeISO D}for}ie /Symbol dup dup findfont dup length dict begin {1 index /FID ne{D}{pop pop}ie}forall /Encoding [Encoding aload pop] dup 128 /therefore put D currentdict end definefont D /SF {/CS E D SZ SL CS put FO SL FN put /YI CS LH neg mul D dup ST cvs ( ) join CS ST cvs join C1 E join ( NF ) join /C1 E D CS NF /Wf WF FN 0 gt or D /BW Wf{( ) SW pop}{0}ie D}D /NF {/cS E D /cF E D cF 0 ge{FL cF get}{cF -1 eq{/Symbol}{/MySymbol}ie}ie findfont cS scalefont setfont} D /FS {CF or /CF E D FR SL CF put CF CF 0 ge{FN 4 mul add}if E SF} D /PC {SH /BP f D fin not GL not and{NL}if /HM t D /LL LS D} D /BS {/TX E D Wf{/fin f D /CW 0 D /LK 0 D /SC 0 D /RT TX D {RT ( ) search{/NW E D pop /RT E D /WH NW SW pop D CW WH add LL gt {TX SC LK SC sub 1 sub NN GI GL{SH cF cS OC 2 copy cS ne E cF ne or{NF}{pop pop}ie}{PC /CW WH BW add D}ie /SC LK D} {GL{JC}if /CW CW WH add BW add D /HM t D}ie /GL f D /Ph f D /LK LK NW length 1 add add D}{pop exit}ie}loop /fin t D TX SC LK SC sub GI SH RT () ne{GL not{CC}if}if /LC TX length D /WH RT SW pop D CW WH add Hy{HC SW pop add}if LL gt {RT GL{SH cF cS OC 2 copy cS ne E cF ne or{NF}{pop pop}ie Hy{/Ph t D}if /LL LS D}{NL /LL LS D SH}ie} {RT PC Hy{CC}if /Ph Ph Hy or D}ie RT () ne{/GL t D /HM t D}if} {TX SW pop LL le{TX SH}{/NW () D 0 2 TX length 1 sub {/CW E D TX 0 CW GI dup SW pop LL gt{pop NW SH /HM t D NL/LL W XO sub MR sub D /CW CW 2 sub NN D /TX TX CW TX length CW sub GI D TX BS exit} {/NW E D}ie}for}ie}ie /HM t D}D /CC {C0 length 0 gt{JC}if /C0 [C1 L1 YA YB Mf NS NB TB AF Bw] D /C1 () D /L0 L1 D /YA 0 D /YB 0 D /Mf 0 D /NS 0 D /NB 0 D}D /JC {C0 aload length 0 gt{pop pop pop NB add /NB E D NS add /NS E D dup Mf gt{/Mf E D}{pop}ie dup YB gt{/YB E D}{pop}ie dup YA gt{/YA E D}{pop}ie pop C1 join /C1 E D /C0 [] D}if}D /OC {C0 length 0 gt{C1 L1 L0 sub YA YB Mf NS NB TB AF Bw GL C0 aload pop /Bw E D /AF E D /TB E D /NB E D /NS E D /Mf E D /YB E D /YA E D /C0 [] D /L1 E D /C1 E D Ph{HC SH}if NL /GL E D /Bw E D /AF E D /TB E D /NB E D /NS E D /Mf E D /YB E D /YA E D /L1 E D /LL W L1 sub XO sub MR sub WH sub D /CW 0 D C1 E join /C1 E D}if}D /BT {/LB t D dup length string copy RS dup dup () ne E ( ) ne and {/CI 0 D /LS LL D /LL W L1 sub XO sub MR sub D BS} {dup ( ) eq{/GL f D}if dup () eq L1 0 eq or{pop}{SH /BP f D /Ph f D}ie}ie /LB f D} D /BL {CP E pop XO E M} D /NL {JC /GL f D /SK W XO sub MR sub L1 sub TB{Bw add}if D /YA LF{Mf HM Fl not and PF or{LH mul}if}{0 /LF t D}ie YA 2 copy lt{E}if pop D C1 () ne{/FB YB Mf SA{Sf mul}if 4 div 2 copy lt{E}if pop D}if Fl{/Ya YA D}if CP E pop YA sub YB sub LE neg lt Fl not and PB not and{NP}if NT TL BL OU PF not and PB or{/RE L1 TB{Bw sub}if W XO sub MR sub div YA YB add LE BO add div 2 copy lt{E}if pop D RE 1 gt{BL 1 RE div dup scale}if}if AT 2 le{SK AT mul 2 div YA neg R}if AT 3 eq{0 YA neg R TB{/NB NB 1 sub D /NS NS 1 sub D}if /NB NB 1 sub NN D /A3 NS 6 mul NB add D NS NB add 0 eq {/A1 0 D /A2 0 D} {NS 0 eq{/A1 SK NB div dup J gt{pop 0}if D /A2 0 D}{J A3 mul SK lt {/A1 J D /A2 SK J NB mul sub NS div dup Ab gt{/A1 0 D pop 0}if D} {/A1 SK A3 div D /A2 A1 6 mul D}ie}ie}ie /A1 A1 NN D /A2 A2 NN D}if AT 4 eq{0 YA neg R PH 2 le{PD 0 lt{/PD L1 D}if PD M1 gt{/M1 PD D}if L1 PD sub M2 gt{/M2 L1 PD sub D}if}{DV ID 1 sub get 0 ge{Lo 0 R}if}ie}if F0 cF ne Cs cS ne or{F0 Cs NF}if /ms Ms D /Ms f D CP FB sub C1 cvx exec XO EO sub L1 add TB{BW sub}if dup LM gt{/LM E D}{pop}ie PH 0 eq PH 4 eq or Ms and{HF not{/PO t D /AH t D}if BB CP YA add E AT 3 eq LB and{A1 sub}if TB{BW sub}if E BB} {pop pop}ie Ms HM PH 3 eq and or{/BP f D /Fl f D}if /Lo 0 D /L1 0 D /F0 cF D /Cs cS D BP not{0 YB NN neg R}if OU f1 and mF not and{k2 /f1 f D}if OU PF not and PB or{RE 1 gt{RE dup scale}if}if /Ms ms Ms or D /C1 AF{(Cp )}{()}ie D /YA 0 D /YB 0 D BL AT 4 eq LB not and PH 3 ge and {ID DV length lt{DV ID get dup 0 ge{DO E sub /Lo E D /L1 Lo D}{pop}ie /ID ID 1 add D}if}if /T t D CD{/LN LN 1 add D PD}if /PD -1 D /NS 0 D /NB 0 D /TB f D /Ph f D /Mf 0 D /HM f D} D /RS {/TM E D /CN 0 D TM{10 eq{TM CN ( ) PI}if /CN CN 1 add D}forall /CN 0 D /BK HM EN and{0}{1}ie D TM {dup 32 ne{TM CN 3 2 roll put /CN CN 1 add D /BK 0 D} {pop BK 0 eq{TM CN 32 put /CN CN 1 add D}if /BK 1 D}ie}forall TM 0 CN GI dup dup () ne E ( ) ne and {dup CN 1 sub get 32 eq{/EN f D}{/EN t D}ie}if} D /join {2 copy length E length add string dup 4 2 roll 2 index 0 3 index PI E length E PI}d /WR {(\n) search{dup () ne BP not or {Li 4 le CP E pop YI Li mul add LE add 0 lt and PL 0 eq and{NP}if SH NL pop /Li Li 1 sub D WR}{pop pop WR}ie}{SH}ie /CI 0 D /BP f D} D /SH {dup dup () ne E ( ) ne and PF or CS Mf gt and{/Mf CS D}if T not Wf and{( ) E join /T t D}if dup BP{/MF CS D}if AT 3 eq{2 copy length dup 0 gt{/NB E NB add D {( ) search{/NS NS 1 add D pop pop}{pop exit}ie}loop}{pop pop}ie}if CD PD 0 lt and{dup DC search{SW pop /PD E L1 add D pop pop}{pop}ie}if 0 Np dup SW pop L1 add /L1 E D dup () ne {C1 (\() join E join (\)) join AU AF and UF or Wf and{( U ) join}if sF{( s ) join}if ( S ) join /C1 E D dup length 1 sub get 32 eq /TB E D /Bw BW D}{pop pop}ie} D /BG {AI LG BC add add 0 eq} D /ON {OU{Ty AR AI NN get dup 1 add Ln Ns Ty 2 mod 0 eq{(. )}{(\) )}ie join dup SW pop neg 0 R CP E 0 lt{0 E M}{pop}ie CP BB show /Ms t D}if} D /Ln {AR AI 3 -1 roll put}D /SP {dup CI lt BP not and{dup CI sub 0 E R /CI E D}{pop}ie} D /BN {PF{WR /HM f D}{BT NL}ie} D /NN {dup 0 lt{pop 0}if} D /h {(h) HI ST cvs join cvx exec dup 1 get E Nf{0 get E join}{pop}ie} D /H {/fn FN D /Hi E 1 add D 1 sub /HL E D /H2 HL 2 add D /GS EZ H2 get D E Tm H2 get GS mul BE dup 0 gt{1 sub}{pop EG H2 get dup 0 lt{pop AT}if}ie NA WW Np /SL SL 1 add D /FN EF H2 get D GS Ey H2 get FS EU H2 get Sc Hs not HL Hl lt and Hs HL hl lt and or Hi 0 eq or {/HI Hi D /Hs t D /hl HL D /Hv HL D}if HL Hl lt{/hi Hi D}if Nf HI 0 gt and{(h) Hi ST cvs join cvx exec 0 get WB}if /HF t D /AH f D /PO f D} D /EH {Bm H2 get GS mul BE OA /SL SL 1 sub NN D /CF 0 D /FN fn D SZ SL get FR SL get FS /HF f D /GS Ts D ()Ec} D /P {E PF{WR}{PO{EP}{BN}ie Ts 4 mul Np AE not{Tm 0 get Ts mul neg SP}if dup 0 ge AH and{Pi Pd}if}ie 1 sub dup 0 lt{pop AV AL get}if /AT E D /PO t D} D /EP {PF{WR}{BN Ts 4 mul Np}ie AE not{Bm 0 get Ts mul neg SP}if /AT AV AL get D /PO f D} D /BE {E PO{EP}{BN}ie Ts 4 mul Np neg SP} D /HR {/Aw W EO sub D /RW E dup 0 gt{Aw mul}{neg}ie dup Aw gt{pop Aw}if D /RZ E D E BN Ts neg SP 1 sub 2 div Aw RW sub mul EO add CP E pop M PF{0 Ps neg R}if 0 Np OU{gsave RZ LW Cf{Hc VC}{0 Sg}ie CP BB RW 0 RL CP BB stroke grestore}if /CI 0 D /BP f D PF not{Ts neg SP}if /Ms t D} D /AD {I NL EG 14 get dup 0 lt{pop AT}if NA /AE t D Tm 14 get Ts mul neg SP Cf{EU 14 get dup -1 eq{pop CA CL get}if Sc}if} D /DA {BN ()ES OA /AE f D ()Ec Bm 14 get Ts mul neg SP} D /PR {/MW E D /Li E D Tm 1 get Ps mul BE 0 NA /FN Fp D /PF t D SI /SL SL 1 add D /CF 0 D Ps CS mul Ts div MW WC mul CS mul Ts div dup LL gt PL 0 eq and {LL div div}{pop}ie Ey 1 get FS CP E pop LE add YI neg div cvi dup Li lt AH and{4 lt YI Li mul 5 mul LE add 0 gt or PL 0 eq and{NP}if}{pop}ie EU 1 get Sc /GS Ps D}D /RP {WR NL () /PF f D SI /FN 0 D ES Bm 1 get Ps mul neg SP OA /GS Ts D} D /SI {/XO Lm 15 get BC NN mul Lm 16 get AI UI sub NN mul add Lm 17 get UI NN mul add Lm 20 get LG NN mul add Ts mul PF{Lm 1 get Ps mul add}if EO add D /MR Rm 15 get BC NN mul Rm 16 get AI UI sub NN mul add Rm 17 get UI NN mul add Rm 20 get LG NN mul add Ts mul PF{Rm 1 get Ps mul add}if D /LL W XO sub MR sub D} D /DT {/cC E D BN /LG LG 1 sub D SI /LG LG 1 add D WW 2 div Np BL} D /DD {WB Cc 0 eq cC 0 eq and L1 0 eq or Lm 20 get Ts mul L1 sub TB{BW add}if Ts 2 div lt or NL /LF E D SI BL /cC 0 D} D /DL {Dc LG Cc put /Cc E D BG{Tm 18 get Ts mul BE}{BN}ie /LG LG 1 add D BL} D /LD {BN LG 0 gt{/LG LG 1 sub D}if /Cc Dc LG get D SI BG{()Bm 18 get Ts mul BE}if BL} D /UL {BG{Tm 17 get Ts mul BE}{BN}ie NR AI NN 0 put /UI UI 1 add D /AI AI 1 add D SI BL} D /LU {BN /UI UI 1 sub D /AI AI 1 sub D SI BG{()Bm 17 get Ts mul BE}if BL} D /OL {E BG{Tm 16 get Ts mul BE}{BN}ie TR AI NN Ty put /Ty E D NR AI NN 1 put /AI AI 1 add D SI BL 1 Ln} D /LO {BN /AI AI 1 sub D /Ty TR AI get D SI BG{()Bm 16 get Ts mul BE}if BL} D /LI {E BN -1 SP /BP f D /CI 0 D 0 Np NR AI 1 sub NN get 1 eq {dup dup 0 gt E 4 le and{/Ty E D}{pop}ie /L1 L1 Ty AR AI NN get Ns SW pop XO sub dup 0 lt{pop 0}if add D ( ON )} {pop ( B )}ie C1 E join /C1 E D CS Mf gt{/Mf CS D}if BL} D /BQ {Tm 15 get Ts mul BE /BC BC 1 add D SI BL} D /QB {Bm 15 get Ts mul BE /BC BC 1 sub D SI BL} D /Al {E EP 1 sub dup 0 lt{pop AV AL get}if NA} D /Ea {EP OA} D /WB {PF{WR}{BT}ie} D /F1 {WB /FN 0 D CS 0 FS} D /F2 {WB /FN WI D CS 0 FS} D /HY {/Hy t D WB /Hy f D} D /YH {WB} D /A {/LT E D LT 1 eq{/RN E D}if /Lh E D WB /C1 C1 ( Cp ) join D Lc AF not and{Cl Sc}if /AF t D} D /EA {Lc AF and{Ec}{WB}ie TL Pa AF and Lh 0 ne and {( \() Lh join (\)) join /AF f D WB}if /AF f D} D /TL {C1 ( Tl ) apa /C1 E D} d /apa {AF OU and Lh 0 ne LT 1 eq or and{LT 1 eq{RN ( /) E ST cvs join} {(\() Lh join (\)) join}ie E join join}{pop}ie} d /Cp {/Xc CP /Yc E D D} D /SS {Cf{dup 0 ge{EU E get dup -1 eq{pop CA CL get}if}{pop CA CL get}ie Sc} {pop}ie SZ SL get /SL SL 1 add D} D /I {WB 8 SS 1 FS} D /EM {WB 8 SS /CF CF 1 xor D 0 FS} D /BD {WB 9 SS 2 FS} D /TT {WB 10 SS /FN Fp D 0 FS} D /KB {WB 11 SS /FN Fp D 2 FS} D /CT {WB 12 SS 1 FS} D /SM {WB 13 SS /FN Fp D 0 FS} D /Q {/QL QL 1 add D QO QL 2 mod get La get join WB} D /EQ {QC QL 2 mod get La get join WB /QL QL 1 sub D} D /RO {WB -1 SS /CF 0 D 0 FS} D /SY {WB -1 SS -1 FS} D /MY {WB -1 SS -2 FS} D /ES {WB /SL SL 1 sub NN D /CF 0 D /FN FO SL get D SZ SL get FR SL get FS ()Ec}D /FZ {3 sub 1.2 E exp GS mul E WB TL /C1 C1 ( Cp ) join D /SL SL 1 add D 0 FS} D /Ef {WB TL ()ES /C1 C1 ( Cp ) join D} D /BZ {dup /Bf E D FZ}D /Sc {dup -1 ne Cf and{/CL CL 1 add D dup 0 eq{pop [0 0 0]}if dup CA E CL E put VS ( VC ) join C1 E join /C1 E D}{pop}ie} D /Ec {WB Cf{/CL CL 1 sub NN D CA CL get VS ( VC ) join C1 E join /C1 E D}if} D /VS {dup type /arraytype eq{([) E {ST cvs join ( ) join}forall (]) join}if} D /VC {{255 div}forall setrgbcolor} D /Sl {dup type /integertype ne{Ds}if /La E D WB}d /UN {WB /UF t D} D /NU {WB /UF f D} D /SE {WB /sF t D} D /XE {WB /sF f D} D /sM {/C1 C1 ( k1 ) join D}d /eM {/C1 C1 ( k2 ) join D}d /k1 {/YC CP E pop Ts add D /mF t D /f1 t D}d /k2 {gsave 3 LW -9 CP E pop Ts 0.2 mul sub M -9 YC L stroke grestore /mF f D}d /Ac {/AC E D WB}d /Ca {eA{( \()join AC join(\) )join}if WB}d /s {OU{gsave 0 CS .25 mul R dup SW pop CJ 0 RL stroke grestore}if}D /CJ {AT 3 eq LB and{E dup dup length 1 sub A1 mul E {( ) search{pop pop E A2 add E}{pop exit}ie}loop 3 -1 roll add W CP pop sub 2 copy gt{E}if pop}if}D /So {/Co E D} D /SO {C1 Yo ST cvs join ( So ) join /C1 E D (j) SW pop 2 div Pd} D /Se {E WB CS E div Pd}D /Pd {dup type /stringtype eq{SW pop}if dup /L1 E L1 add D ST cvs ( 0 R ) join C1 E join /C1 E D} D /Sp {0.35 CO} D /Sb {-0.2 CO} D /CO {OV Io Yo put /Yo E CS mul Yo add D /Io Io 1 add D -1.5 Io mul 3 add FZ SO CS Yo add dup YA gt{/YA E D}{pop}ie Yo neg dup YB gt{/YB E D}{pop}ie} D /Es {ES /Io Io 1 sub NN D /Yo OV Io get D SO} D /SB {/N2 0 D 0 1 NI{/N E D{IX N2 get 0 lt{/N2 N2 1 add D}{exit}ie}loop /K WS N get FC N get mul D /NY AY N2 get D /BV NY array D 0 1 NY 1 sub{/TM K string D currentfile TM readhexstring pop pop BV E TM put} for BM N BV put /N2 N2 1 add D}for} D /IC [{/MA E D /MB 0 D}{2 div /MA E D /MB MA D}{/MB E CS sub D /MA CS D} {pop /MA YS AB mul D /MB 1 AB sub YS mul D}{pop /MA 0 D /MB 0 D}] D /IP {BV N get /N N 1 add D} D /II {/K E D IX K get 0 lt{/EC E D}if /TY E D TY 4 eq{/Y E D /X E D}if TY 3 eq{/AB E D}if /XW AX K get D /YW AY K get D /IS SG IT K get get D /XS XW IS mul D /YS YW IS mul D YS IC TY get exec /MA MA Fl not{3 add}if D} D /IM {II /ty TY D /xs XS D /ys YS D /ya YA D /yb YB D /ma MA D /mb MB D /k K D /ec EC D /BP f D /CI 0 D WB TL L1 xs add dup XO add MR add W gt {pop /ma ma Fl{3 add}if D NL /YA ma D /YB mb D /YS ys D /L1 xs D} {/L1 E D ma YA gt{/YA ma D}if mb YB gt{/YB mb D}if}ie /TB f D OU{CP E pop YS sub LE neg lt Fl not and PB not and{NP /YA ma D /YB mb D}if /BP f D ty ST cvs ( ) join IX k get 0 lt{(\() join ec join (\) ) join}if k ST cvs join ty 3 eq{AB ST cvs ( ) join E join}if ty 4 eq{X ST cvs ( ) join Y ST cvs join ( ) join E join}if C1 E join ( DI ) join FP 2 eq FP 1 eq AF and or{( FM ) join}if ( Il Cp ) apa /C1 E D /EN f D}if /HM t D /T f D} D /DI {II /Xc CP /Yc E D D /YN YW neg D /HM t D /CI 0 D /K2 IX K get D gsave TY 4 eq{OX X IS mul add OY FY add YS sub Y IS mul sub} {/FY YS D CP MB sub 2 copy /OY E D /OX E D}ie translate K2 0 ge{/DP AZ K2 get D /BV BM K2 get D XS YS scale /N 0 D XW YW DP [XW 0 0 YN 0 YW] {IP} FC K2 get 1 eq{image}{f 3 colorimage}ie} {EX}ie grestore XS 0 R /Ms t D} D /FM {gsave 0 Sg CP MB sub translate XS neg 0 M 0 YS RL XS 0 RL 0 YS neg RL XS neg 0 RL stroke grestore} D /NA {/AT E D /AL AL 1 add D AV AL AT put} D /OA {AL 0 gt{/AL AL 1 sub D /AT AV AL get D}if} D /D1 {/BR {CP E pop E BN Mb{CP E pop eq{0 YI R}if}{pop}ie} D /Sn {OU{C1 E ST cvs join ( Ld ) join /C1 E D}{pop}ie} D} D /D1 {/BR {BN} D /Sn {OU {C1 E ST cvs join ( Ld ) join /C1 E D} {pop} ie} D} D /TC {/TF t D /ML 0 D HN{SW pop dup ML gt{/ML E D}{pop}ie}forall NP /RM RM not D RC /OU Tc D Ep /PN 0 D Ms not TP and{Ip}if /W IW ML sub Ts sub D /A0 0 D TH{/BR {( ) join BT} D /Sn {pop} D /Au () D}if} D /TN {0 eq{E EA PF HF or not XR and{HN E get Xr}{pop}ie} {OU{Tn 0 ge{() BN}if /Tn E D}{pop}ie WB}ie} D /NT {OU LB not and Tn 0 ge and{PL 0 eq{Ms not{CS CF FS}if CP dup /y E YA sub D W 9 sub CS -1.8 mul XO L1 add 2 add{y M (.) show}for HN Tn get dup SW pop IW E sub y M show CP BB M}if /Tn -1 D}if} D /Ld {/DN E D HN DN Pn put [/View [/XYZ -4 Fl{PS}{CP YA add US E pop}ie null] /Dest DN ST cvs cvn /DEST pdfmark} D /C {ND 1 eq{1 sub}if TI mul /XO E D NL Nf not{pop()}if 0 3 -1 roll 1 A} D /OP {BP not{NP}if PN 2 mod 0 eq{/Ms t D NP}if}D /Ep {Xp PN 2 mod 0 eq and OU and{/Pn (-) D showpage /PM 1 D LA}if}D /Dg [73 86 88 76 67 68 77] D /Rd [0 [1 1 0][2 1 0][3 1 0][2 1 1][1 1 1][2 2 1][3 3 1][4 4 1][2 1 2]] D /Ns {/m E D /c E 32 mul D /j m 1000 idiv D /p j 12 add string D c 96 le m 0 gt and{c 32 le {/i 0 D /d 77 D /l 100 D /m m j 1000 mul sub D j -1 1 {pop p i d c add put /i i 1 add D}for 4 -2 0 {/j E D /n m l idiv D /m m n l mul sub D /d Dg j get D n 0 gt {/x Rd n get D x 0 get -1 1 {pop p i d c add put /i i 1 add D}for p i x 1 get sub Dg x 2 get j add get c add put}if /l l 10 idiv D }for p 0 i GI} {/i ST length 1 sub D m {1 sub dup 0 ge{dup 26 mod c add 1 add ST i 3 -1 roll put 26 idiv dup 0 eq{pop exit}if}if /i i 1 sub D}loop ST i ST length i sub GI}ie} {m p cvs}ie} D /US {matrix currentmatrix matrix defaultmatrix matrix invertmatrix matrix concatmatrix transform} D /GB {Gb{US}if}D /Tl {/Rn E D Xc CP pop ne{ [/Rect [Xc 1 sub Yc cS 0.25 mul sub GB CP E 1 add E cS 0.85 mul add GB] /Subtype /Link /Border [0 0 Cf Lc and LX and AU or{0}{1}ie] Rn type /nametype eq {/Dest Rn}{/Action [/Subtype /URI /URI Rn] Cd}ie /ANN pdfmark}if} D /Il {/Rn E D [/Rect [Xc Yc GB Xc XS add