/* * iso2022s.c - support for ISO-2022 subset encodings. */ #ifndef ENUM_CHARSETS #include #include #include #include "charset.h" #include "internal.h" #include "sbcsdat.h" #define SO (0x0E) #define SI (0x0F) #define ESC (0x1B) /* Functional description of a single ISO 2022 escape sequence. */ struct iso2022_escape { char const *sequence; unsigned long andbits, xorbits; /* * For output, these variables help us figure out which escape * sequences we need to get where we want to be. * * `container' should be in the range 0-3, but can also be ORed * with the bit flag RO to indicate that this is not a * preferred container to use for this charset during output. */ int container, subcharset; }; #define RO 0x80 struct iso2022 { /* * List of escape sequences supported in this subset. Must be * in ASCII order, so that we can narrow down the list as * necessary. */ const struct iso2022_escape *escapes;/* must be sorted in ASCII order! */ int nescapes; /* * We assign indices from 0 upwards to the sub-charsets of a * given ISO 2022 subset. nbytes[i] tells us how many bytes per * character are required by sub-charset i. (It's a string * mainly because that makes it easier to declare in C syntax * than an int array.) */ char const *nbytes; /* * The characters in this string are indices-plus-one (so that * NUL can still terminate) of escape sequences in `escapes'. * These escapes are output in the given sequence to reset the * encoding state, unless it turns out that a given escape * would not change the state at all. */ char const *reset; /* * Initial value of s1, in case the default container contents * needs to be something other than charset 0 in all cases. * (Note that this must have the top bit set!) */ unsigned long s1; /* * For output, some ISO 2022 subsets _mandate_ an initial shift * sequence. If so, here it is so we can output it. (For the * sake of basic sanity we won't bother to _require_ it on * input, although it should of course be listed under * `escapes' above so that we ignore it when present.) */ char const *initial_sequence; /* * Is this an 8-bit ISO 2022 subset? */ int eightbit; /* * Function calls to do the actual translation. */ long int (*to_ucs)(int subcharset, unsigned long bytes); int (*from_ucs)(long int ucs, int *subcharset, unsigned long *bytes); }; static void read_iso2022s(charset_spec const *charset, long int input_chr, charset_state *state, void (*emit)(void *ctx, long int output), void *emitctx) { struct iso2022 const *iso = (struct iso2022 *)charset->data; /* * For reading ISO-2022 subsets, we divide up our state * variables as follows: * * - The top byte of s0 (bits 31:24) indicates, if nonzero, * that we are part-way through a recognised ISO-2022 escape * sequence. Five of those bits (31:27) give the index of * the first member of the escapes list matching what we * have so far; the remaining three (26:24) give the number * of characters we have seen so far. * * - The top bit of s1 (bit 31) is non-zero at all times, to * indicate that we have performed any necessary * initialisation. When we start, we detect a zero s1 and * respond to it by initialising the default container * contents. * * - The next three bits of s1 (bits 30:28) indicate which * _container_ is currently selected. This isn't quite as * simple as it sounds, since we have to preserve memory of * which of the SI/SO containers we came from when we're * temporarily in SS2/SS3. Hence, what happens is: * + bit 28 indicates SI/SO. * + if we're in an SS2/SS3 container, that's indicated by * the two bits above that being nonzero and holding * either 2 or 3. * + Hence: 0 is SI, 1 is SO, 4 is SS2-from-SI, 5 