/* * euc.c - routines to handle the various EUC multibyte encodings. */ #ifndef ENUM_CHARSETS #include "charset.h" #include "internal.h" struct euc { int nchars[3]; /* GR, SS2+GR, SS3+GR */ long int (*to_ucs)(unsigned long state); unsigned long (*from_ucs)(long int ucs); }; static void read_euc(charset_spec const *charset, long int input_chr, charset_state *state, void (*emit)(void *ctx, long int output), void *emitctx) { struct euc const *euc = (struct euc *)charset->data; /* * For EUC input, our state variable divides into three parts: * * - Topmost nibble (bits 31:28) is nonzero if we're * accumulating a multibyte character, and it indicates * which section we're in: 1 for GR chars, 2 for things * beginning with SS2, 3 for things beginning with SS3. * * - Next nibble (bits 27:24) indicates how many bytes of the * character we've accumulated so far. * * - The rest (bits 23:0) are those bytes in full, accumulated * as a large integer (so that seeing A1 A2 A3, in a * hypothetical EUC whose GR encoding is three-byte, runs * our state variable from 0 -> 0x110000A1 -> 0x1200A1A2 -> * 0x13A1A2A3, at which point it gets translated and output * and resets to zero). */ if (state->s0 != 0) { /* * At this point, no matter whether we had an SS2 or SS3 * introducer or not, we _always_ expect a GR character. * Anything else causes us to emit ERROR for an incomplete * character, and then reset to state 0 to process the * character in its own way. */ if (input_chr < 0xA1 || input_chr == 0xFF) { emit(emitctx, ERROR); state->s0 = 0; } else state->s0 = (((state->s0 & 0xFF000000) + 0x01000000) | ((state->s0 & 0x0000FFFF) << 8) | input_chr); } if (state->s0 == 0) { /* * The input character determines which of the four * possible charsets we're going to be in. */ if (input_chr < 0x80) { /* this is always ASCII */ emit(emitctx, input_chr); } else if (input_chr == 0x8E) {/* SS2 means charset 2 */ state->s0 = 0x20000000; } else if (input_chr == 0x8F) {/* SS3 means charset 3 */ state->s0 = 0x30000000; } else if (input_chr < 0xA1 || input_chr == 0xFF) { /* errors */ emit(emitctx, ERROR); } else { /* A1-FE means charset 1 */ state->s0 = 0x11000000 | input_chr; } } /* * Finally, if we have accumulated a complete character, output * it. */ if (state->s0 != 0 && ((state->s0 & 0x0F000000) >> 24) >= (unsigned)euc->nchars[(state->s0 >> 28)-1]) { emit(emitctx, euc->to_ucs(state->s0)); state->s0 = 0; } } /* * All EUCs are stateless multi-byte encodings (in the sense that * just after any character has been completed, the state is always * the same); hence when writing them, there is no need to use the * charset_state. */ static int write_euc(charset_spec const *charset, long int input_chr, charset_state *state, void (*emit)(void *ctx, long int output), void *emitctx) { struct euc const *euc = (struct euc *)charset->data; unsigned long c; int cset, len; UNUSEDARG(state); if (input_chr == -1) return TRUE; /* stateless; no cleanup required */ /* ASCII is the easy bit, and is always the same. */ if (input_chr < 0x80) { emit(emitctx, input_chr); return TRUE; } c = euc->from_ucs(input_chr); if (!c) { return FALSE; } cset = c >> 28; len = euc->nchars[cset-1]; c &= 0xFFFFFF; if (cset > 1) emit(emitctx, 0x8C + cset); /* SS2/SS3 */ while (len--) emit(emitctx, (c >> (8*len)) & 0xFF); return TRUE; } /* * EUC-CN encodes GB2312 only. */ static long int euc_cn_to_ucs(unsigned long state) { switch (state >> 28) { case 1: return gb2312_to_unicode(((state >> 8) & 0xFF) - 0xA1, ((state ) & 0xFF) - 0xA1); default: return ERROR; } } static unsigned long euc_cn_from_ucs(long int ucs) { int r, c; if (unicode_to_gb2312(ucs, &r, &c)) return 0x10000000 | ((r+0xA1) << 8) | (c+0xA1); else return 0; } static const struct euc euc_cn = { {2,0,0}, euc_cn_to_ucs, euc_cn_from_ucs }; const charset_spec charset_CS_EUC_CN = { CS_EUC_CN, read_euc, write_euc, &euc_cn }; /* * EUC-KR encodes KS X 1001 only. */ static long int euc_kr_to_ucs(unsigned long state) { switch (state >> 28) { case 1: return ksx1001_to_unicode(((state >> 8) & 0xFF) - 0xA1, ((state ) & 0xFF) - 0xA1); default: return ERROR; } } static unsigned long euc_kr_from_ucs(long int ucs) { int r, c; if (unicode_to_ksx1001(ucs, &r, &c)) return 0x10000000 | ((r+0xA1) << 8) | (c+0xA1); else return 0; } static const struct euc euc_kr = { {2,0,0}, euc_kr_to_ucs, euc_kr_from_ucs }; const charset_spec charset_CS_EUC_KR = { CS_EUC_KR, read_euc, write_euc, &euc_kr }; /* * EUC-JP encodes several character sets. */ static long int euc_jp_to_ucs(unsigned long state) { switch (state >> 28) { case 1: return jisx0208_to_unicode(((state >> 8) & 0xFF) - 0xA1, ((state ) & 0xFF) - 0xA1); case 2: /* * This is the top half of JIS X 0201. That means A1-DF map * to FF61-FF9F, and nothing else is valid. */ { int c = state & 0xFF; if (c >= 0xA1 && c <= 0xDF) return c + (0xFF61 - 0xA1); else return ERROR; } /* (no break needed since all control paths have returned) */ case 3: return jisx0212_to_unicode(((state >> 8) & 0xFF) - 0xA1, ((state ) & 0xFF) - 0xA1); default: return ERROR; /* placate optimisers */ } } static unsigned long euc_jp_from_ucs(long int ucs) { int r, c; if (ucs >= 0xFF61 && ucs <= 0xFF9F) return 0x20000000 | (ucs - (0xFF61 - 0xA1)); else if (unicode_to_jisx0208(ucs, &r, &c)) return 0x10000000 | ((r+0xA1) << 8) | (c+0xA1); else if (unicode_to_jisx0212(ucs, &r, &c)) return 0x30000000 | ((r+0xA1) << 8) | (c+0xA1); else return 0; } static const struct euc euc_jp = { {2,1,2}, euc_jp_to_ucs, euc_jp_from_ucs }; const charset_spec charset_CS_EUC_JP = { CS_EUC_JP, read_euc, write_euc, &euc_jp }; /* * EUC-TW encodes CNS 11643 (all planes). */ static long int euc_tw_to_ucs(unsigned long state) { int plane; switch (state >> 28) { case 1: return cns11643_to_unicode(0, ((state >> 8) & 0xFF) - 0xA1, ((state ) & 0xFF) - 0xA1); case 2: plane = ((state >> 8) & 0xFF) - 0xA1; if (plane >= 7) return ERROR; return cns11643_to_unicode(plane, ((state >> 8) & 0xFF) - 0xA1, ((state ) & 0xFF) - 0xA1); default: return ERROR; } } static unsigned long euc_tw_from_ucs(long int ucs) { int p, r, c; if (unicode_to_cns11643(ucs, &p, &r, &c)) { if (p == 0) return 0x10000000 | ((r+0xA1) << 8) | (c+0xA1); else return 0x20000000 | ((p + 0xA1) << 16) | ((r+0xA1) << 8) | (c+0xA1); } else return 0; } static const struct euc euc_tw = { {2,3,0}, euc_tw_to_ucs, euc_tw_from_ucs }; const charset_spec charset_CS_EUC_TW = { CS_EUC_TW, read_euc, write_euc, &euc_tw }; #else /* ENUM_CHARSETS */ ENUM_CHARSET(CS_EUC_CN) ENUM_CHARSET(CS_EUC_KR) ENUM_CHARSET(CS_EUC_JP) ENUM_CHARSET(CS_EUC_TW) #endif /* ENUM_CHARSETS */