Yc YS add GB] /Subtype /Link /Border [0 0 0] Rn type /nametype eq{/Dest Rn} {/Action [/Subtype /URI /URI Rn] Cd}ie /ANN pdfmark} D /XP {[{/Z Bz 2 div D Z 0 R Z Z RL Z neg Z RL Z neg Z neg RL Z Z neg RL Fi cH 1 eq and{fill}if} {Bz 0 RL 0 Bz RL Bz neg 0 RL 0 Bz neg RL Fi cH 1 eq and{fill}if} {0 -5 R Bz 0 RL 0 21 RL Bz neg 0 RL 0 -21 RL}]} D /MS {/Sm E D WB}D /O {BN()0 Sm BX} D /BX {/Bt E D Bt 2 lt{/Ch E D CS 0.8 mul}{11 mul}ie W XO sub MR sub 2 copy gt{E}if pop /HZ E D Bt 2 eq{Fi not{pop()}if ( )E join /Ft E D TT /PF t D /MW 1 D /Li 1 D /Fw Ft SW pop D Fw HZ gt{/HZ Fw 8 add D}if HZ ST cvs( )join}{WB Ch ST cvs( )join}ie L1 HZ add XO add MR add W gt{NL}if Bt 2 eq{Ft ES Fw neg HM{CS sub}if Pd}if Bt ST cvs join( Bx )join Bt 2 eq HM and{CS Pd}if C1 E join /C1 E D /L1 L1 HZ add D /T f D ( ) Pd /PF f D Bt 2 lt{YA CS .8 mul lt{/YA CS .8 mul D}if} {YB 5 lt{/YB 5 D}if YA 21 lt{/YA 21 D}if}ie /CI 0 D} D /Bx {dup 2 eq{E /Bz E D}{E /cH E D /Bz CS .8 mul D}ie OU {gsave 0 Sg XP E get exec stroke grestore}{pop}ie Bz 0 R /Ms t D}D /SD {FD 4 mul Dy add DZ NF newpath 0 0 M DX t charpath pathbbox 3 -1 roll sub /DY E D E dup /X1 E D sub WM mul WX DY mul add WM DG mul E div /DF E D /DR WX DF mul DY mul WM div 2 div D} d /Sd {gsave 0 IL Di mul neg translate IL IW atan Di 0 eq{neg}if rotate FD 4 mul Dy add DZ NF DR X1 sub DY 2 div neg M cD VC DX show grestore} d /Pt {/tp t D Tp{NP /Pn (TP) D 0 Tt neg R Th BN NP Ep ET RC ZF}if /tp f D} D /RC {/AI 0 D /LG 0 D /BC 0 D /UI 0 D /PF f D /Cc 0 D /cC 0 D /Dc 10 array D /NR [0 1 9{pop 0}for] D /La Ds D /AR 10 array D /TR 10 array D /AV 30 array D SI /AL -1 D /AT A0 D AT NA /OV 9 array D /Yo 0 D /Co 0 D /Io 0 D /Hy f D /Ph f D /CL -1 D Ct Sc}D /ZF {/FR [0 1 30{pop 0}for] D /SZ [0 1 30{pop 0}for] D /FO [0 1 30{pop 0}for] D /SL 0 D /CF 0 D /FN 0 D 0 Ts SF}D /QO [[(\234)(\233)(\253\240)(\232)(\273)(\253)][(')(`)(\253\240)(\231)(\273)(\253)]] D /QC [[(\234)(\234)(\240\273)(\233)(\253)(\273)][(')(')(\240\273)(`)(\253)(\273)]] D /Hf EF length 2 sub D /Hz EZ Hf get D /HS Ey Hf get D /Fz EZ Hf 1 add get D /Fs Ey Hf 1 add get D /LE IL D /Ps EZ 1 get D /Fp EF 1 get D /XO 0 D /YI 0 D /CI 0 D /FP 0 D /WW Ts 7 mul D /Mf 0 D /YA 0 D /YB 0 D /Cs Ts D /GS Ts D /F0 0 D /NS 0 D /NB 0 D /N 0 D /C0 [] D /C1 () D /Lo 0 D /L1 0 D /LM 0 D /PH 0 D /EC 0 D /Lh 0 D /LT 0 D /CH 1 string D /ST 16 string D /CA 9 array D /HC (\255) D /HM f D /PF f D /EN f D /TB f D /UF f D /sF f D /AE f D /AF f D /BP t D /CD f D /PA t D /GL f D /T t D /HF f D /AH f D /SA f D /PB f D /f1 f D /mF f D /OX 0 D /OY 0 D /FY 0 D /EO 0 D /FB 0 D /PL 0 D /Bw 0 D /PD -1 D /TP f D /tp f D /TH t D /Ty 4 D /Tn -1 D /Fl t D /LB t D /PM 1 D /Ms f D /Ba f D /Bb f D /Hl 3 D /hl 6 D /Hv 6 D /Hs f D /HI 0 D /hi 0 D /PO t D /TE f D /LF t D /BO 0 D /Sm 1 D /Bf 3 D /A1 0 D /A2 0 D /Ds 1 D /QL -1 D /Cb Db D /Ct Dt D /Cl Dl D [/Creator (html2ps version 1.0 beta5) /Author () /Keywords (xsd, xml, schema, c++, mapping, data, binding, parsing, serialization, validation) /Subject () /Title (C++/Tree Mapping Getting Started Guide) /DOCINFO pdfmark /ND 1 D /HN [(1) (1) (1) (1) (1) (1) (1) (2) (2) (3) (3) (5) (6) (7) (8) (11) (13) (15) (16) (16) (16) (17) (17) (20) (22) (24) (26) (29) (??) (31) (32) (34) (36) (37) (38) (1) (1) (1) (1) (2) (2) (3) (3) (5) (6) (7) (8) (11) (13) (15) (16) (16) (16) (17) (17) (20) (22) (24) (26) (29) (31) (32) (34) (36) (37) (38)] D /h0 [()(Table of Contents)] D /h1 [(1\240\240)(Preface)] D /h2 [(1.1\240\240)(About This Document)] D /h3 [(1.2\240\240)(More Information)] D /h4 [(2\240\240)(1 Introduction)] D /h5 [(2.1\240\240)(1.1 Mapping Overview)] D /h6 [(2.2\240\240)(1.2 Benefits)] D /h7 [(3\240\240)(2 Hello World Example)] D /h8 [(3.1\240\240)(2.1 Writing XML Document and Schema)] D /h9 [(3.2\240\240)(2.2 Translating Schema to C++)] D /h10 [(3.3\240\240)(2.3 Implementing Application Logic)] D /h11 [(3.4\240\240)(2.4 Compiling and Running)] D /h12 [(3.5\240\240)(2.5 Adding Serialization)] D /h13 [(3.6\240\240)(2.6 Selecting Naming Convention)] D /h14 [(3.7\240\240)(2.7 Generating Documentation)] D /h15 [(4\240\240)(3 Overall Mapping Configuration)] D /h16 [(4.1\240\240)(3.1 Character Type and Encoding)] D /h17 [(4.2\240\240)(3.2 Support for Polymorphism)] D /h18 [(4.3\240\240)(3.3 Namespace Mapping)] D /h19 [(4.4\240\240)(3.4 Thread Safety)] D /h20 [(5\240\240)(4 Working with Object Models)] D /h21 [(5.1\240\240)(4.1 Attribute and Element Cardinalities)] D /h22 [(5.2\240\240)(4.2 Accessing the Object Model)] D /h23 [(5.3\240\240)(4.3 Modifying the Object Model)] D /h24 [(5.4\240\240)(4.4 Creating the Object Model from Scratch)] D /h25 [(5.5\240\240)(4.5 Mapping for the Built-in XML Schema Types)] D /h26 [(6\240\240)(5 Parsing)] D /h27 [(6.1\240\240)(5.1 XML Schema Validation and Searching)] D /h28 [(6.2\240\240)(5.2 Error Handling)] D /h29 [(7\240\240)(6 Serialization)] D /h30 [(7.1\240\240)(6.1 Namespace and Schema Information)] D /h31 [(7.2\240\240)(6.2 Error Handling)] D /Hr [35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65]D /HV [1 2 2 1 2 2 1 2 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 1 2 2 1 2 2]D /Cn [2 0 0 2 0 0 7 0 0 0 0 0 0 0 4 0 0 0 0 5 0 0 0 0 0 2 0 0 2 0 0]D Hr length 0 gt{[/PageMode /UseOutlines /DOCVIEW pdfmark}if /Hn 1 D 0 1 Hr length 1 sub{ /Bn E D [Cn Bn get dup 0 gt{/Count E HV Bn get Bl ge{neg}if}{pop}ie /Dest Hr Bn get dup abs ST cvs cvn E 0 ge{(h)Hn ST cvs join cvx exec dup 1 get E Nf{0 get E join}{pop}ie /Hn Hn 1 add D}{()}ie /Title E dup length 255 gt{0 255 getinterval}if /OUT pdfmark}for ZF /FN Fp D Ps 0 FS /WC Wf{( )}{}ie SW pop D ET RC ZF /Df f D /R0 (http://www.codesynthesis.com/licenses/fdl-1.2.txt) D /R1 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/index.xhtml) D /R2 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/cxx-parser-guide.pdf) D /R3 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/cxx-parser-guide.ps) D /R1 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/) D /R2 (http://wiki.codesynthesis.com/Tree/Customization_guide) D /R3 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/dbxml/) D /R4 (http://wiki.codesynthesis.com/Tree/FAQ) D /R5 (http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml) D /R6 (http://www.codesynthesis.com/mailman/listinfo/xsd-users) D /R7 (http://www.codesynthesis.com/pipermail/xsd-users/) D /R8 (http://www.w3.org/TR/xmlschema-0/) D /R9 (http://www.doxygen.org/) D /R10 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/hello/html/annotated.html) D /R11 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.11) D /R12 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.8) D /R13 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.5) D /R14 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.9) D /R15 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#3) D /R16 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#3.3) D /R17 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#4) D /R18 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#4.4) D /TS { tables E get /table E D table aload pop /rdesc E D /cdesc E D /tdesc E D tdesc aload pop /capalg E D /caption E D /rules E D /frame E D /nfoot E D /nhead E D /ncol E D /nrow E D /border E D /twid E D /units E D /talign E D /flow E D /clear E D /tclass E D pop pop /w W D /eps 0.1 D /OU f D /PL 1 D /FN EF 21 get D EZ 21 get Ey 21 get FS 0 1 1{ /pass E D 0 1 nrow{ /irow E D /cells rdesc irow get 6 get D 0 1 ncol{ /icol E D /cell cells icol get D cell 0 ne{ cell aload pop /ang E D /CB E D pop pop pop /DV E D /bot E D /top E D /right E D /left E D /nowrap E D /valign E D /dp E D /align E D /rspan E D /cspan E D /cclass E D /ctype E D /cmax E D /cmin E D /proc E D rspan 0 eq{/rspan nrow irow sub 1 add D}if cspan 0 eq{/cspan ncol icol sub 1 add D}if pass 0 eq cspan 1 eq and pass 1 eq cspan 1 gt and or{ /W 1e5 D /LL W D /PH 1 D ctype 1 eq{() BD}if RC align NA AT 4 eq{/CD t D /DC dp D /LN 0 D /M1 0 D /M2 0 D}{/CD f D}ie 0 0 M /LM 0 D proc exec BN AT 4 eq{ LN array astore cell 15 3 -1 roll put cdesc icol get dup dup 5 get M1 lt{5 M1 put}{5 get /M1 E D}ie dup 6 get M2 lt{6 M2 put}{6 get /M2 E D}ie /LM M1 M2 add D }if /CD f D ang 0 ne{/LM CP E pop neg D}if /thiswid LM left add right add eps add D /oldmin 0 D /oldmax 0 D 0 1 cspan 1 sub{ icol add cdesc E get dup 2 get /oldmax E oldmax add D 1 get /oldmin E oldmin add D }for thiswid oldmax ge{ 0 1 cspan 1 sub{ icol add cdesc E get dup 2 E 2 get oldmax 0 eq {pop thiswid cspan div}{thiswid mul oldmax div}ie put }for }if nowrap 1 eq{ thiswid oldmin ge{ 0 1 cspan 1 sub{ icol add cdesc E get dup 1 E 1 get oldmin 0 eq {pop thiswid cspan div}{thiswid mul oldmin div}ie put }for }if }{ /W 0 D /LL W D /PH 2 D ctype 1 eq{() ES () BD}if 0 0 M /LM 0 D RC proc exec BN /thiswid LM left add right add eps add D thiswid oldmin ge{ 0 1 cspan 1 sub{ icol add cdesc E get dup 1 E 1 get oldmin 0 eq {pop thiswid cspan div}{thiswid mul oldmin div}ie put }for }if }ie ctype 1 eq{() ES}if }if }if }for }for }for /tmin 0 D /tmax 0 D 0 1 ncol{ cdesc E get dup 1 get E 2 get 2 copy gt{pop dup}if tmax add /tmax E D tmin add /tmin E D }for twid 0 lt{twid neg IW gt{IW neg}{twid}ie /twid E D}if tdesc 0 twid neg tmin 2 copy lt{E}if pop put tdesc 1 twid neg tmax 2 copy lt{E}if pop put /W w D /LL W D /OU t D /PH 0 D /PL 0 D } D /PT { /PL PL 1 add D tables E get /table E D Tm 21 get Ts mul BE PL 2 ge{save}if /SL SL 1 add D /FN EF 21 get D EZ 21 get Ey 21 get FS table aload pop /rdesc E D /cdesc E D /tdesc E D tdesc aload pop /capalg E D /caption E D /rules E D /frame E D /nfoot E D /nhead E D /ncol E D /nrow E D /border E D /twid E D /units E D /talign E D /flow E D /clear E D /tclass E D /tmax E D /tmin E D /w W D /xo XO D /mr MR D /ll LL D /lg LG D /ai AI D /bc BC D /nr NR D /ar AR D /tr TR D /ui UI D /ph PH D /a0 A0 D /pf PF D /at AT D /av AV D /al AL D /Le LE D /la La D talign 0 lt{/talign AL 0 gt{AV AL get}{A0 2 le{A0}{0}ie}ie D}if ph 1 eq ph 2 eq or{ NL ph 1 eq{tmax}{tmin}ie dup XO add LM gt{/LM E XO add D}{pop}ie LM E }{ /PH 3 D /LE 1e5 D RC %ZF border 0 gt{/border 1 D}if /twidth 0 D /avail W xo sub D twid 0 eq{0 1 ncol{cdesc E get dup 2 get E 3 get dup 0 gt{div neg dup twid lt {/twid E D}{pop}ie}{pop pop}ie}for}if /twid twid dup 0 lt{neg avail 2 copy gt{E}if pop}{avail mul}ie D /OK t D 0 1 ncol{cdesc E get dup 1 get E 3 get twid mul gt{/OK f D}if}for 0 1 ncol{ cdesc E get dup 1 get /colmin E D dup 3 get /cwid E twid mul D dup tmax avail le{2 get}if tmin avail le tmax avail gt and{ dup 2 get E 1 get dup 3 1 roll sub avail tmin sub mul tmax tmin sub div add }if tmin avail gt{1 get}if 0 E colmin cwid lt OK and{pop cwid}if dup /twidth E twidth add D put }for /OU f D CP tmin twid le{ 0 1 ncol{cdesc E get dup 0 get twidth div twid mul 0 E put}for /twidth twid D }if CP printcap CP E pop sub /caphig E D pop 0 1 1{ /pass E D 0 1 nrow{ /irow E D /cells rdesc irow get 6 get D 0 1 ncol{ /icol E D /cell cells icol get D cell 0 ne{ cell aload pop /ang E D /CB E D pop pop pop /DV E D /bot E D /top E D /right E D /left E D /nowrap E D /valign E D /dp E D /align E D /rspan E D /cspan E D /cclass E D /ctype E D /cmax E D /cmin E D /proc E D rspan 0 eq{/rspan nrow irow sub 1 add D}if cspan 0 eq{/cspan ncol icol sub 1 add D}if /W 0 D 0 1 cspan 1 sub{icol add cdesc E get 0 get /W E W add D}for pass 0 eq rspan 1 eq and pass 1 eq rspan 1 gt and or{ ctype 1 eq{() BD}if /W W left sub right sub D /XO 0 D /EO 0 D SI /A0 align D RC align NA AT 4 eq{ /DC dp D /DO 0 D /ID 1 D 0 1 DV length 1 sub{DV E get dup DO gt{/DO E D}{pop}ie}for /Lo DO DV 0 get sub D /L1 Lo D }if 0 0 M /BP t D /Fl t D /MF 0 D /FB 0 D proc exec T not{/CI 0 D}if BN 0 FB neg R MF 0 eq{/MF CS D}if CP /thishig E neg bot add top add CI add D pop ang 0 ne{/thishig LM bot add top add D}if cell 16 MF put cell 17 Ya put cell 18 thishig put valign 4 eq{ /below thishig Ya sub D rdesc irow get dup dup 4 get Ya lt {4 Ya put}{4 get /Ya E D}ie dup 5 get below lt{5 below put}{5 get /below E D}ie /thishig Ya below add D }if ctype 1 eq{()ES}if /oldhig 0 D 0 1 rspan 1 sub{ irow add rdesc E get 0 get /oldhig E oldhig add D }for thishig oldhig ge{ 0 1 rspan 1 sub{ irow add rdesc E get dup 0 E 0 get oldhig 0 eq {pop thishig rspan div}{thishig mul oldhig div}ie put }for }if }if }if }for }for }for M RC %ZF /thight 0 D /racc 0 D /maxh 0 D /brk 0 D /rbeg nhead nfoot add D 0 1 nrow{ rdesc E get dup 0 get dup /thight E thight add D brk 0 eq{/racc E D}{/racc E racc add D}ie racc maxh gt{/maxh racc D}if 2 get /brk E D }for ph 3 ge{thight caphig add E}if ph 0 eq ph 4 eq or{ /PH 4 D /LE Le D /OU Ou D /yoff 0 D /headsz 0 D 0 1 nhead 1 sub{rdesc E get 0 get headsz add /headsz E D}for /footsz 0 D 0 1 nfoot 1 sub{rdesc E nhead add get 0 get footsz add /footsz E D}for /ahig LE BO add MI add D /maxh maxh headsz add footsz add D /thight thight headsz add footsz add D tmin avail gt maxh ahig gt or {/Sf avail tmin div dup ahig maxh div gt{pop ahig maxh div}if D /SA t D} {/Sf 1 D}ie tclass 1 eq thight LE 15 sub gt and {/SA t D LE 15 sub thight div dup Sf lt{/Sf E D}{pop}ie}if SA{Sf Sf scale /ll ll Sf div D /xo xo Sf div D /LE LE Sf div D /mr mr Sf div D /BO BO Sf div D /ahig ahig Sf div D}if nhead nfoot add getwid LE CP E pop add capalg 0 eq{caphig sub}if bT{f}{dup thight lt thight ahig lt and}ie E headsz sub footsz sub rwid lt or{NP}if capalg 0 eq{printcap -8 SP}if CP /ycur E D pop printhead rbeg 1 nrow{/row E D row getwid ycur yoff add rwid sub footsz sub LE add 0 lt {nfoot 0 gt{printfoot}if Tf NP /rbeg irow1 D Ba{MI /MI MI SA{Sf div}if D MI SP /MI E D}if CP /ycur E D pop /yoff 0 D printhead}if irow1 printrow }for printfoot /row row 1 add D Tf 0 ycur yoff add M capalg 1 eq{/EO 0 D SI -3 SP printcap}if Sf 1 lt{1 Sf div dup scale /ll ll Sf mul D /xo xo Sf mul D /LE LE Sf mul D /mr mr Sf mul D /BO BO Sf mul D /SA f D}if /EO 0 D }if }ie /W w D /XO xo D /MR mr D /LL ll D /LG lg D /AI ai D /BC bc D /NR nr D /AR ar D /TR tr D /UI ui D /PH ph D /A0 a0 D /PF pf D /AT at D /AV av D /AL al D /La la D /SL SL 1 sub NN D /CF 0 D /FN 0 D SZ SL get FR SL get FS Wf not{()F2}if PL 2 ge{Ms E restore Ms or /Ms E D PH 1 eq PH 2 eq or {/LM E D}if PH 3 ge{/CI 0 D NL 0 E neg R}if }if /PL PL 1 sub D /CI 0 D /BP f D /PO f D () Bm 21 get Ts mul BE BL %CF CS SF } D /printcap{ capalg 0 ge{ SA{/W w Sf div D} {talign 1 eq{/XO xo ll twidth sub 2 div add D}if talign 2 eq{/XO xo ll twidth sub add D}if /W XO twidth add D }ie /XO xo D /LL W XO sub MR sub D /PA f D /Fl capalg 0 eq D 1 NA BL caption exec BN OA /PA t D }if } D /getwid{ /irow1 E D /irow2 irow1 D /rwid 0 D {rdesc irow2 get dup 0 get rwid add /rwid E D 2 get 0 eq {exit}{/irow2 irow2 1 add D}ie }loop } D /printrow{ /xoff ll twidth PL 2 ge{Sf div}if sub talign mul 2 div D /xleft xoff xo add D /irow E D /cells rdesc irow get 6 get D 0 1 ncol{ /icol E D /cell cells icol get D cell 0 ne{ cell aload pop /ang E D /CB E D /cvsize E D /above E D /fontsz E D /DV E D /bot E D /top E D /right E D /left E D /nowrap E D /valign E D /dp E D /align E D /rspan E D /cspan E D /cclass E D /ctype E D /cmax E D /cmin E D /proc E D rspan 0 eq{/rspan nrow irow sub 1 add D}if cspan 0 eq{/cspan ncol icol sub 1 add D}if /width 0 D 0 1 cspan 1 sub{icol add cdesc E get 0 get /width E width add D}for /rhight rdesc irow get 0 get D /hight rhight D 1 1 rspan 1 sub{irow add rdesc E get 0 get /hight E hight add D}for /W xo xoff add width add right sub D ang 0 ne{/W xo xoff add hight add right sub D}if /EO xo xoff add left add D SI Cf{ gsave CB VC xo xoff add ycur yoff add M 0 hight neg RL width 0 RL 0 hight RL width neg 0 RL fill grestore }if ctype 1 eq{() BD}if /A0 align D RC AT 4 eq{ /DC dp D /ID 1 D /DO cdesc icol get 5 get D /Lo DO DV 0 get sub D /L1 Lo D }if ang 0 ne{ gsave ang 90 eq {xoff ycur add hight cvsize sub 2 div sub ycur hight sub xoff sub} {xoff ycur sub width add hight cvsize sub 2 div add ycur xoff add}ie translate ang rotate }if valign 3 le{0 ycur yoff add top sub hight cvsize sub valign 1 sub mul 2 div sub M} {0 ycur yoff add top sub above add rdesc irow get 4 get sub M}ie /PA f D /BP t D /Fl t D BL proc exec BN ang 0 ne{grestore}if /PA t D ctype 1 eq{() ES}if }if /xoff xoff cdesc icol get 0 get add D }for /yoff yoff rhight sub D } D /printhead {0 1 nhead 1 sub{printrow}for} D /printfoot {nhead 1 nhead nfoot add 1 sub{printrow}for} D /Tf { OU{rules 2 ge{/yoff 0 D gsave 0 Sg [0 1 nhead 1 sub{}for rbeg 1 row 1 sub{}for nhead 1 nhead nfoot add 1 sub{}for]{ /irow E D /xoff ll twidth PL 2 ge{Sf div}if sub talign mul 2 div D /cells rdesc irow get 6 get D 0 1 ncol{ /icol E D /cell cells icol get D cell 0 ne{ /rspan cell 6 get D /cspan cell 5 get D rspan 0 eq{/rspan nrow irow sub 1 add D}if cspan 0 eq{/cspan ncol icol sub 1 add D}if /width 0 D 0 1 cspan 1 sub{icol add cdesc E get 0 get /width E width add D}for /rhight rdesc irow get 0 get D /hight rhight D 1 1 rspan 1 sub{irow add rdesc E get 0 get /hight E hight add D}for xo xoff add width add ycur yoff add M 0 hight neg icol cspan add 1 sub ncol lt {cdesc icol 1 add get 4 get dup rules 3 le{1 eq}{pop t}ie {1 eq{0.8}{0.3}ie LW RL CP stroke M}{pop R}ie}{R}ie irow nhead nfoot add 1 sub ne nfoot 0 eq or {irow rspan add 1 sub nrow lt {rdesc irow rspan add get 3 get}{nfoot 0 eq{0}{1}ie}ie dup rules 2 mod 0 eq{1 eq}{pop t}ie {1 eq irow rspan add nhead eq or irow rspan add row eq nfoot 0 gt and or {0.8}{0.3}ie LW width neg 0 RL CP stroke M}{pop}ie}if }if /xoff xoff cdesc icol get 0 get add D }for /yoff yoff rhight sub D }forall grestore /Ms t D }if frame 1 gt{ gsave 1 LW 0 Sg xleft ycur M CP BB 0 yoff frame 5 eq frame 7 ge or{RL}{R}ie twidth 0 frame 3 eq frame 4 eq or frame 8 ge or{RL}{R}ie CP BB 0 yoff neg frame 6 ge{RL}{R}ie twidth neg 0 frame 2 eq frame 4 eq or frame 8 ge or{RL}{R}ie closepath stroke grestore /Ms t D }if }if } D /tables [[[0 0 0 0 0 -1 0 0 1 55 2 0 0 9 5 {()} -1] [[0 0 0 0 0 0 0][0 0 0 0 0 0 0][0 0 0 0 0 0 0]] [[0 0 0 0 0 0 [[{()1 Sl()WB(XML Schema type)} 0 0 1 0 1 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB(Alias in the )SM(xml_schema)ES( names)HY(pace)YH()} 0 0 1 0 1 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB(C++ type )} 0 0 1 0 1 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB(fixed-length inte)HY(gral)YH( types )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] 0 0 ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(byte)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(byte)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(signed\240char)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(unsigned)HY(Byte)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(unsigned_byte)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(unsigned\240char)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(short)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(short_)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(short)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(unsigned)HY(Short)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(unsigned_short)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(unsigned\240short)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(int)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(int_)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(int)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(unsignedInt)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(unsigned_int)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(unsigned\240int)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(long)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(long_)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(long\240long)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(unsigned)HY(Long)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(unsigned_long)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(unsigned\240long\240long)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB(arbi)HY(trary)YH(-length inte)HY(gral)YH( types )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] 0 0 ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(integer)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(integer)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(long\240long)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(nonPos)HY(i)HY(tiveIn)HY(te)HY(ger)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(non_posi)HY(tive)YH(_integer)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(long\240long)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(nonNeg)HY(a)HY(tiveIn)HY(te)HY(ger)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(non_nega)HY(tive)YH(_integer)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(unsigned long\240long)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(posi)HY(tiveIn)HY(te)HY(ger)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(posi)HY(tive)YH(_integer)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(unsigned long\240long)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(nega)HY(tiveIn)HY(te)HY(ger)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(nega)HY(tive)YH(_integer)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(long\240long)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB(boolean types )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] 0 0 ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(boolean)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(boolean)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(bool)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB(fixed-preci)HY(sion)YH( float)HY(ing)YH(-point types )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] 0 0 ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(float)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(float_)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(float)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(double)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(double_)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(double)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB(arbi)HY(trary)YH(-preci)HY(sion)YH( float)HY(ing)YH(-point types )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] 0 0 ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(decimal)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(decimal)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(double)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB(string types )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] 0 0 ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(string)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(string)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB(type derived from )SM(std::basic_string)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(normal)HY(ized)HY(String)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(normal)HY(ized)YH(_string)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB(type derived from )SM(string)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(token)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(token)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB(type\240derived\240from\240)SM(normal)HY(ized)YH(_string)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(Name)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(name)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB(type derived from )SM(token)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(NMTOKEN)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(nmtoken)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB(type derived from )SM(token)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(NMTO)HY(KENS)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(nmto)HY(kens)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB(type derived from )SM(sequence)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(NCName)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(ncname)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB(type derived from )SM(name)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(language)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(language)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB(type derived from )SM(token)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB(qual)HY(i)HY(fied)YH( name )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] 0 0 ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(QName)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(qname)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(xml_schema::qname)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB(ID/IDREF types )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] 0 0 ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(ID)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(id)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB(type derived from )SM(ncname)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(IDREF)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(idref)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB(type derived from )SM(ncname)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(IDREFS)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(idrefs)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB(type derived from )SM(sequence)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB(URI types )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] 0 0 ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(anyURI)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(uri)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB(type derived from )SM(std::basic_string)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB(binary types )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] 0 0 ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(base64Binary)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(base64_binary)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(xml_schema::base64_binary)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(hexBi)HY(nary)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(hex_binary)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(xml_schema::hex_binary)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB(date/time types )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] 0 0 ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(date)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(date)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(xml_schema::date)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(date)HY(Time)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(date_time)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(xml_schema::date_time)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(dura)HY(tion)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(dura)HY(tion)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(xml_schema::dura)HY(tion)YH()ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(gDay)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(gday)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(xml_schema::gday)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(gMonth)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(gmonth)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(xml_schema::gmonth)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(gMon)HY(th)HY(Day)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(gmonth_day)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(xml_schema::gmonth_day)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(gYear)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(gyear)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(xml_schema::gyear)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(gYear)HY(Month)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(gyear_month)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(xml_schema::gyear_month)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(time)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(time)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(xml_schema::time)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB(entity types )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] 0 0 ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(ENTITY)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(entity)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB(type derived from )SM(name)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] [0 0 0 0 0 0 [[{()1 Sl()WB()SM(ENTI)HY(TIES)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB()SM(enti)HY(ties)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] [{()1 Sl()WB(type derived from )SM(sequence)ES( )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ] ]] ]] ] D 0 1 0{TS}for RC ZF /Ba f D /BO 0 D Bs /UR (/home/boris/work/xsd/xsd/documentation/cxx/tree/guide/index.xhtml) D /Ti (C++/Tree Mapping Getting Started Guide) D /Au () D /Df f D /ME [] D Pt /BO 0 D TC /Ba f D Bs /AU f D /UR () D RC ZF tH WB ND 1 gt{Ts 3 mul Np 0()0 C()BD(C++/Tree Mapping Getting Started Guide)ES()0 1 TN()EA()BN}if 1 NH le{35(1\240\240)1 C(Preface)WB 3 Sn()35 1 TN()EA()BN}if 2 NH le{36(1.1\240\240)2 C(About)WB 4 Sn( This Docu)HY(ment)YH()36 1 TN()EA()BN}if 2 NH le{37(1.2\240\240)2 C(More)WB 5 Sn( Infor)HY(ma)HY(tion)YH()37 1 TN()EA()BN}if 1 NH le{38(2\240\240)1 C(1)WB 6 Sn( Intro)HY(duc)HY(tion)YH()38 1 TN()EA()BN}if 2 NH le{39(2.1\240\240)2 C(1.1)WB 7 Sn( Mapping Overview)39 1 TN()EA()BN}if 2 NH le{40(2.2\240\240)2 C(1.2)WB 8 Sn( Bene)HY(fits)YH()40 1 TN()EA()BN}if 1 NH le{41(3\240\240)1 C(2)WB 9 Sn( Hello World Example)41 1 TN()EA()BN}if 2 NH le{42(3.1\240\240)2 C(2.1)WB 10 Sn( Writing XML Docu)HY(ment)YH( and Schema)42 1 TN()EA()BN}if 2 NH le{43(3.2\240\240)2 C(2.2)WB 11 Sn( Trans)HY(lat)HY(ing)YH( Schema to C++)43 1 TN()EA()BN}if 2 NH le{44(3.3\240\240)2 C(2.3)WB 12 