is * SS2-from-SO, 6 is SS3-from-SI, 7 is SS3-from-SO. * + For added fun: in an _8-bit_ ISO 2022 subset, we have * the further special value 2, which means that we're * theoretically in SI but the current character being * accumulated is composed of 8-bit characters and will * therefore be interpreted as if in SO. * * - The next nibble of s1 (27:24) indicates how many bytes * have been accumulated in the current character. * * - The remaining three bytes of s1 are divided into four * six-bit sections, and each section gives the current * sub-charset selected in one of the possible containers. * (Those containers are SI, SO, SS2 and SS3, respectively * and in order from the bottom of s0 to the top.) * * - The bottom 24 bits of s0 give the accumulated character * data so far. * * (Note that this means s1 contains all the parts of the state * which might need to be operated on by escape sequences. * Cunning, eh?) */ if (!(state->s1 & 0x80000000)) { state->s1 = iso->s1; } /* * So. Firstly, we process escape sequences, if we're in the * middle of one or if we see a possible introducer (SI, SO, * ESC). */ if ((state->s0 >> 24) || (input_chr == SO || input_chr == SI || input_chr == ESC)) { int n = (state->s0 >> 24) & 7, i = (state->s0 >> 27), oi = i, j; /* * If this is the start of an escape sequence, we might be * in mid-character. If so, clear the character state and * emit an error token for the incomplete character. */ if (state->s1 & 0x0F000000) { state->s1 &= ~0x0F000000; state->s0 &= 0xFF000000; /* * If we were in the SS2 or SS3 container, we * automatically exit it. */ if (state->s1 & 0x60000000) state->s1 &= 0x9FFFFFFF; emit(emitctx, ERROR); } j = i; while (j < iso->nescapes && !memcmp(iso->escapes[j].sequence, iso->escapes[oi].sequence, n)) { if (iso->escapes[j].sequence[n] < input_chr) i = ++j; else break; } if (i >= iso->nescapes || memcmp(iso->escapes[i].sequence, iso->escapes[oi].sequence, n) || iso->escapes[i].sequence[n] != input_chr) { /* * This character does not appear in any valid escape * sequence. Therefore, we must emit all the characters * we had previously swallowed, plus this one, and * return to non-escape-sequence state. */ for (j = 0; j < n; j++) emit(emitctx, iso->escapes[oi].sequence[j]); emit(emitctx, input_chr); state->s0 = 0; return; } /* * Otherwise, we have found an additional character in our * escape sequence. See if we have reached the _end_ of our * sequence (and therefore must process the sequence). */ n++; if (!iso->escapes[i].sequence[n]) { state->s0 = 0; state->s1 &= iso->escapes[i].andbits; state->s1 ^= iso->escapes[i].xorbits; return; } /* * Failing _that_, we simply update our escape-sequence- * tracking state. */ assert(i < 32 && n < 8); state->s0 = (i << 27) | (n << 24); return; } /* * If this isn't an escape sequence, it must be part of a * character. One possibility is that it's a control character * (00-20 or 7F-9F; also in non-8-bit ISO 2022 subsets I'm * going to treat all top-half characters as controls), in * which case we output it verbatim. */ if (input_chr < 0x21 || (input_chr > 0x7E && (!iso->eightbit || input_chr < 0xA0))) { /* * We might be in mid-multibyte-character. If so, clear the * character state and emit an error token for the * incomplete character. */ if (state->s1 & 0x0F000000) { state->s1 &= ~0x0F000000; state->s0 &= 0xFF000000; emit(emitctx, ERROR); /* * If we were in the SS2 or SS3 container, we * automatically exit it. */ if (state->s1 & 0x60000000) state->s1 &= 0x9FFFFFFF; } emit(emitctx, input_chr); return; } /* * Otherwise, accumulate character data. */ { unsigned long chr; int chrlen, cont, subcharset, bytes; /* * Verify that we've seen the right kind of character for * what we're currently doing. This only matters in 8-bit * subsets. */ if (iso->eightbit) { cont = (state->s1 >> 28) & 7; /* * If cont==0, we're entitled to see either GL or GR * characters. If cont==2, we expect only GR; otherwise * we expect only GL. * * If we see a GR character while cont==0, we set * cont=2 immediately. */ if ((cont == 2 && !