Sn( Imple)HY(ment)HY(ing)YH( Appli)HY(ca)HY(tion)YH( Logic)44 1 TN()EA()BN}if 2 NH le{45(3.4\240\240)2 C(2.4)WB 13 Sn( Compil)HY(ing)YH( and Running)45 1 TN()EA()BN}if 2 NH le{46(3.5\240\240)2 C(2.5)WB 14 Sn( Adding Seri)HY(al)HY(iza)HY(tion)YH()46 1 TN()EA()BN}if 2 NH le{47(3.6\240\240)2 C(2.6)WB 15 Sn( Select)HY(ing)YH( Naming Conven)HY(tion)YH()47 1 TN()EA()BN}if 2 NH le{48(3.7\240\240)2 C(2.7)WB 16 Sn( Gener)HY(at)HY(ing)YH( Docu)HY(men)HY(ta)HY(tion)YH()48 1 TN()EA()BN}if 1 NH le{49(4\240\240)1 C(3)WB 17 Sn( Overall Mapping Config)HY(u)HY(ra)HY(tion)YH()49 1 TN()EA()BN}if 2 NH le{50(4.1\240\240)2 C(3.1)WB 18 Sn( Char)HY(ac)HY(ter)YH( Type and Encod)HY(ing)YH()50 1 TN()EA()BN}if 2 NH le{51(4.2\240\240)2 C(3.2)WB 19 Sn( Support for Poly)HY(mor)HY(phism)YH()51 1 TN()EA()BN}if 2 NH le{52(4.3\240\240)2 C(3.3)WB 20 Sn( Names)HY(pace)YH( Mapping)52 1 TN()EA()BN}if 2 NH le{53(4.4\240\240)2 C(3.4)WB 21 Sn( Thread Safety)53 1 TN()EA()BN}if 1 NH le{54(5\240\240)1 C(4)WB 22 Sn( Working with Object Models)54 1 TN()EA()BN}if 2 NH le{55(5.1\240\240)2 C(4.1)WB 23 Sn( Attribute and Element Cardi)HY(nal)HY(i)HY(ties)YH()55 1 TN()EA()BN}if 2 NH le{56(5.2\240\240)2 C(4.2)WB 24 Sn( Access)HY(ing)YH( the Object Model)56 1 TN()EA()BN}if 2 NH le{57(5.3\240\240)2 C(4.3)WB 25 Sn( Modi)HY(fy)HY(ing)YH( the Object Model)57 1 TN()EA()BN}if 2 NH le{58(5.4\240\240)2 C(4.4)WB 26 Sn( Creat)HY(ing)YH( the Object Model from Scratch)58 1 TN()EA()BN}if 2 NH le{59(5.5\240\240)2 C(4.5)WB 27 Sn( Mapping for the Built-in XML Schema Types)59 1 TN()EA()BN}if 1 NH le{60(6\240\240)1 C(5)WB 29 Sn( Parsing)60 1 TN()EA()BN}if 2 NH le{61(6.1\240\240)2 C(5.1)WB 30 Sn( XML Schema Vali)HY(da)HY(tion)YH( and Search)HY(ing)YH()61 1 TN()EA()BN}if 2 NH le{62(6.2\240\240)2 C(5.2)WB 31 Sn( Error Handling)62 1 TN()EA()BN}if 1 NH le{63(7\240\240)1 C(6)WB 32 Sn( Seri)HY(al)HY(iza)HY(tion)YH()63 1 TN()EA()BN}if 2 NH le{64(7.1\240\240)2 C(6.1)WB 33 Sn( Names)HY(pace)YH( and Schema Infor)HY(ma)HY(tion)YH()64 1 TN()EA()BN}if 2 NH le{65(7.2\240\240)2 C(6.2)WB 34 Sn( Error Handling)65 1 TN()EA()BN}if /OU t D /Cb Db D NP Ep ET /Cb Db D /Ct [16#00 16#00 16#00] D /Cl [16#00 16#00 16#00] D /CL -1 D Ct Sc /Ba f D /BO 0 D Bs /UR (/home/boris/work/xsd/xsd/documentation/cxx/tree/guide/index.xhtml) D /Ti (C++/Tree Mapping Getting Started Guide) D /Au () D /Df f D /ME [] D NP RC ZF ()1 Sl()WB 0 Sn( )BR()WB 1 Sn( )BR()WB 2 Sn( )0 1 0 H(Preface)WB 35 Sn()WB 3 Sn()EA()EH( )0 2 1 H(About)WB 36 Sn()WB 4 Sn( This Docu)HY(ment)YH()EA()EH( )0 P(The goal of this docu)HY(ment)YH( is to provide you with an under)HY(stand)HY(ing)YH( of the C++/Tree program)HY(ming)YH( model and allow you to effi)HY(ciently)YH( eval)HY(u)HY(ate)YH( XSD against your project's tech)HY(ni)HY(cal)YH( require)HY(ments)YH(. As such, this docu)HY(ment)YH( is intended for C++ devel)HY(op)HY(ers)YH( and soft)HY(ware)YH( archi)HY(tects)YH( who are looking for an XML process)HY(ing)YH( solu)HY(tion)YH(. For a more in-depth descrip)HY(tion)YH( of the C++/Tree mapping refer to the )R1 2 A(C++/Tree Mapping User Manual)EA(.)EP( )0 P(Prior expe)HY(ri)HY(ence)YH( with XML and C++ is required to under)HY(stand)YH( this docu)HY(ment)YH(. Basic under)HY(stand)HY(ing)YH( of XML Schema is advan)HY(ta)HY(geous)YH( but not expected or required. )EP( )0 2 2 H(More)WB 37 Sn()WB 5 Sn( Infor)HY(ma)HY(tion)YH()EA()EH( )0 P(Beyond this guide, you may also find the follow)HY(ing)YH( sources of infor)HY(ma)HY(tion)YH( useful:)EP( )UL( )-1 LI()R1 2 A(C++/Tree Mapping User Manual)EA( )-1 LI()R2 2 A(C++/Tree Mapping Customiza)HY(tion)YH( Guide)EA( )-1 LI()R3 2 A(C++/Tree Mapping and Berke)HY(ley)YH( DB XML Inte)HY(gra)HY(tion)YH( Guide)EA( )-1 LI()R4 2 A(C++/Tree Mapping Frequently Asked Ques)HY(tions)YH( \201FAQ\202)EA( )-1 LI()R5 2 A(XSD Compiler Command Line Manual)EA( )-1 LI(The )SM(exam)HY(ples)YH(/cxx/tree/)ES( direc)HY(tory)YH( in the XSD distri)HY(bu)HY(tion)YH( contains a collec)HY(tion)YH( of exam)HY(ples)YH( and a README file with an overview of each example. )-1 LI(The )SM(README)ES( file in the XSD distri)HY(bu)HY(tion)YH( explains how to compile the exam)HY(ples)YH( on various plat)HY(forms)YH(. )-1 LI(The )R6 2 A(xsd-users)EA( mailing list is the place to ask tech)HY(ni)HY(cal)YH( ques)HY(tions)YH( about XSD and the C++/Parser mapping. Further)HY(more)YH(, the )R7 2 A(archives)EA( may already have answers to some of your ques)HY(tions)YH(. )LU( )0 1 3 H(1)WB 38 Sn()WB 6 Sn( Intro)HY(duc)HY(tion)YH()EA()EH( )0 P(Welcome to CodeSyn)HY(the)HY(sis)YH( XSD and the C++/Tree mapping. XSD is a cross-plat)HY(form)YH( W3C XML Schema to C++ data binding compiler. C++/Tree is a W3C XML Schema to C++ mapping that repre)HY(sents)YH( the data stored in XML as a stat)HY(i)HY(cally)YH(-typed, vocab)HY(u)HY(lary)YH(-specific object model. )EP( )0 2 4 H(1.1)WB 39 Sn()WB 7 Sn( Mapping Overview)EA()EH( )0 P(Based on a formal descrip)HY(tion)YH( of an XML vocab)HY(u)HY(lary)YH( \201schema\202, the C++/Tree mapping produces a tree-like data struc)HY(ture)YH( suit)HY(able)YH( for in-memory process)HY(ing)YH(. The core of the mapping consists of C++ classes that consti)HY(tute)YH( the object model and are derived from types defined in XML Schema as well as XML parsing and seri)HY(al)HY(iza)HY(tion)YH( code.)EP( )0 P(Besides the core features, C++/Tree provide a number of addi)HY(tional)YH( mapping elements that can be useful in some appli)HY(ca)HY(tions)YH(. These include seri)HY(al)HY(iza)HY(tion)YH( and extrac)HY(tion)YH( to/from formats others than XML, such as unstruc)HY(tured)YH( text \201useful for debug)HY(ging)YH(\202 and binary repre)HY(sen)HY(ta)HY(tions)YH( such as XDR and CDR for high-speed data process)HY(ing)YH(, inte)HY(gra)HY(tion)YH( with XML databases such as Berke)HY(ley)YH( DB XML, and auto)HY(matic)YH( docu)HY(men)HY(ta)HY(tion)YH( gener)HY(a)HY(tion)YH(. The C++/Tree mapping also provides a wide range of mech)HY(a)HY(nisms)YH( for control)HY(ling)YH( and customiz)HY(ing)YH( the gener)HY(ated)YH( code.)EP( )0 P(A typical appli)HY(ca)HY(tion)YH( that uses C++/Tree for XML process)HY(ing)YH( usually performs the follow)HY(ing)YH( three steps: it first reads \201parses\202 an XML docu)HY(ment)YH( to an in-memory object model, it then performs some useful compu)HY(ta)HY(tions)YH( on that object model which may involve modi)HY(fi)HY(ca)HY(tion)YH( of the model, and finally it may write \201seri)HY(al)HY(ize)YH(\202 the modi)HY(fied)YH( object model back to XML.)EP( )0 P(The next chapter presents a simple appli)HY(ca)HY(tion)YH( that performs these three steps. The follow)HY(ing)YH( chap)HY(ters)YH( show how to use the C++/Tree mapping in more detail.)EP( )0 2 5 H(1.2)WB 40 Sn()WB 8 Sn( Bene)HY(fits)YH()EA()EH( )0 P(Tradi)HY(tional)YH( XML access APIs such as Docu)HY(ment)YH( Object Model \201DOM\202 or Simple API for XML \201SAX\202 have a number of draw)HY(backs)YH( that make them less suit)HY(able)YH( for creat)HY(ing)YH( robust and main)HY(tain)HY(able)YH( XML process)HY(ing)YH( appli)HY(ca)HY(tions)YH(. These draw)HY(backs)YH( include: )EP( )UL( )-1 LI(Generic repre)HY(sen)HY(ta)HY(tion)YH( of XML in terms of elements, attributes, and text forces an appli)HY(ca)HY(tion)YH( devel)HY(oper)YH( to write a substan)HY(tial)YH( amount of bridg)HY(ing)YH( code that iden)HY(ti)HY(fies)YH( and trans)HY(forms)YH( pieces of infor)HY(ma)HY(tion)YH( encoded in XML to a repre)HY(sen)HY(ta)HY(tion)YH( more suit)HY(able)YH( for consump)HY(tion)YH( by the appli)HY(ca)HY(tion)YH( logic. )-1 LI(String-based flow control defers error detec)HY(tion)YH( to runtime. It also reduces code read)HY(abil)HY(ity)YH( and main)HY(tain)HY(abil)HY(ity)YH(. )-1 LI(Lack of type safety because the data is repre)HY(sented)YH( as text. )-1 LI(Result)HY(ing)YH( appli)HY(ca)HY(tions)YH( are hard to debug, change, and main)HY(tain)YH(. )LU( )0 P(In contrast, stat)HY(i)HY(cally)YH(-typed, vocab)HY(u)HY(lary)YH(-specific object model produced by the C++/Tree mapping allows you to operate in your domain terms instead of the generic elements, attributes, and text. Static typing helps catch errors at compile-time rather than at run-time. Auto)HY(matic)YH( code gener)HY(a)HY(tion)YH( frees you for more inter)HY(est)HY(ing)YH( tasks \201such as doing some)HY(thing)YH( useful with the infor)HY(ma)HY(tion)YH( stored in the XML docu)HY(ments)YH(\202 and mini)HY(mizes)YH( the effort needed to adapt your appli)HY(ca)HY(tions)YH( to changes in the docu)HY(ment)YH( struc)HY(ture)YH(. To summa)HY(rize)YH(, the C++/Tree object model has the follow)HY(ing)YH( key advan)HY(tages)YH( over generic XML access APIs:)EP( )UL( )-1 LI()BD(Ease of use.)ES( The gener)HY(ated)YH( code hides all the complex)HY(ity)YH( asso)HY(ci)HY(ated)YH( with parsing and seri)HY(al)HY(iz)HY(ing)YH( XML. This includes navi)HY(gat)HY(ing)YH( the struc)HY(ture)YH( and convert)HY(ing)YH( between the text repre)HY(sen)HY(ta)HY(tion)YH( and data types suit)HY(able)YH( for manip)HY(u)HY(la)HY(tion)YH( by the appli)HY(ca)HY(tion)YH( logic. )-1 LI()BD(Natural repre)HY(sen)HY(ta)HY(tion)YH(.)ES( The object repre)HY(sen)HY(ta)HY(tion)YH( allows you to access the XML data using your domain vocab)HY(u)HY(lary)YH( instead of generic elements, attributes, and text. )-1 LI()BD(Concise code.)ES( With the object repre)HY(sen)HY(ta)HY(tion)YH( the appli)HY(ca)HY(tion)YH( imple)HY(men)HY(ta)HY(tion)YH( is simpler and thus easier to read and under)HY(stand)YH(. )-1 LI()BD(Safety.)ES( The gener)HY(ated)YH( object model is stat)HY(i)HY(cally)YH( typed and uses func)HY(tions)YH( instead of strings to access the infor)HY(ma)HY(tion)YH(. This helps catch program)HY(ming)YH( errors at compile-time rather than at runtime. )-1 LI()BD(Main)HY(tain)HY(abil)HY(ity)YH(.)ES( Auto)HY(matic)YH( code gener)HY(a)HY(tion)YH( mini)HY(mizes)YH( the effort needed to adapt the appli)HY(ca)HY(tion)YH( to changes in the docu)HY(ment)YH( struc)HY(ture)YH(. With static typing, the C++ compiler can pin-point the places in the client code that need to be changed. )-1 LI()BD(Compat)HY(i)HY(bil)HY(ity)YH(.)ES( Sequences of elements are repre)HY(sented)YH( in the object model as contain)HY(ers)YH( conform)HY(ing)YH( to the stan)HY(dard)YH( C++ sequence require)HY(ments)YH(. This makes it possi)HY(ble)YH( to use stan)HY(dard)YH( C++ algo)HY(rithms)YH( on the object repre)HY(sen)HY(ta)HY(tion)YH( and frees you from learn)HY(ing)YH( yet another container inter)HY(face)YH(, as is the case with DOM. )-1 LI()BD(Effi)HY(ciency)YH(.)ES( If the appli)HY(ca)HY(tion)YH( makes repet)HY(i)HY(tive)YH( use of the data extracted from XML, then the C++/Tree object model is more effi)HY(cient)YH( because the navi)HY(ga)HY(tion)YH( is performed using func)HY(tion)YH( calls rather than string compar)HY(isons)YH( and the XML data is extracted only once. Further)HY(more)YH(, the runtime memory usage is reduced due to more effi)HY(cient)YH( data storage \201for instance, storing numeric data as inte)HY(gers)YH( instead of strings\202 as well as the static knowl)HY(edge)YH( of cardi)HY(nal)HY(ity)YH( constraints. )LU( )0 1 6 H(2)WB 41 Sn()WB 9 Sn( Hello World Example)EA()EH( )0 P(In this chapter we will examine how to parse, access, modify, and seri)HY(al)HY(ize)YH( a very simple XML docu)HY(ment)YH( using the XSD-gener)HY(ated)YH( C++/Tree object model. The code presented in this chapter is based on the )SM(hello)ES( example which can be found in the )SM(exam)HY(ples)YH(/cxx/tree/)ES( direc)HY(tory)YH( of the XSD distri)HY(bu)HY(tion)YH(.)EP( )0 2 7 H(2.1)WB 42 Sn()WB 10 Sn( Writing XML Docu)HY(ment)YH( and Schema)EA()EH( )0 P(First, we need to get an idea about the struc)HY(ture)YH( of the XML docu)HY(ments)YH( we are going to process. Our )SM(hello.xml)ES(, for example, could look like this:)EP( ) 10 28 PR( Hello sun moon world )RP( )0 P(Then we can write a descrip)HY(tion)YH( of the above XML in the XML Schema language and save it into )SM(hello.xsd)ES(:)EP( ) 13 70 PR( )RP( )0 P(Even if you are not famil)HY(iar)YH( with XML Schema, it should be easy to connect decla)HY(ra)HY(tions)YH( in )SM(hello.xsd)ES( to elements in )SM(hello.xml)ES(. The )SM(hello_t)ES( type is defined as a sequence of the nested )SM(greet)HY(ing)YH()ES( and )SM(name)ES( elements. Note that the term sequence in XML Schema means that elements should appear in a partic)HY(u)HY(lar)YH( order as opposed to appear)HY(ing)YH( multi)HY(ple)YH( times. The )SM(name)ES( element has its )SM(maxOc)HY(curs)YH()ES( prop)HY(erty)YH( set to )SM(unbounded)ES( which means it can appear multi)HY(ple)YH( times in an XML docu)HY(ment)YH(. Finally, the glob)HY(ally)YH(-defined )SM(hello)ES( element prescribes the root element for our vocab)HY(u)HY(lary)YH(. For an easily-approach)HY(able)YH( intro)HY(duc)HY(tion)YH( to XML Schema refer to )R8 2 A(XML Schema Part 0: Primer)EA(.)EP( )0 P(The above schema is a spec)HY(i)HY(fi)HY(ca)HY(tion)YH( of our XML vocab)HY(u)HY(lary)YH(; it tells every)HY(body)YH( what valid docu)HY(ments)YH( of our XML-based language should look like. We can also update our )SM(hello.xml)ES( to include the infor)HY(ma)HY(tion)YH( about the schema so that XML parsers can vali)HY(date)YH( our docu)HY(ment)YH(:)EP( ) 11 60 PR( Hello sun moon world )RP( )0 P(The next step is to compile the schema to gener)HY(ate)YH( the object model and parsing func)HY(tions)YH(.)EP( )0 2 8 H(2.2)WB 43 Sn()WB 11 Sn( Trans)HY(lat)HY(ing)YH( Schema to C++)EA()EH( )0 P(Now we are ready to trans)HY(late)YH( our )SM(hello.xsd)ES( to C++. To do this we invoke the XSD compiler from a termi)HY(nal)YH( \201UNIX\202 or a command prompt \201Windows\202: )EP( ) 1 24 PR($ xsd cxx-tree hello.xsd)RP( )0 P(The XSD compiler produces two C++ files: )SM(hello.hxx)ES( and )SM(hello.cxx)ES(. The follow)HY(ing)YH( code frag)HY(ment)YH( is taken from )SM(hello.hxx)ES(; it should give you an idea about what gets gener)HY(ated)YH(: )EP( ) 45 60 PR(class hello_t { public: // greeting // typedef xml_schema::string greeting_type; const greeting_type& greeting \201\202 const; greeting_type& greeting \201\202; void greeting \201const greeting_type& x\202; // name // typedef xml_schema::string name_type; typedef xsd::sequence name_sequence; typedef name_sequence::iterator name_iterator; typedef name_sequence::const_iterator name_const_iterator; const name_sequence& name \201\202 const; name_sequence& name \201\202; void name \201const name_sequence& s\202;)WR( // Constructor. // hello_t \201const greeting_type&\202; ... }; std::auto_ptr hello \201const std::string& uri\202; std::auto_ptr hello \201std::istream&\202;)RP( )0 P(The )SM(hello_t)ES( C++ class corre)HY(sponds)YH( to the )SM(hello_t)ES( XML Schema type. For each element in this type a set of C++ type defi)HY(ni)HY(tions)YH( as well as acces)HY(sor)YH( and modi)HY(fier)YH( func)HY(tions)YH( are gener)HY(ated)YH( inside the )SM(hello_t)ES( class. Note that the type defi)HY(ni)HY(tions)YH( and member func)HY(tions)YH( for the )SM(greet)HY(ing)YH()ES( and )SM(name)ES( elements are differ)HY(ent)YH( because of the cardi)HY(nal)HY(ity)YH( differ)HY(ences)YH( between these two elements \201)SM(greet)HY(ing)YH()ES( is a required single element and )SM(name)ES( is a sequence of elements\202.)EP( )0 P(The )SM(xml_schema::string)ES( type used in the type defi)HY(ni)HY(tions)YH( is a C++ class provided by the XSD runtime that corre)HY(sponds)YH( to built-in XML Schema type )SM(string)ES(. The )SM(xml_schema::string)ES( is based on )SM(std::string)ES( and can be used as such. Simi)HY(larly)YH(, the )SM(sequence)ES( class template that is used in the )SM(name_sequence)ES( type defi)HY(ni)HY(tion)YH( is based on and has the same inter)HY(face)YH( as )SM(std::vector)ES(. The mapping between the built-in XML Schema types and C++ types is described in more detail in )0 27 1 A(Section 4.5, "Mapping for the Built-in XML Schema Types")27 0 TN TL()Ec /AF f D(. The )SM(hello_t)ES( class also includes a construc)HY(tor)YH( with an initial)HY(izer)YH( for the required )SM(greet)HY(ing)YH()ES( element as its argu)HY(ment)YH(.)EP( )0 P(The )SM(hello)ES( over)HY(loaded)YH( global func)HY(tions)YH( corre)HY(spond)YH( to the )SM(hello)ES( global element in XML Schema. A global element in XML Schema is a valid docu)HY(ment)YH( root. By default XSD gener)HY(ated)YH( a set of parsing func)HY(tions)YH( for each global element defined in XML Schema \201this can be over)HY(rid)HY(den)YH( with the )SM(--root-element-*)ES( options\202. For more infor)HY(ma)HY(tion)YH( on parsing func)HY(tions)YH( see )0 29 1 A(Chapter 5, "Parsing")29 0 TN TL()Ec /AF f D(.)EP( )0 2 9 H(2.3)WB 44 Sn()WB 12 Sn( Imple)HY(ment)HY(ing)YH( Appli)HY(ca)HY(tion)YH( Logic)EA()EH( )0 P(At this point we have all the parts we need to do some)HY(thing)YH( useful with the infor)HY(ma)HY(tion)YH( stored in our XML docu)HY(ment)YH(: )EP( ) 25 62 PR(#include #include "hello.hxx" using namespace std; int main \201int argc, char* argv[]\202 { try { auto_ptr h \201hello \201argv[1]\202\202; for \201hello_t::name_const_iterator i \201h->name \201\202.begin \201\202\202; i != h->name \201\202.end \201\202; ++i\202 { cerr << h->greeting \201\202 << ", " << *i << "!" << endl; } } catch \201const xml_schema::exception& e\202 { cerr << e << endl; return 1; } })RP( )0 P(The first part of our appli)HY(ca)HY(tion)YH( calls one of the parsing func)HY(tions)YH( to parser an XML file spec)HY(i)HY(fied)YH( in the command line. We then use the returned object model to iterate over names and print a greet)HY(ing)YH( line for each of them. Finally, we catch and print the )SM(xml_schema::excep)HY(tion)YH()ES( excep)HY(tion)YH( in case some)HY(thing)YH( goes wrong. This excep)HY(tion)YH( is the root of the excep)HY(tion)YH( hier)HY(ar)HY(chy)YH( used by the XSD-gener)HY(ated)YH( code. )EP( )0 2 10 H(2.4)WB 45 Sn()WB 13 Sn( Compil)HY(ing)YH( and Running)EA()EH( )0 P(After saving our appli)HY(ca)HY(tion)YH( from the previ)HY(ous)YH( section in )SM(driver.cxx)ES(, we are ready to compile our first program and run it on the test XML docu)HY(ment)YH(. On a UNIX system this can be done with the follow)HY(ing)YH( commands: )EP( ) 6 43 PR($ c++ -I.../libxsd -c driver.cxx hello.cxx $ c++ -o driver driver.o hello.o -lxerces-c $ ./driver hello.xml Hello, sun! Hello, moon! Hello, world!)RP( )0 P(Here )SM(.../libxsd)ES( repre)HY(sents)YH( the path to the )SM(libxsd)ES( direc)HY(tory)YH( in the XSD distri)HY(bu)HY(tion)YH(. Note also that we are required to link our appli)HY(ca)HY(tion)YH( with the Xerces-C++ library because the gener)HY(ated)YH( code uses it as the under)HY(ly)HY(ing)YH( XML parser.)EP( )0 2 11 H(2.5)WB 46 Sn()WB 14 Sn( Adding Seri)HY(al)HY(iza)HY(tion)YH()EA()EH( )0 P(While parsing and access)HY(ing)YH( the XML data may be every)HY(thing)YH( you need, there are appli)HY(ca)HY(tions)YH( that require creat)HY(ing)YH( new or modi)HY(fy)HY(ing)YH( exist)HY(ing)YH( XML docu)HY(ments)YH(. By default XSD does not produce seri)HY(al)HY(iza)HY(tion)YH( code. We will need to request it with the )SM(--gener)HY(ate)YH(-seri)HY(al)HY(iza)HY(tion)YH()ES( options:)EP( ) 1 49 PR($ xsd cxx-tree --generate-serialization hello.xsd)RP( )0 P(If we now examine the gener)HY(ated)YH( )SM(hello.hxx)ES( file, we will find a set of over)HY(loaded)YH( seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH(, includ)HY(ing)YH( the follow)HY(ing)YH( version:)EP( ) 5 45 PR(void hello \201std::ostream&, const hello_t&, const xml_schema::namespace_infomap& = xml_schema::namespace_infomap \201\202\202; )RP( )0 P(Just like with parsing func)HY(tions)YH(, XSD gener)HY(ates)YH( seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH( for each global element unless instructed other)HY(wise)YH( with one of the )SM(--root-element-*)ES( options. For more infor)HY(ma)HY(tion)YH( on seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH( see )0 32 1 A(Chapter 6, "Seri)HY(al)HY(iza)HY(tion)YH(")32 0 TN TL()Ec /AF f D(.)EP( )0 P(We first examine an appli)HY(ca)HY(tion)YH( that modi)HY(fies)YH( an exist)HY(ing)YH( object model and seri)HY(al)HY(izes)YH( it back to XML:)EP( ) 34 50 PR(#include #include "hello.hxx" using namespace std; int main \201int argc, char* argv[]\202 { try { auto_ptr h \201hello \201argv[1]\202\202; // Change the greeting phrase. // h->greeting \201"Hi"\202; // Add another entry to the name sequence. // h->name \201\202.push_back \201"mars"\202; // Serialize the modified object model to XML. // xml_schema::namespace_infomap map; map[""].name = ""; map[""].schema = "hello.xsd"; hello \201cout, *h, map\202; } catch \201const xml_schema::exception& e\202 { cerr << e << endl;)WR( return 1; } })RP( )0 P(First, our appli)HY(ca)HY(tion)YH( parses an XML docu)HY(ment)YH( and obtains its object model as in the previ)HY(ous)YH( example. Then it changes the greet)HY(ing)YH( string and adds another entry to the list of names. Finally, it seri)HY(al)HY(izes)YH( the object model back to XML by calling the seri)HY(al)HY(iza)HY(tion)YH( func)HY(tion)YH(.)EP( )0 P(The first argu)HY(ment)YH( we pass to the seri)HY(al)HY(iza)HY(tion)YH( func)HY(tion)YH( is )SM(cout)ES( which results in the XML being written to the stan)HY(dard)YH( output for us to inspect. We could have also written the result to a file or memory buffer by creat)HY(ing)YH( an instance of )SM(std::ofstream)ES( or )SM(std::ostringstream)ES( and passing it instead of )SM(cout)ES(. The second argu)HY(ment)YH( is the object model we want to seri)HY(al)HY(ize)YH(. The final argu)HY(ment)YH( is an optional names)HY(pace)YH( infor)HY(ma)HY(tion)YH( map for our vocab)HY(u)HY(lary)YH(. It captures infor)HY(ma)HY(tion)YH( such as names)HY(paces)YH(, names)HY(pace)YH( prefixes to which they should be mapped, and schemas asso)HY(ci)HY(ated)YH( with these names)HY(paces)YH(. If we don't provide this argu)HY(ment)YH( then generic names)HY(pace)YH( prefixes \201)SM(p1)ES(, )SM(p2)ES(, etc.\202 will be auto)HY(mat)HY(i)HY(cally)YH( assigned to XML names)HY(paces)YH( and no schema infor)HY(ma)HY(tion)YH( will be added to the result)HY(ing)YH( docu)HY(ment)YH( \201see )0 32 1 A(Chapter 6, "Seri)HY(al)HY(iza)HY(tion)YH(")32 0 TN TL()Ec /AF f D( for details\202. In our case, the prefix \201map key\202 and names)HY(pace)YH( name are empty because our vocab)HY(u)HY(lary)YH( does not use XML names)HY(paces)YH(.)EP( )0 P(If we now compile and run this appli)HY(ca)HY(tion)YH( we will see the output as shown in the follow)HY(ing)YH( listing:)EP( ) 12 60 PR( Hi sun moon world mars )RP( )0 P(We can also create and seri)HY(al)HY(ize)YH( an object model from scratch as shown in the follow)HY(ing)YH( example:)EP( ) 33 43 PR(#include #include #include "hello.hxx" using namespace std; int main \201int argc, char* argv[]\202 { try { hello_t h \201"Hi"\202; hello_t::name_sequence& ns \201h.name \201\202\202; ns.push_back \201"Jane"\202; ns.push_back \201"John"\202; // Serialize the object model to XML. // xml_schema::namespace_infomap map; map[""].name = ""; map[""].schema = "hello.xsd"; std::ofstream ofs \201argv[1]\202; hello \201ofs, h, map\202; } catch \201const xml_schema::exception& e\202 { cerr << e << endl; return 1;)WR( } })RP( )0 P(In this example we used the gener)HY(ated)YH( construc)HY(tor)YH( to create an instance of type )SM(hello_t)ES(. To reduce typing, we obtained a refer)HY(ence)YH( to the name sequence which we then used to add a few names. The seri)HY(al)HY(iza)HY(tion)YH( part is iden)HY(ti)HY(cal)YH( to the previ)HY(ous)YH( example except this time we are writing to a file. If we compile and run this program, it produces the follow)HY(ing)YH( XML file:)EP( ) 10 60 PR( Hi Jane John )RP( )0 2 12 H(2.6)WB 47 Sn()WB 15 Sn( Select)HY(ing)YH( Naming Conven)HY(tion)YH()EA()EH( )0 P(By default XSD uses the so-called K&R \201Kernighan and Ritchie\202 iden)HY(ti)HY(fier)YH( naming conven)HY(tion)YH( in the gener)HY(ated)YH( code. In this conven)HY(tion)YH( both type and func)HY(tion)YH( names are in lower case and words are sepa)HY(rated)YH( by under)HY(scores)YH(. If your appli)HY(ca)HY(tion)YH( code or schemas use a differ)HY(ent)YH( nota)HY(tion)YH(, you may want to change the naming conven)HY(tion)YH( used in the gener)HY(ated)YH( code for consis)HY(tency)YH(. XSD supports a set of widely-used naming conven)HY(tions)YH( that you can select with the )SM(--type-naming)ES( and )SM(--func)HY(tion)YH(-naming)ES( options. You can also further refine one of the prede)HY(fined)YH( conven)HY(tions)YH( or create a completely custom naming scheme by using the )SM(--*-regex)ES( options.)EP( )0 P(As an example, let's assume that our "Hello World" appli)HY(ca)HY(tion)YH( uses the so-called upper-camel-case naming conven)HY(tion)YH( for types \201that is, each word in a type name is capi)HY(tal)HY(ized)YH(\202 and the K&R conven)HY(tion)YH( for func)HY(tion)YH( names. Since K&R is the default conven)HY(tion)YH( for both type and func)HY(tion)YH( names, we only need to change the type naming scheme:)EP( ) 1 42 PR($ xsd cxx-tree --type-naming ucc hello.xsd)RP( )0 P(The )SM(ucc)ES( argu)HY(ment)YH( to the )SM(--type-naming)ES( options stands for upper-camel-case. If we now examine the gener)HY(ated)YH( )SM(hello.hxx)ES(, we will see the follow)HY(ing)YH( changes compared to the decla)HY(ra)HY(tions)YH( shown in the previ)HY(ous)YH( sections:)EP( ) 45 57 PR(class Hello_t { public: // greeting // typedef xml_schema::String GreetingType; const GreetingType& greeting \201\202 const; GreetingType& greeting \201\202; void greeting \201const GreetingType& x\202; // name // typedef xml_schema::String NameType; typedef xsd::sequence NameSequence; typedef NameSequence::iterator NameIterator; typedef NameSequence::const_iterator NameConstIterator; const NameSequence& name \201\202 const; NameSequence& name \201\202; void name \201const NameSequence& s\202;)WR( // Constructor. // Hello_t \201const GreetingType&\202; ... }; std::auto_ptr hello \201const std::string& uri\202; std::auto_ptr hello \201std::istream&\202;)RP( )0 P(Notice that the type names in the )SM(xml_schema)ES( names)HY(pace)YH(, for example )SM(xml_schema::String)ES(, now also use the upper-camel-case naming conven)HY(tion)YH(. The only thing that we may be unhappy about in the above code is the )SM(_t)ES( suffix in )SM(Hello_t)ES(. If we are not in a posi)HY(tion)YH( to change the schema, we can )EM(touch-up)ES( the )SM(ucc)ES( conven)HY(tion)YH( with a custom trans)HY(la)HY(tion)YH( rule using the )SM(--type-regex)ES( option:)EP( ) 1 72 PR($ xsd cxx-tree --type-naming ucc --type-regex '/ \201.+\202_t/\200u$1/' hello.xsd)RP( )0 P(This results in the follow)HY(ing)YH( changes to the gener)HY(ated)YH( code:)EP( ) 45 57 PR(class Hello { public: // greeting // typedef xml_schema::String GreetingType; const GreetingType& greeting \201\202 const; GreetingType& greeting \201\202; void greeting \201const GreetingType& x\202; // name // typedef xml_schema::String NameType; typedef xsd::sequence NameSequence; typedef NameSequence::iterator NameIterator; typedef NameSequence::const_iterator NameConstIterator; const NameSequence& name \201\202 const; NameSequence& name \201\202; void name \201const NameSequence& s\202;)WR( // Constructor. // Hello \201const GreetingType&\202; ... }; std::auto_ptr hello \201const std::string& uri\202; std::auto_ptr hello \201std::istream&\202;)RP( )0 P(For more detailed infor)HY(ma)HY(tion)YH( on the )SM(--type-naming)ES(, )SM(--func)HY(tion)YH(-naming)ES(, )SM(--type-regex)ES(, and other )SM(--*-regex)ES( options refer to the NAMING CONVEN)HY(TION)YH( section in the )R5 2 A(XSD Compiler Command Line Manual)EA(.)EP( )0 2 13 H(2.7)WB 48 Sn()WB 16 Sn( Gener)HY(at)HY(ing)YH( Docu)HY(men)HY(ta)HY(tion)YH()EA()EH( )0 P(While our object model is quite simple, real-world vocab)HY(u)HY(lar)HY(ies)YH( can be quite complex with hundreds of types, elements, and attributes. For such vocab)HY(u)HY(lar)HY(ies)YH( figur)HY(ing)YH( out which types provide which member func)HY(tions)YH( by study)HY(ing)YH( the gener)HY(ated)YH( source code or schemas can be a daunt)HY(ing)YH( task. To provide appli)HY(ca)HY(tion)YH( devel)HY(op)HY(ers)YH( with a more acces)HY(si)HY(ble)YH( way of under)HY(stand)HY(ing)YH( the gener)HY(ated)YH( object models, the XSD compiler can be instructed to produce source code with docu)HY(men)HY(ta)HY(tion)YH( comments in the Doxygen format. Then the source code can be processed with the )R9 2 A(Doxygen)EA( docu)HY(men)HY(ta)HY(tion)YH( system to extract this infor)HY(ma)HY(tion)YH( and produce docu)HY(men)HY(ta)HY(tion)YH( in various formats. )EP( )0 P(In this section we will see how to gener)HY(ate)YH( docu)HY(men)HY(ta)HY(tion)YH( for our "Hello World" vocab)HY(u)HY(lary)YH(. To show)HY(case)YH( the full power of the XSD docu)HY(men)HY(ta)HY(tion)YH( facil)HY(i)HY(ties)YH(, we will first docu)HY(ment)YH( our schema. The XSD compiler will then trans)HY(fer)YH( this infor)HY(ma)HY(tion)YH( from the schema to the gener)HY(ated)YH( code and then to the object model docu)HY(men)HY(ta)HY(tion)YH(. Note that the docu)HY(men)HY(ta)HY(tion)YH( in the schema is not required for XSD to gener)HY(ate)YH( useful docu)HY(men)HY(ta)HY(tion)YH(. Below you will find our )SM(hello.xsd)ES( with added docu)HY(men)HY(ta)HY(tion)YH(:)EP( ) 43 69 PR( The hello_t type consists of a greeting phrase and a collection of names to which this greeting applies. The greeting element contains the greeting phrase for this hello object. The name elements contains names to be greeted. )WR( The hello element is a root of the Hello XML vocabulary. Every conforming document should start with this element. )RP( )0 P(The first step in obtain)HY(ing)YH( the docu)HY(men)HY(ta)HY(tion)YH( is to recom)HY(pile)YH( our schema with the )SM(--gener)HY(ate)YH(-doxygen)ES( option:)EP( ) 1 68 PR($ xsd cxx-tree --generate-serialization --generate-doxygen hello.xsd)RP( )0 P(Now the