(input_chr & 0x80)) || (cont != 0 && cont != 2 && (input_chr & 0x80))) { /* * Clear the previous character; it was prematurely * terminated by this error. */ state->s1 &= ~0x0F000000; state->s0 &= 0xFF000000; emit(emitctx, ERROR); /* * If we were in the SS2 or SS3 container, we * automatically exit it. */ if (state->s1 & 0x60000000) state->s1 &= 0x9FFFFFFF; } if (cont == 0 && (input_chr & 0x80)) { state->s1 |= 0x20000000; } } /* The current character and its length. */ chr = ((state->s0 & 0x00FFFFFF) << 8) | (input_chr & 0x7F); chrlen = ((state->s1 >> 24) & 0xF) + 1; /* The current sub-charset. */ cont = (state->s1 >> 28) & 7; if (cont > 1) cont >>= 1; subcharset = (state->s1 >> (6*cont)) & 0x3F; /* The number of bytes-per-character in that sub-charset. */ bytes = iso->nbytes[subcharset]; /* * If this character is now complete, we convert and emit * it. Otherwise, we simply update the state and return. */ if (chrlen >= bytes) { emit(emitctx, iso->to_ucs(subcharset, chr)); chr = chrlen = 0; /* * If we were in the SS2 or SS3 container, we * automatically exit it. */ if (state->s1 & 0x60000000) state->s1 &= 0x9FFFFFFF; } state->s0 = (state->s0 & 0xFF000000) | chr; state->s1 = (state->s1 & 0xF0FFFFFF) | (chrlen << 24); } } static int write_iso2022s(charset_spec const *charset, long int input_chr, charset_state *state, void (*emit)(void *ctx, long int output), void *emitctx) { struct iso2022 const *iso = (struct iso2022 *)charset->data; int subcharset, len, i, j, cont, topbit = 0; unsigned long bytes; /* * For output, our s1 state variable contains most of the same * stuff as it did for input - initial-state indicator bit, * current container, and current subcharset selected in each * container. */ /* * Analyse the character and find out what subcharset it needs * to go in. */ if (input_chr >= 0 && !iso->from_ucs(input_chr, &subcharset, &bytes)) return FALSE; if (!(state->s1 & 0x80000000)) { state->s1 = iso->s1; if (iso->initial_sequence) for (i = 0; iso->initial_sequence[i]; i++) emit(emitctx, iso->initial_sequence[i]); } if (input_chr == -1) { unsigned long oldstate; int k; /* * Special case: reset encoding state. */ for (i = 0; iso->reset[i]; i++) { j = iso->reset[i] - 1; oldstate = state->s1; state->s1 &= iso->escapes[j].andbits; state->s1 ^= iso->escapes[j].xorbits; if (state->s1 != oldstate) { /* We must actually emit this sequence. */ for (k = 0; iso->escapes[j].sequence[k]; k++) emit(emitctx, iso->escapes[j].sequence[k]); } } return TRUE; } /* * Now begins the fun. We now know what subcharset we want. So * we must find out which container we should select it into, * select it into it if necessary, select that _container_ if * necessary, and then output the given bytes. */ for (i = 0; i < iso->nescapes; i++) if (iso->escapes[i].subcharset == subcharset && !