gener)HY(ated)YH( )SM(hello.hxx)ES( file contains comments in the Doxygen format. The next step is to process this file with the Doxygen docu)HY(men)HY(ta)HY(tion)YH( system. If your project does not use Doxygen then you first need to create a config)HY(u)HY(ra)HY(tion)YH( file for your project:)EP( ) 1 26 PR($ doxygen -g hello.doxygen)RP( )0 P(You only need to perform this step once. Now we can gener)HY(ate)YH( the docu)HY(men)HY(ta)HY(tion)YH( by execut)HY(ing)YH( the follow)HY(ing)YH( command in the direc)HY(tory)YH( with the gener)HY(ated)YH( source code:)EP( ) 1 23 PR($ doxygen hello.doxygen)RP( )0 P(While the gener)HY(ated)YH( docu)HY(men)HY(ta)HY(tion)YH( can be useful as is, we can go one step further and link \201using the Doxygen tags mech)HY(a)HY(nism)YH(\202 the docu)HY(men)HY(ta)HY(tion)YH( for our object model with the docu)HY(men)HY(ta)HY(tion)YH( for the XSD runtime library which defines C++ classes for the built-in XML Schema types. This way we can seam)HY(lessly)YH( browse between docu)HY(men)HY(ta)HY(tion)YH( for the )SM(hello_t)ES( class which is gener)HY(ated)YH( by the XSD compiler and the )SM(xml_schema::string)ES( class which is defined in the XSD runtime library. The Doxygen config)HY(u)HY(ra)HY(tion)YH( file for the XSD runtime is provided with the XSD distri)HY(bu)HY(tion)YH(.)EP( )0 P(You can view the result of the steps described in this section on the )R10 2 A(Hello Example Docu)HY(men)HY(ta)HY(tion)YH()EA( page.)EP( )0 1 14 H(3)WB 49 Sn()WB 17 Sn( Overall Mapping Config)HY(u)HY(ra)HY(tion)YH()EA()EH( )0 P(The C++/Tree mapping has a number of config)HY(u)HY(ra)HY(tion)YH( param)HY(e)HY(ters)YH( that deter)HY(mine)YH( the overall prop)HY(er)HY(ties)YH( and behav)HY(ior)YH( of the gener)HY(ated)YH( code. Config)HY(u)HY(ra)HY(tion)YH( param)HY(e)HY(ters)YH( are spec)HY(i)HY(fied)YH( with the XSD command line options. This chapter describes config)HY(u)HY(ra)HY(tion)YH( aspects that are most commonly encoun)HY(tered)YH( by appli)HY(ca)HY(tion)YH( devel)HY(op)HY(ers)YH(. These include: the char)HY(ac)HY(ter)YH( type that is used by the gener)HY(ated)YH( code, handling of vocab)HY(u)HY(lar)HY(ies)YH( that use XML Schema poly)HY(mor)HY(phism)YH(, XML Schema to C++ names)HY(pace)YH( mapping, and thread safety. For more ways to config)HY(ure)YH( the gener)HY(ated)YH( code refer to the )R5 2 A(XSD Compiler Command Line Manual)EA(. )EP( )0 2 15 H(3.1)WB 50 Sn()WB 18 Sn( Char)HY(ac)HY(ter)YH( Type and Encod)HY(ing)YH()EA()EH( )0 P(The C++/Tree mapping has built-in support for two char)HY(ac)HY(ter)YH( types: )SM(char)ES( and )SM(wchar_t)ES(. You can select the char)HY(ac)HY(ter)YH( type with the )SM(--char-type)ES( command line option. The default char)HY(ac)HY(ter)YH( type is )SM(char)ES(. The char)HY(ac)HY(ter)YH( type affects all string and string-based types that are used in the mapping. These include the string-based built-in XML Schema types, excep)HY(tion)YH( types, stream types, etc.)EP( )0 P(Another aspect of the mapping that depends on the char)HY(ac)HY(ter)YH( type is char)HY(ac)HY(ter)YH( encod)HY(ing)YH(. For the )SM(char)ES( char)HY(ac)HY(ter)YH( type the default encod)HY(ing)YH( is UTF-8. Other supported encod)HY(ings)YH( are ISO-8859-1, Xerces-C++ Local Code Page \201LPC\202, as well as custom encod)HY(ings)YH(. You can select which encod)HY(ing)YH( should be used in the object model with the )SM(--char-encod)HY(ing)YH()ES( command line option.)EP( )0 P(For the )SM(wchar_t)ES( char)HY(ac)HY(ter)YH( type the encod)HY(ing)YH( is auto)HY(mat)HY(i)HY(cally)YH( selected between UTF-16 and UTF-32/UCS-4 depend)HY(ing)YH( on the size of the )SM(wchar_t)ES( type. On some plat)HY(forms)YH( \201for example, Windows with Visual C++ and AIX with IBM XL C++\202 )SM(wchar_t)ES( is 2 bytes long. For these plat)HY(forms)YH( the encod)HY(ing)YH( is UTF-16. On other plat)HY(forms)YH( )SM(wchar_t)ES( is 4 bytes long and UTF-32/UCS-4 is used.)EP( )0 P(Note also that the char)HY(ac)HY(ter)YH( encod)HY(ing)YH( that is used in the object model is inde)HY(pen)HY(dent)YH( of the encod)HY(ings)YH( used in input and output XML. In fact, all three \201object mode, input XML, and output XML\202 can have differ)HY(ent)YH( encod)HY(ings)YH(.)EP( )0 2 16 H(3.2)WB 51 Sn()WB 19 Sn( Support for Poly)HY(mor)HY(phism)YH()EA()EH( )0 P(By default XSD gener)HY(ates)YH( non-poly)HY(mor)HY(phic)YH( code. If your vocab)HY(u)HY(lary)YH( uses XML Schema poly)HY(mor)HY(phism)YH( in the form of )SM(xsi:type)ES( and/or substi)HY(tu)HY(tion)YH( groups, then you will need to compile your schemas with the )SM(--gener)HY(ate)YH(-poly)HY(mor)HY(phic)YH()ES( option to produce poly)HY(mor)HY(phism)YH(-aware code. For more infor)HY(ma)HY(tion)YH( on working with poly)HY(mor)HY(phic)YH( object models, refer to )R11 2 A(Section 2.11, "Mapping for )SM(xsi:type)ES( and Substi)HY(tu)HY(tion)YH( Groups")EA( in the C++/Tree Mapping User Manual.)EP( )0 2 17 H(3.3)WB 52 Sn()WB 20 Sn( Names)HY(pace)YH( Mapping)EA()EH( )0 P(XSD maps XML names)HY(paces)YH( spec)HY(i)HY(fied)YH( in the )SM(target)HY(Names)HY(pace)YH()ES( attribute in XML Schema to one or more nested C++ names)HY(paces)YH(. By default, a names)HY(pace)YH( URI is mapped to a sequence of C++ names)HY(pace)YH( names by remov)HY(ing)YH( the proto)HY(col)YH( and host parts and split)HY(ting)YH( the rest into a sequence of names with )SM('/')ES( as the name sepa)HY(ra)HY(tor)YH(.)EP( )0 P(The default mapping of names)HY(pace)YH( URIs to C++ names)HY(paces)YH( can be altered using the )SM(--names)HY(pace)YH(-map)ES( and )SM(--names)HY(pace)YH(-regex)ES( compiler options. For example, to map names)HY(pace)YH( URI )SM(http://www.codesyn)HY(the)HY(sis)YH(.com/my)ES( to C++ names)HY(pace)YH( )SM(cs::my)ES(, we can use the follow)HY(ing)YH( option:)EP( ) 1 54 PR(--namespace-map http://www.codesynthesis.com/my=cs::my)RP( )0 P(A vocab)HY(u)HY(lary)YH( without a names)HY(pace)YH( is mapped to the global scope. This also can be altered with the above options by using an empty name for the XML names)HY(pace)YH(:)EP( ) 1 19 PR(--namespace-map =cs)RP( )0 2 18 H(3.4)WB 53 Sn()WB 21 Sn( Thread Safety)EA()EH( )0 P(XSD-gener)HY(ated)YH( code is thread-safe in the sense that you can use differ)HY(ent)YH( instan)HY(ti)HY(a)HY(tions)YH( of the object model in several threads concur)HY(rently)YH(. This is possi)HY(ble)YH( due to the gener)HY(ated)YH( code not relying on any writable global vari)HY(ables)YH(. If you need to share the same object between several threads then you will need to provide some form of synchro)HY(niza)HY(tion)YH(. One approach would be to use the gener)HY(ated)YH( code customiza)HY(tion)YH( mech)HY(a)HY(nisms)YH( to embed synchro)HY(niza)HY(tion)YH( prim)HY(i)HY(tives)YH( into the gener)HY(ated)YH( C++ classes. For more infor)HY(ma)HY(tion)YH( on gener)HY(ated)YH( code customiza)HY(tion)YH( refer to the )R2 2 A(C++/Tree Mapping Customiza)HY(tion)YH( Guide)EA(.)EP( )0 P(If you also would like to call parsing and/or seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH( from several threads poten)HY(tially)YH( concur)HY(rently)YH(, then you will need to make sure the Xerces-C++ runtime is initial)HY(ized)YH( and termi)HY(nated)YH( only once. The easiest way to do this is to initial)HY(ize)YH(/termi)HY(nate)YH( Xerces-C++ from )SM(main\201\202)ES( when there are no threads yet/anymore:)EP( ) 13 56 PR(#include int main \201\202 { xercesc::XMLPlatformUtils::Initialize \201\202; { // Start/terminate threads and parse/serialize here. } xercesc::XMLPlatformUtils::Terminate \201\202; })RP( )0 P(Because you initial)HY(ize)YH( the Xerces-C++ runtime your)HY(self)YH( you should also pass the )SM(xml_schema::flags::dont_initial)HY(ize)YH()ES( flag to parsing and seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH(. See )0 29 1 A(Chapter 5, "Parsing")29 0 TN TL()Ec /AF f D( and )0 32 1 A(Chapter 6, "Seri)HY(al)HY(iza)HY(tion)YH(")32 0 TN TL()Ec /AF f D( for more infor)HY(ma)HY(tion)YH(.)EP( )0 1 19 H(4)WB 54 Sn()WB 22 Sn( Working with Object Models)EA()EH( )0 P(As we have seen in the previ)HY(ous)YH( chap)HY(ters)YH(, the XSD compiler gener)HY(ates)YH( a C++ class for each type defined in XML Schema. Together these classes consti)HY(tute)YH( an object model for an XML vocab)HY(u)HY(lary)YH(. In this chapter we will take a closer look at differ)HY(ent)YH( elements that comprise an object model class as well as how to create, access, and modify object models.)EP( )0 P(In this and subse)HY(quent)YH( chap)HY(ters)YH( we will use the follow)HY(ing)YH( schema that describes a collec)HY(tion)YH( of person records. We save it in )SM(people.xsd)ES(:)EP( ) 30 71 PR( )RP( )0 P(A sample XML instance to go along with this schema is saved in )SM(people.xml)ES(:)EP( ) 20 61 PR( John Doe male 32 Jane Mary Doe female 28 )RP( )0 P(Compil)HY(ing)YH( )SM(people.xsd)ES( with the XSD compiler results in three gener)HY(ated)YH( C++ classes: )SM(gender_t)ES(, )SM(person_t)ES(, and )SM(people_t)ES(. The )SM(gender_t)ES( class is modelled after the C++ )SM(enum)ES( type. Its defi)HY(ni)HY(tion)YH( is presented below:)EP( ) 17 41 PR(class gender_t: public xml_schema::string { public: enum value { male, female }; gender_t \201value\202; gender_t \201const xml_schema::string&\202; gender_t& operator= \201value\202; operator value \201\202 const; };)RP( )0 P(The follow)HY(ing)YH( listing shows how we can use this type:)EP( ) 19 41 PR(gender_t m \201gender_t::male\202; gender_t f \201"female"\202; if \201m == "female" || f == gender_t::male\202 { ... } switch \201m\202 { case gender_t::male: { ... } case gender_t::female: { ... } })RP( )0 P(The other two classes will be exam)HY(ined)YH( in detail in the subse)HY(quent)YH( sections.)EP( )0 2 20 H(4.1)WB 55 Sn()WB 23 Sn( Attribute and Element Cardi)HY(nal)HY(i)HY(ties)YH()EA()EH( )0 P(As we have seen in the previ)HY(ous)YH( chap)HY(ters)YH(, XSD gener)HY(ates)YH( a differ)HY(ent)YH( set of type defi)HY(ni)HY(tions)YH( and member func)HY(tions)YH( for elements with differ)HY(ent)YH( cardi)HY(nal)HY(i)HY(ties)YH(. The C++/Tree mapping divides all the possi)HY(ble)YH( element and attribute cardi)HY(nal)HY(i)HY(ties)YH( into three cardi)HY(nal)HY(ity)YH( classes: )EM(one)ES(, )EM(optional)ES(, and )EM(sequence)ES(.)EP( )0 P(The )EM(one)ES( cardi)HY(nal)HY(ity)YH( class covers all elements that should occur exactly once as well as required attributes. In our example, the )SM(first-name)ES(, )SM(last-name)ES(, )SM(gender)ES(, and )SM(age)ES( elements as well as the )SM(id)ES( attribute belong to this cardi)HY(nal)HY(ity)YH( class. The follow)HY(ing)YH( code frag)HY(ment)YH( shows type defi)HY(ni)HY(tions)YH( as well as the acces)HY(sor)YH( and modi)HY(fier)YH( func)HY(tions)YH( that are gener)HY(ated)YH( for the )SM(gender)ES( element in the )SM(person_t)ES( class:)EP( ) 15 31 PR(class person_t { // gender // typedef gender_t gender_type; const gender_type& gender \201\202 const; gender_type& gender \201\202; void gender \201const gender_type&\202; };)RP( )0 P(The )SM(gender_type)ES( type is an alias for the element's type. The first two acces)HY(sor)YH( func)HY(tions)YH( return read-only \201constant\202 and read-write refer)HY(ences)YH( to the element's value, respec)HY(tively)YH(. The modi)HY(fier)YH( func)HY(tion)YH( sets the new value for the element.)EP( )0 P(The )EM(optional)ES( cardi)HY(nal)HY(ity)YH( class covers all elements that can occur zero or one time as well as optional attributes. In our example, the )SM(middle-name)ES( element belongs to this cardi)HY(nal)HY(ity)YH( class. The follow)HY(ing)YH( code frag)HY(ment)YH( shows the type defi)HY(ni)HY(tions)YH( as well as the acces)HY(sor)YH( and modi)HY(fier)YH( func)HY(tions)YH( that are gener)HY(ated)YH( for this element in the )SM(person_t)ES( class:)EP( ) 19 63 PR(class person_t { // middle-name // typedef xml_schema::string middle_name_type; typedef xsd::optional middle_name_optional; const middle_name_optional& middle_name \201\202 const; middle_name_optional& middle_name \201\202; void middle_name \201const middle_name_type&\202; void middle_name \201const middle_name_optional&\202; };)RP( )0 P(As with the )SM(gender)ES( element, )SM(middle_name_type)ES( is an alias for the element's type. The )SM(middle_name_optional)ES( type is a container for the element's optional value. It can be queried for the pres)HY(ence)YH( of the value using the )SM(present\201\202)ES( func)HY(tion)YH(. The value itself can be retrieved using the )SM(get\201\202)ES( acces)HY(sor)YH( and set using the )SM(set\201\202)ES( modi)HY(fier)YH(. The container can be reverted to the value not present state with the call to the )SM(reset\201\202)ES( func)HY(tion)YH(. The follow)HY(ing)YH( example shows how we can use this container:)EP( ) 9 42 PR(person_t::middle_name_optional n \201"John"\202; if \201n.preset \201\202\202 { cout << n.get \201\202 << endl; } n.set \201"Jane"\202; n.reset \201\202;)RP( )0 P(Unlike the )EM(one)ES( cardi)HY(nal)HY(ity)YH( class, the acces)HY(sor)YH( func)HY(tions)YH( for the )EM(optional)ES( class return read-only \201constant\202 and read-write refer)HY(ences)YH( to the container instead of the element's value directly. The modi)HY(fier)YH( func)HY(tions)YH( set the new value for the element.)EP( )0 P(Finally, the )EM(sequence)ES( cardi)HY(nal)HY(ity)YH( class covers all elements that can occur more than once. In our example, the )SM(person)ES( element in the )SM(people_t)ES( type belongs to this cardi)HY(nal)HY(ity)YH( class. The follow)HY(ing)YH( code frag)HY(ment)YH( shows the type defi)HY(ni)HY(tions)YH( as well as the acces)HY(sor)YH( and modi)HY(fier)YH( func)HY(tions)YH( that are gener)HY(ated)YH( for this element in the )SM(people_t)ES( class:)EP( ) 18 64 PR(class people_t { // person // typedef person_t person_type; typedef xsd::sequence person_sequence; typedef person_sequence::iterator person_iterator; typedef person_sequence::const_iterator person_const_iterator; const person_sequence& person \201\202 const; person_sequence& person \201\202; void person \201const person_sequence&\202; };)RP( )0 P(Iden)HY(ti)HY(cal)YH( to the other cardi)HY(nal)HY(ity)YH( classes, )SM(person_type)ES( is an alias for the element's type. The )SM(person_sequence)ES( type is a sequence container for the element's values. It is based on and has the same inter)HY(face)YH( as )SM(std::vector)ES( and there)HY(fore)YH( can be used in similar ways. The )SM(person_iter)HY(a)HY(tor)YH()ES( and )SM(person_const_iter)HY(a)HY(tor)YH()ES( types are read-only \201constant\202 and read-write iter)HY(a)HY(tors)YH( for the )SM(person_sequence)ES( container.)EP( )0 P(Similar to the )EM(optional)ES( cardi)HY(nal)HY(ity)YH( class, the acces)HY(sor)YH( func)HY(tions)YH( for the )EM(sequence)ES( class return read-only \201constant\202 and read-write refer)HY(ences)YH( to the sequence container. The modi)HY(fier)YH( func)HY(tions)YH( copies the entries from the passed sequence.)EP( )0 P(For complex schemas with many levels of nested compos)HY(i)HY(tors)YH( \201)SM(xs:choice)ES( and )SM(xs:sequence)ES(\202 it can be hard to deduce the cardi)HY(nal)HY(ity)YH( class of a partic)HY(u)HY(lar)YH( element. The gener)HY(ated)YH( Doxygen docu)HY(men)HY(ta)HY(tion)YH( can greatly help with this task. For each element and attribute the docu)HY(men)HY(ta)HY(tion)YH( clearly iden)HY(ti)HY(fies)YH( its cardi)HY(nal)HY(ity)YH( class. Alter)HY(na)HY(tively)YH(, you can study the gener)HY(ated)YH( header files to find out the cardi)HY(nal)HY(ity)YH( class of a partic)HY(u)HY(lar)YH( attribute or element. In the next sections we will examine how to access and modify infor)HY(ma)HY(tion)YH( stored in an object model using acces)HY(sor)YH( and modi)HY(fier)YH( func)HY(tions)YH( described in this section.)EP( )0 2 21 H(4.2)WB 56 Sn()WB 24 Sn( Access)HY(ing)YH( the Object Model)EA()EH( )0 P(In this section we will learn how to get to the infor)HY(ma)HY(tion)YH( stored in the object model for our person records vocab)HY(u)HY(lary)YH(. The follow)HY(ing)YH( appli)HY(ca)HY(tion)YH( accesses and prints the contents of the )SM(people.xml)ES( file:)EP( ) 36 70 PR(#include #include "people.hxx" using namespace std; int main \201\202 { auto_ptr ppl \201people \201"people.xml"\202\202; // Iterate over individual person records. // people_t::person_sequence& ps \201ppl->person \201\202\202; for \201people_t::person_iterator i \201ps.begin \201\202\202; i != ps.end \201\202; ++i\202 { person_t& p \201*i\202; // Print names: first-name and last-name are required elements, // middle-name is optional. // cout << "name: " << p.first_name \201\202 << " "; if \201p.middle_name \201\202.present \201\202\202 cout << p.middle_name \201\202.get \201\202 << " "; cout << p.last_name \201\202 << endl; // Print gender, age, and id which are all required. // cout << "gender: " << p.gender \201\202 << endl)WR( << "age: " << p.age \201\202 << endl << "id: " << p.id \201\202 << endl << endl; } })RP( )0 P(This code shows common patterns of access)HY(ing)YH( elements and attributes with differ)HY(ent)YH( cardi)HY(nal)HY(ity)YH( classes. For the sequence element \201)SM(person)ES( in )SM(people_t)ES(\202 we first obtain a refer)HY(ence)YH( to the container and then iterate over indi)HY(vid)HY(ual)YH( records. The values of elements and attributes with the )EM(one)ES( cardi)HY(nal)HY(ity)YH( class \201)SM(first-name)ES(, )SM(last-name)ES(, )SM(gender)ES(, )SM(age)ES(, and )SM(id)ES(\202 can be obtained directly by calling the corre)HY(spond)HY(ing)YH( acces)HY(sor)YH( func)HY(tions)YH(. For the optional element )SM(middle-name)ES( we first check if the value is present and only then call )SM(get\201\202)ES( to retrieve it.)EP( )0 P(Note that when we want to reduce typing by creat)HY(ing)YH( a vari)HY(able)YH( repre)HY(sent)HY(ing)YH( a frag)HY(ment)YH( of the object model that we are currently working with \201)SM(ps)ES( and )SM(p)ES( above\202, we obtain a refer)HY(ence)YH( to that frag)HY(ment)YH( instead of making a poten)HY(tially)YH( expen)HY(sive)YH( copy. This is gener)HY(ally)YH( a good rule to follow when creat)HY(ing)YH( high-perfor)HY(mance)YH( appli)HY(ca)HY(tions)YH(.)EP( )0 P(If we run the above appli)HY(ca)HY(tion)YH( on our sample )SM(people.xml)ES(, the output looks as follows:)EP( ) 9 21 PR(name: John Doe gender: male age: 32 id: 1 name: Jane Mary Doe gender: female age: 28 id: 2)RP( )0 2 22 H(4.3)WB 57 Sn()WB 25 Sn( Modi)HY(fy)HY(ing)YH( the Object Model)EA()EH( )0 P(In this section we will learn how to modify the infor)HY(ma)HY(tion)YH( stored in the object model for our person records vocab)HY(u)HY(lary)YH(. The follow)HY(ing)YH( appli)HY(ca)HY(tion)YH( changes the contents of the )SM(people.xml)ES( file:)EP( ) 43 70 PR(#include #include "people.hxx" using namespace std; int main \201\202 { auto_ptr ppl \201people \201"people.xml"\202\202; // Iterate over individual person records and increment // the age. // people_t::person_sequence& ps \201ppl->person \201\202\202; for \201people_t::person_iterator i \201ps.begin \201\202\202; i != ps.end \201\202; ++i\202 { // Alternative way: i->age \201\202++; // i->age \201i->age \201\202 + 1\202; } // Add middle-name to the first record and remove it from // the second. // person_t& john \201ps[0]\202; person_t& jane \201ps[1]\202; john.middle_name \201"Mary"\202; jane.middle_name \201\202.reset \201\202; )WR( // Add another John record. // ps.push_back \201john\202; // Serialize the modified object model to XML. // xml_schema::namespace_infomap map; map[""].name = ""; map[""].schema = "people.xsd"; people \201cout, *ppl, map\202; })RP( )0 P(The first modi)HY(fi)HY(ca)HY(tion)YH( the above appli)HY(ca)HY(tion)YH( performs is iter)HY(at)HY(ing)YH( over person records and incre)HY(ment)HY(ing)YH( the age value. This code frag)HY(ment)YH( shows how to modify the value of a required attribute or element. The next modi)HY(fi)HY(ca)HY(tion)YH( shows how to set a new value for the optional )SM(middle-name)ES( element as well as clear its value. Finally the example adds a copy of the John Doe record to the )SM(person)ES( element sequence.)EP( )0 P(Note that in this case using refer)HY(ences)YH( for the )SM(ps)ES(, )SM(john)ES(, and )SM(jane)ES( vari)HY(ables)YH( is no longer a perfor)HY(mance)YH( improve)HY(ment)YH( but a require)HY(ment)YH( for the appli)HY(ca)HY(tion)YH( to func)HY(tion)YH( correctly. If we hadn't used refer)HY(ences)YH(, all our changes would have been made on copies without affect)HY(ing)YH( the object model.)EP( )0 P(If we run the above appli)HY(ca)HY(tion)YH( on our sample )SM(people.xml)ES(, the output looks as follows:)EP( ) 28 61 PR( John Mary Doe male 33 Jane Doe female 29 John Mary Doe male 33 )RP( )0 2 23 H(4.4)WB 58 Sn()WB 26 Sn( Creat)HY(ing)YH( the Object Model from Scratch)EA()EH( )0 P(In this section we will learn how to create a new object model for our person records vocab)HY(u)HY(lary)YH(. The follow)HY(ing)YH( appli)HY(ca)HY(tion)YH( recre)HY(ates)YH( the content of the orig)HY(i)HY(nal)YH( )SM(people.xml)ES( file:)EP( ) 42 48 PR(#include #include "people.hxx" using namespace std; int main \201\202 { people_t ppl; people_t::person_sequence& ps \201ppl.person \201\202\202; // Add the John Doe record. // ps.push_back \201 person_t \201"John", // first-name "Doe", // last-name gender_t::male, // gender 32, // age 1\202\202; // Add the Jane Doe record. // ps.push_back \201 person_t \201"Jane", // first-name "Doe", // last-name gender_t::female, // gender 28, // age 2\202\202; // id // Add middle name to the Jane Doe record. //)WR( person_t& jane \201ps.back \201\202\202; jane.middle_name \201"Mary"\202; // Serialize the object model to XML. // xml_schema::namespace_infomap map; map[""].name = ""; map[""].schema = "people.xsd"; people \201cout, ppl, map\202; })RP( )0 P(The only new part in the above appli)HY(ca)HY(tion)YH( is the calls to the )SM(people_t)ES( and )SM(person_t)ES( construc)HY(tors)YH(. As a general rule, for each C++ class XSD gener)HY(ates)YH( a construc)HY(tor)YH( with initial)HY(iz)HY(ers)YH( for each element and attribute belong)HY(ing)YH( to the )EM(one)ES( cardi)HY(nal)HY(ity)YH( class. For our vocab)HY(u)HY(lary)YH(, the follow)HY(ing)YH( construc)HY(tors)YH( are gener)HY(ated)YH(:)EP( ) 13 35 PR(class person_t { person_t \201const first_name_type&, const last_name_type&, const gender_type&, const age_type&, const id_type&\202; }; class people_t { people_t \201\202; };)RP( )0 P(Note also that we set the )SM(middle-name)ES( element on the Jane Doe record by obtain)HY(ing)YH( a refer)HY(ence)YH( to that record in the object model and setting the )SM(middle-name)ES( value on it. This is a general rule that should be followed in order to obtain the best perfor)HY(mance)YH(: if possi)HY(ble)YH(, direct modi)HY(fi)HY(ca)HY(tions)YH( to the object model should be preferred to modi)HY(fi)HY(ca)HY(tions)YH( on tempo)HY(raries)YH( with subse)HY(quent)YH( copying. The follow)HY(ing)YH( code frag)HY(ment)YH( shows a seman)HY(ti)HY(cally)YH( equiv)HY(a)HY(lent)YH( but slightly slower version:)EP( ) 11 46 PR(// Add the Jane Doe record. // person_t jane \201"Jane", // first-name "Doe", // last-name gender_t::female, // gender 28, // age 2\202; // id jane.middle_name \201"Mary"\202; ps.push_back \201jane\202;)RP( )0 P(We can also go one step further to reduce copying and improve the perfor)HY(mance)YH( of our appli)HY(ca)HY(tion)YH( by using the non-copying )SM(push_back\201\202)ES( func)HY(tion)YH( which assumes owner)HY(ship)YH( of the passed objects:)EP( ) 19 47 PR(// Add the John Doe record. // auto_ptr john_p \201 new person_t \201"John", // first-name "Doe", // last-name gender_t::male, // gender 32, // age 1\202\202; ps.push_back \201john_p\202; // assumes ownership // Add the Jane Doe record. // auto_ptr jane_p \201 new person_t \201"Jane", // first-name "Doe", // last-name gender_t::female, // gender 28, // age 2\202\202; // id ps.push_back \201jane_p\202; // assumes ownership)RP( )0 P(For more infor)HY(ma)HY(tion)YH( on the non-copying modi)HY(fier)YH( func)HY(tions)YH( refer to )R12 2 A(Section 2.8, "Mapping for Local Elements and Attributes")EA( in the C++/Tree Mapping User Manual. The above appli)HY(ca)HY(tion)YH( produces the follow)HY(ing)YH( output:)EP( ) 20 61 PR( John Doe male 32 Jane Mary Doe female 28 )RP( )0 2 24 H(4.5)WB 59 Sn()WB 27 Sn( Mapping for the Built-in XML Schema Types)EA()EH( )0 P(Our person record vocab)HY(u)HY(lary)YH( uses several built-in XML Schema types: )SM(string)ES(, )SM(short)ES(, and )SM(unsignedInt)ES(. Until now we haven't talked about the mapping of built-in XML Schema types to C++ types and how to work with them. This section provides an overview of the built-in types. For more detailed infor)HY(ma)HY(tion)YH( refer to )R13 2 A(Section 2.5, "Mapping for Built-in Data Types")EA( in the C++/Tree Mapping User Manual.)EP( )0 P(In XML Schema, built-in types are defined in the XML Schema names)HY(pace)YH(. By default, the C++/Tree mapping maps this names)HY(pace)YH( to C++ names)HY(pace)YH( )SM(xml_schema)ES( \201this mapping can be altered with the )SM(--names)HY(pace)YH(-map)ES( option\202. The follow)HY(ing)YH( table summa)HY(rizes)YH( the mapping of XML Schema built-in types to C++ types:)EP( )0 PT( )0 P(As you can see from the table above a number of built-in XML Schema types are mapped to funda)HY(men)HY(tal)YH( C++ types such as )SM(int)ES( or )SM(bool)ES(. All string-based XML Schema types are mapped to C++ types that are derived from either )SM(std::string)ES( or )SM(std::wstring)ES(, depend)HY(ing)YH( on the char)HY(ac)HY(ter)YH( type selected. For access and modi)HY(fi)HY(ca)HY(tion)YH( purposes these types can be treated as )SM(std::string)ES(. A number of built-in types, such as )SM(qname)ES(, the binary types, and the date/time types do not have suit)HY(able)YH( funda)HY(men)HY(tal)YH( or stan)HY(dard)YH( C++ types to map to. As a result, these types are imple)HY(mented)YH( from scratch in the XSD runtime. For more infor)HY(ma)HY(tion)YH( on their inter)HY(faces)YH( refer to )R13 2 A(Section 2.5, "Mapping for Built-in Data Types")EA( in the C++/Tree Mapping User Manual.)EP( )0 1 25 H(5)WB 60 Sn()WB 29 Sn( Parsing)EA()EH( )0 P(We have already seen how to parse XML to an object model in this guide before. In this chapter we will discuss the parsing topic in more detail.)EP( )0 P(By default, the C++/Tree mapping provides a total of 14 over)HY(loaded)YH( parsing func)HY(tions)YH(. They differ in the input methods used to read XML as well as the error report)HY(ing)YH( mech)HY(a)HY(nisms)YH(. It is also possi)HY(ble)YH( to gener)HY(ate)YH( types for root elements instead of parsing and seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH(. This may be useful if your XML vocab)HY(u)HY(lary)YH( has multi)HY(ple)YH( root elements. For more infor)HY(ma)HY(tion)YH( on element types refer to )R14 2 A(Section 2.9, "Mapping for Global Elements")EA( in the C++/Tree Mapping User Manual.)EP( )0 P(In this section we will discuss the most commonly used versions of the parsing func)HY(tions)YH(. For a compre)HY(hen)HY(sive)YH( descrip)HY(tion)YH( of parsing refer to )R15 2 A(Chapter 3, "Parsing")EA( in the C++/Tree Mapping User Manual. For the )SM(people)ES( global element from our person record vocab)HY(u)HY(lary)YH(, we will concen)HY(trate)YH( on the follow)HY(ing)YH( three parsing func)HY(tions)YH(:)EP( ) 15 71 PR(std::auto_ptr people \201const std::string& uri, xml_schema::flags f = 0, const xml_schema::properties& p = xml_schema::properties \201\202\202; std::auto_ptr people \201std::istream& is, xml_schema::flags f = 0, const xml_schema::properties& p = xml_schema::properties \201\202\202; std::auto_ptr people \201std::istream& is, const std::string& resource_id, xml_schema::flags f = 0, const xml_schema::properties& p = ::xml_schema::properties \201\202\202;)RP( )0 P(The first func)HY(tion)YH( parses a local file or a URI. We have already used this parsing func)HY(tion)YH( in the previ)HY(ous)YH( chap)HY(ters)YH(. The second and third func)HY(tions)YH( read XML from a stan)HY(dard)YH( input stream. The last func)HY(tion)YH( also requires a resource id. This id is used to iden)HY(tify)YH( the XML docu)HY(ment)YH( being parser in diag)HY(nos)HY(tics)YH( messages as well as to resolve rela)HY(tive)YH( paths to other docu)HY(ments)YH( \201for example, schemas\202 that might be refer)HY(enced)YH( from the XML docu)HY(ment)YH(.)EP( )0 P(The last two argu)HY(ments)YH( to all three parsing func)HY(tions)YH( are parsing flags and prop)HY(er)HY(ties)YH(. The flags argu)HY(ment)YH( provides a number of ways to fine-tune the parsing process. The prop)HY(er)HY(ties)YH( argu)HY(ment)YH( allows to pass addi)HY(tional)YH( infor)HY(ma)HY(tion)YH( to the parsing func)HY(tions)YH(. We will use these two argu)HY(ments)YH( in )0 30 1 A(Section 5.1, "XML Schema Vali)HY(da)HY(tion)YH( and Search)HY(ing)YH(")30 0 TN TL()Ec /AF f D( below. The follow)HY(ing)YH( example shows how we can use the above parsing func)HY(tions)YH(:)EP( ) 17 65 PR(using std::auto_ptr; // Parse a local file or URI. // auto_ptr p1 \201people \201"people.xml"\202\202; auto_ptr p2 \201people \201"http://example.com/people.xml"\202\202; // Parse a local file via ifstream. // std::ifstream ifs \201"people.xml"\202; auto_ptr p3 \201people \201ifs, "people.xml"\202\202; // Parse an XML string. // std::string str \201"..."