(iso->escapes[i].container & RO)) break; assert(i < iso->nescapes); /* * We've found the escape sequence which would select this * subcharset into a container. However, that subcharset might * already _be_ selected in that container! Check before we go * to the effort of emitting the sequence. */ cont = iso->escapes[i].container &~ RO; if (((state->s1 >> (6*cont)) & 0x3F) != (unsigned)subcharset) { for (j = 0; iso->escapes[i].sequence[j]; j++) emit(emitctx, iso->escapes[i].sequence[j]); state->s1 &= iso->escapes[i].andbits; state->s1 ^= iso->escapes[i].xorbits; } /* * Now we know what container our subcharset is in, so we want * to select that container. */ if (cont > 1) { /* SS2 or SS3; just output the sequence and be done. */ emit(emitctx, ESC); emit(emitctx, 'L' + cont); /* comes out to 'N' or 'O' */ } else { /* * Emit SI or SO, but only if the current container isn't already * the right one. * * Also, in an 8-bit subset, we need not do this; we'll * just use 8-bit characters to output SO-container * characters. */ if (iso->eightbit && cont == 1 && ((state->s1 >> 28) & 7) == 0) { topbit = 0x80; } else if (((state->s1 >> 28) & 7) != (unsigned)cont) { emit(emitctx, cont ? SO : SI); state->s1 = (state->s1 & 0x8FFFFFFF) | (cont << 28); } } /* * We're done. Subcharset is selected in container, container * is selected. All we need now is to write out the bytes. */ len = iso->nbytes[subcharset]; while (len--) emit(emitctx, ((bytes >> (8*len)) & 0xFF) | topbit); return TRUE; } /* * ISO-2022-JP, defined in RFC 1468. */ static long int iso2022jp_to_ucs(int subcharset, unsigned long bytes) { switch (subcharset) { case 1: /* JIS X 0201 bottom half */ if (bytes == 0x5C) return 0xA5; else if (bytes == 0x7E) return 0x203E; /* else fall through to ASCII */ case 0: return bytes; /* one-byte ASCII */ /* (no break needed since all control paths have returned) */ case 2: return jisx0208_to_unicode(((bytes >> 8) & 0xFF) - 0x21, ((bytes ) & 0xFF) - 0x21); default: return ERROR; } } static int iso2022jp_from_ucs(long int ucs, int *subcharset, unsigned long *bytes) { int r, c; if (ucs < 0x80) { *subcharset = 0; *bytes = ucs; return 1; } else if (ucs == 0xA5 || ucs == 0x203E) { *subcharset = 1; *bytes = (ucs == 0xA5 ? 0x5C : 0x7E); return 1; } else if (unicode_to_jisx0208(ucs, &r, &c)) { *subcharset = 2; *bytes = ((r+0x21) << 8) | (c+0x21); return 1; } else { return 0; } } static const struct iso2022_escape iso2022jp_escapes[] = { {"\033$@", 0xFFFFFFC0, 0x00000002, -1, -1}, /* we ignore this one */ {"\033$B", 0xFFFFFFC0, 0x00000002, 0, 2}, {"\033(B", 0xFFFFFFC0, 0x00000000, 0, 0}, {"\033(J", 0xFFFFFFC0, 0x00000001, 0, 1}, }; static const struct iso2022 iso2022jp = { iso2022jp_escapes, lenof(iso2022jp_escapes), "\1\1\2", "\3", 0x80000000, NULL, FALSE, iso2022jp_to_ucs, iso2022jp_from_ucs }; const charset_spec charset_CS_ISO2022_JP = { CS_ISO2022_JP, read_iso2022s, write_iso2022s, &iso2022jp }; /* * ISO-2022-KR, defined in RFC 1557. */ static long int iso2022kr_to_ucs(int subcharset, unsigned long bytes) { switch (subcharset) { case 0: return bytes; /* one-byte ASCII */ case 1: return ksx1001_to_unicode(((bytes >> 8) & 0xFF) - 0x21, ((bytes ) & 0xFF) - 0x21); default: return ERROR; } } static int iso2022kr_from_ucs(long int ucs, int *subcharset, unsigned long *bytes) { int r, c; if (ucs < 0x80) { *subcharset = 0; *bytes = ucs; return 1; } else if (unicode_to_ksx1001(ucs, &r, &c)) { *subcharset = 1; *bytes = ((r+0x21) << 8) | (c+0x21); return 1; } else { return 0; } } static const struct iso2022_escape iso2022kr_escapes[] = { {"\016", 0x8FFFFFFF, 0x10000000, -1, -1}, {"\017", 0x8FFFFFFF, 0x00000000, 0, 0}, {"\033$)C", 0xFFFFF03F, 0x00000040, 1, 1}, /* bits[11:6] <- 1 */ }; static const struct iso2022 iso2022kr = { iso2022kr_escapes, lenof(iso2022kr_escapes), "\1\2", "\2", 0x80000040, "\033$)C", FALSE, iso2022kr_to_ucs, iso2022kr_from_ucs }; const charset_spec charset_CS_ISO2022_KR = { CS_ISO2022_KR, read_iso2022s, write_iso2022s, &iso2022kr }; #else /* ENUM_CHARSETS */ ENUM_CHARSET(CS_ISO2022_JP) ENUM_CHARSET(CS_ISO2022_KR) #endif /* ENUM_CHARSETS */