\202; // XML in a string. std::istringstream iss \201str\202; auto_ptr p4 \201people \201iss\202\202;)RP( )0 2 26 H(5.1)WB 61 Sn()WB 30 Sn( XML Schema Vali)HY(da)HY(tion)YH( and Search)HY(ing)YH()EA()EH( )0 P(The C++/Tree mapping relies on the under)HY(ly)HY(ing)YH( Xerces-C++ XML parser for full XML docu)HY(ment)YH( vali)HY(da)HY(tion)YH(. The XML Schema vali)HY(da)HY(tion)YH( is enabled by default and can be disabled by passing the )SM(xml_schema::flags::dont_vali)HY(date)YH()ES( flag to the parsing func)HY(tions)YH(, for example:)EP( ) 2 59 PR(auto_ptr p \201 people \201"people.xml", xml_schema::flags::dont_validate\202\202;)RP( )0 P(Even when XML Schema vali)HY(da)HY(tion)YH( is disabled, the gener)HY(ated)YH( code still performs a number of checks to prevent construc)HY(tion)YH( of an incon)HY(sis)HY(tent)YH( object model \201for example, an object model with missing required attributes or elements\202.)EP( )0 P(When XML Schema vali)HY(da)HY(tion)YH( is enabled, the XML parser needs to locate a schema to vali)HY(date)YH( against. There are several methods to provide the schema loca)HY(tion)YH( infor)HY(ma)HY(tion)YH( to the parser. The easiest and most commonly used method is to specify schema loca)HY(tions)YH( in the XML docu)HY(ment)YH( itself with the )SM(schemaLo)HY(ca)HY(tion)YH()ES( or )SM(noNames)HY(paceSchemaLo)HY(ca)HY(tion)YH()ES( attributes, for example:)EP( ) 4 74 PR( )RP( )0 P(As you might have noticed, we used this method in all the sample XML docu)HY(ments)YH( presented in this guide up until now. Note that the schema loca)HY(tions)YH( spec)HY(i)HY(fied)YH( with these two attributes are rela)HY(tive)YH( to the docu)HY(ment)YH('s path unless they are abso)HY(lute)YH( URIs \201that is start with )SM(http://)ES(, )SM(file://)ES(, etc.\202. In partic)HY(u)HY(lar)YH(, if you specify just file names as your schema loca)HY(tions)YH(, as we did above, then the schemas should reside in the same direc)HY(tory)YH( as the XML docu)HY(ment)YH( itself.)EP( )0 P(Another method of provid)HY(ing)YH( the schema loca)HY(tion)YH( infor)HY(ma)HY(tion)YH( is via the )SM(xml_schema::prop)HY(er)HY(ties)YH()ES( argu)HY(ment)YH(, as shown in the follow)HY(ing)YH( example:)EP( ) 5 74 PR(xml_schema::properties props; props.no_namespace_schema_location \201"people.xsd"\202; props.schema_location \201"http://www.w3.org/XML/1998/namespace", "xml.xsd"\202; auto_ptr p \201people \201"people.xml", 0, props\202\202;)RP( )0 P(The schema loca)HY(tions)YH( provided with this method over)HY(rides)YH( those spec)HY(i)HY(fied)YH( in the XML docu)HY(ment)YH(. As with the previ)HY(ous)YH( method, the schema loca)HY(tions)YH( spec)HY(i)HY(fied)YH( this way are rela)HY(tive)YH( to the docu)HY(ment)YH('s path unless they are abso)HY(lute)YH( URIs. In partic)HY(u)HY(lar)YH(, if you want to use local schemas that are not related to the docu)HY(ment)YH( being parsed, then you will need to use the )SM(file://)ES( URI. The follow)HY(ing)YH( example shows how to use schemas that reside in the current working direc)HY(tory)YH(:)EP( ) 19 55 PR(#include // getcwd #include // PATH_MAX char cwd[PATH_MAX]; if \201getcwd \201cwd, PATH_MAX\202 == 0\202 { // Buffer too small? } xml_schema::properties props; props.no_namespace_schema_location \201 "file:///" + std::string \201cwd\202 + "people.xsd"\202; props.schema_location \201 "http://www.w3.org/XML/1998/namespace", "file:///" + std::string \201cwd\202 + "xml.xsd"\202; auto_ptr p \201people \201"people.xml", 0, props\202\202;)RP( )0 P(A third method is the most useful if you are plan)HY(ning)YH( to parse several XML docu)HY(ments)YH( of the same vocab)HY(u)HY(lary)YH(. In that case it may be bene)HY(fi)HY(cial)YH( to pre-parse and cache the schemas in the XML parser which can then be used to parse all docu)HY(ments)YH( without re-parsing the schemas. For more infor)HY(ma)HY(tion)YH( on this method refer to the )SM(caching)ES( example in the )SM(exam)HY(ples)YH(/cxx/tree/)ES( direc)HY(tory)YH( of the XSD distri)HY(bu)HY(tion)YH(. It is also possi)HY(ble)YH( to convert the schemas into a pre-compiled binary repre)HY(sen)HY(ta)HY(tion)YH( and embed this repre)HY(sen)HY(ta)HY(tion)YH( directly into the appli)HY(ca)HY(tion)YH( executable. With this approach your appli)HY(ca)HY(tion)YH( can perform XML Schema vali)HY(da)HY(tion)YH( without depend)HY(ing)YH( on any exter)HY(nal)YH( schema files. For more infor)HY(ma)HY(tion)YH( on how to achieve this refer to the )SM(embed)HY(ded)YH()ES( example in the )SM(exam)HY(ples)YH(/cxx/tree/)ES( direc)HY(tory)YH( of the XSD distri)HY(bu)HY(tion)YH(.)EP( )0 P(When the XML parser cannot locate a schema for the XML docu)HY(ment)YH(, the vali)HY(da)HY(tion)YH( fails and XML docu)HY(ment)YH( elements and attributes for which schema defi)HY(ni)HY(tions)YH( could not be located are reported in the diag)HY(nos)HY(tics)YH(. For example, if we remove the )SM(noNames)HY(paceSchemaLo)HY(ca)HY(tion)YH()ES( attribute in )SM(people.xml)ES( from the previ)HY(ous)YH( chapter, then we will get the follow)HY(ing)YH( diag)HY(nos)HY(tics)YH( if we try to parse this file with vali)HY(da)HY(tion)YH( enabled:)EP( ) 8 74 PR(people.xml:2:63 error: no declaration found for element 'people' people.xml:4:18 error: no declaration found for element 'person' people.xml:4:18 error: attribute 'id' is not declared for element 'person' people.xml:5:17 error: no declaration found for element 'first-name' people.xml:6:18 error: no declaration found for element 'middle-name' people.xml:7:16 error: no declaration found for element 'last-name' people.xml:8:13 error: no declaration found for element 'gender' people.xml:9:10 error: no declaration found for element 'age')RP( )0 2 27 H(5.2)WB 62 Sn()WB 31 Sn( Error Handling)EA()EH( )0 P(The parsing func)HY(tions)YH( offer a number of ways to handle error condi)HY(tions)YH( with the C++ excep)HY(tions)YH( being the most commonly used mech)HY(a)HY(nism)YH(. All C++/Tree excep)HY(tions)YH( derive from common base )SM(xml_schema::excep)HY(tion)YH()ES( which in turn derives from )SM(std::excep)HY(tion)YH()ES(. The easiest way to uniformly handle all possi)HY(ble)YH( C++/Tree excep)HY(tions)YH( and print detailed infor)HY(ma)HY(tion)YH( about the error is to catch and print )SM(xml_schema::excep)HY(tion)YH()ES(, as shown in the follow)HY(ing)YH( example:)EP( ) 8 47 PR(try { auto_ptr p \201people \201"people.xml"\202\202; } catch \201const xml_schema::exception& e\202 { cerr << e << endl; })RP( )0 P(Each indi)HY(vid)HY(ual)YH( C++/Tree excep)HY(tion)YH( also allows you to obtain error details program)HY(mat)HY(i)HY(cally)YH(. For example, the )SM(xml_schema::parsing)ES( excep)HY(tion)YH( is thrown when the XML parsing and vali)HY(da)HY(tion)YH( in the under)HY(ly)HY(ing)YH( XML parser fails. It encap)HY(su)HY(lates)YH( various diag)HY(nos)HY(tics)YH( infor)HY(ma)HY(tion)YH( such as the file name, line and column numbers, as well as the error or warning message for each entry. For more infor)HY(ma)HY(tion)YH( about this and other excep)HY(tions)YH( that can be thrown during parsing, refer to )R16 2 A(Section 3.3, "Error Handling")EA( in the C++/Tree Mapping User Manual.)EP( )0 P(Note that if you are parsing )SM(std::istream)ES( on which excep)HY(tions)YH( are not enabled, then you will need to check the stream state after the call to the parsing func)HY(tion)YH( in order to detect any possi)HY(ble)YH( stream fail)HY(ures)YH(, for example:)EP( ) 15 50 PR(std::ifstream ifs \201"people.xml"\202; if \201ifs.fail \201\202\202 { cerr << "people.xml: unable to open" << endl; return 1; } auto_ptr p \201people \201ifs, "people.xml"\202\202; if \201ifs.fail \201\202\202 { cerr << "people.xml: read error" << endl; return 1; })RP( )0 P(The above example can be rewrit)HY(ten)YH( to use excep)HY(tions)YH( as shown below:)EP( ) 13 66 PR(try { std::ifstream ifs; ifs.exceptions \201std::ifstream::badbit | std::ifstream::failbit\202; ifs.open \201"people.xml"\202; auto_ptr p \201people \201ifs, "people.xml"\202\202; } catch \201const std::ifstream::failure&\202 { cerr << "people.xml: unable to open or read error" << endl; return 1; })RP( )0 1 28 H(6)WB 63 Sn()WB 32 Sn( Seri)HY(al)HY(iza)HY(tion)YH()EA()EH( )0 P(We have already seen how to seri)HY(al)HY(ize)YH( an object model back to XML in this guide before. In this chapter we will discuss the seri)HY(al)HY(iza)HY(tion)YH( topic in more detail.)EP( )0 P(By default, the C++/Tree mapping provides a total of 8 over)HY(loaded)YH( seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH(. They differ in the output methods used to write XML as well as the error report)HY(ing)YH( mech)HY(a)HY(nisms)YH(. It is also possi)HY(ble)YH( to gener)HY(ate)YH( types for root elements instead of parsing and seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH(. This may be useful if your XML vocab)HY(u)HY(lary)YH( has multi)HY(ple)YH( root elements. For more infor)HY(ma)HY(tion)YH( on element types refer to )R14 2 A(Section 2.9, "Mapping for Global Elements")EA( in the C++/Tree Mapping User Manual.)EP( )0 P(In this section we will discuss the most commonly used version of seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH(. For a compre)HY(hen)HY(sive)YH( descrip)HY(tion)YH( of seri)HY(al)HY(iza)HY(tion)YH( refer to )R17 2 A(Chapter 4, "Seri)HY(al)HY(iza)HY(tion)YH(")EA( in the C++/Tree Mapping User Manual. For the )SM(people)ES( global element from our person record vocab)HY(u)HY(lary)YH(, we will concen)HY(trate)YH( on the follow)HY(ing)YH( seri)HY(al)HY(iza)HY(tion)YH( func)HY(tion)YH(:)EP( ) 7 50 PR(void people \201std::ostream& os, const people_t& x, const xml_schema::namespace_infomap& map = xml_schema::namespace_infomap \201\202, const std::string& encoding = "UTF-8", xml_schema::flags f = 0\202;)RP( )0 P(This func)HY(tion)YH( seri)HY(al)HY(izes)YH( the object model passed as the second argu)HY(ment)YH( to the stan)HY(dard)YH( output stream passed as the first argu)HY(ment)YH(. The third argu)HY(ment)YH( is a names)HY(pace)YH( infor)HY(ma)HY(tion)YH( map which we will discuss in more detail in the next section. The fourth argu)HY(ment)YH( is a char)HY(ac)HY(ter)YH( encod)HY(ing)YH( that the result)HY(ing)YH( XML docu)HY(ment)YH( should be in. Possi)HY(ble)YH( valid values for this argu)HY(ment)YH( are "US-ASCII", "ISO8859-1", "UTF-8", "UTF-16BE", "UTF-16LE", "UCS-4BE", and "UCS-4LE". Finally, the flags argu)HY(ment)YH( allows fine-tuning of the seri)HY(al)HY(iza)HY(tion)YH( process. The follow)HY(ing)YH( example shows how we can use the above seri)HY(al)HY(iza)HY(tion)YH( func)HY(tion)YH(:)EP( ) 19 34 PR(people_t& p = ... xml_schema::namespace_infomap map; map[""].schema = "people.xsd"; // Serialize to stdout. // people \201std::cout, p, map\202; // Serialize to a file. // std::ofstream ofs \201"people.xml"\202; people \201ofs, p, map\202; // Serialize to a string. // std::ostringstream oss; people \201oss, p, map\202; std::string xml \201oss.str \201\202\202;)RP( )0 2 29 H(6.1)WB 64 Sn()WB 33 Sn( Names)HY(pace)YH( and Schema Infor)HY(ma)HY(tion)YH()EA()EH( )0 P(While XML seri)HY(al)HY(iza)HY(tion)YH( can be done just from the object model alone, it is often desir)HY(able)YH( to assign mean)HY(ing)HY(ful)YH( prefixes to XML names)HY(paces)YH( used in the vocab)HY(u)HY(lary)YH( as well as to provide the schema loca)HY(tion)YH( infor)HY(ma)HY(tion)YH(. This is accom)HY(plished)YH( by passing the names)HY(pace)YH( infor)HY(ma)HY(tion)YH( map to the seri)HY(al)HY(iza)HY(tion)YH( func)HY(tion)YH(. The key in this map is a names)HY(pace)YH( prefix that should be assigned to an XML names)HY(pace)YH( spec)HY(i)HY(fied)YH( in the )SM(name)ES( vari)HY(able)YH( of the map value. You can also assign an optional schema loca)HY(tion)YH( for this names)HY(pace)YH( in the )SM(schema)ES( vari)HY(able)YH(. Based on each key-value entry in this map, the seri)HY(al)HY(iza)HY(tion)YH( func)HY(tion)YH( adds two attributes to the result)HY(ing)YH( XML docu)HY(ment)YH(: the names)HY(pace)YH(-prefix mapping attribute and schema loca)HY(tion)YH( attribute. The empty prefix indi)HY(cates)YH( that the names)HY(pace)YH( should be mapped without a prefix. For example, the follow)HY(ing)YH( map:)EP( ) 7 55 PR(xml_schema::namespace_infomap map; map[""].name = "http://www.example.com/example"; map[""].schema = "example.xsd"; map["x"].name = "http://www.w3.org/XML/1998/namespace"; map["x"].schema = "xml.xsd";)RP( )0 P(Results in the follow)HY(ing)YH( XML docu)HY(ment)YH(:)EP( ) 7 68 PR( )RP( )0 P(The empty names)HY(pace)YH( indi)HY(cates)YH( that the vocab)HY(u)HY(lary)YH( has no target names)HY(pace)YH(. For example, the follow)HY(ing)YH( map results in only the )SM(noNames)HY(paceSchemaLo)HY(ca)HY(tion)YH()ES( attribute being added:)EP( ) 4 34 PR(xml_schema::namespace_infomap map; map[""].name = ""; map[""].schema = "example.xsd";)RP( )0 2 30 H(6.2)WB 65 Sn()WB 34 Sn( Error Handling)EA()EH( )0 P(Similar to the parsing func)HY(tions)YH(, the seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH( offer a number of ways to handle error condi)HY(tions)YH( with the C++ excep)HY(tions)YH( being the most commonly used mech)HY(a)HY(nisms)YH(. As with parsing, the easiest way to uniformly handle all possi)HY(ble)YH( seri)HY(al)HY(iza)HY(tion)YH( excep)HY(tions)YH( and print detailed infor)HY(ma)HY(tion)YH( about the error is to catch and print )SM(xml_schema::excep)HY(tion)YH()ES(:)EP( ) 13 38 PR(try { people_t& p = ... xml_schema::namespace_infomap map; map[""].schema = "people.xsd"; people \201std::cout, p, map\202\202; } catch \201const xml_schema::exception& e\202 { cerr << e << endl; })RP( )0 P(The most commonly encoun)HY(tered)YH( seri)HY(al)HY(iza)HY(tion)YH( excep)HY(tion)YH( is )SM(xml_schema::seri)HY(al)HY(iza)HY(tion)YH()ES(. It is thrown when the XML seri)HY(al)HY(iza)HY(tion)YH( in the under)HY(ly)HY(ing)YH( XML writer fails. It encap)HY(su)HY(lates)YH( various diag)HY(nos)HY(tics)YH( infor)HY(ma)HY(tion)YH( such as the file name, line and column numbers, as well as the error or warning message for each entry. For more infor)HY(ma)HY(tion)YH( about this and other excep)HY(tions)YH( that can be thrown during seri)HY(al)HY(iza)HY(tion)YH(, refer to )R18 2 A(Section 4.4, "Error Handling")EA( in the C++/Tree Mapping User Manual.)EP( )0 P(Note that if you are seri)HY(al)HY(iz)HY(ing)YH( to )SM(std::ostream)ES( on which excep)HY(tions)YH( are not enabled, then you will need to check the stream state after the call to the seri)HY(al)HY(iza)HY(tion)YH( func)HY(tion)YH( in order to detect any possi)HY(ble)YH( stream fail)HY(ures)YH(, for example:)EP( ) 15 47 PR(std::ofstream ofs \201"people.xml"\202; if \201ofs.fail \201\202\202 { cerr << "people.xml: unable to open" << endl; return 1; } people \201ofs, p, map\202\202; if \201ofs.fail \201\202\202 { cerr << "people.xml: write error" << endl; return 1; })RP( )0 P(The above example can be rewrit)HY(ten)YH( to use excep)HY(tions)YH( as shown below:)EP( ) 13 66 PR(try { std::ofstream ofs; ofs.exceptions \201std::ofstream::badbit | std::ofstream::failbit\202; ofs.open \201"people.xml"\202; people \201ofs, p, map\202\202; } catch \201const std::ofstream::failure&\202 { cerr << "people.xml: unable to open or write error" << endl; return 1; })RP( )BR( )BR( )WB NL /TE t D NP TU PM 0 eq and{/Pn () D showpage}if end restore