summaryrefslogtreecommitdiff
path: root/gamut/nearsmth.c
diff options
context:
space:
mode:
Diffstat (limited to 'gamut/nearsmth.c')
-rw-r--r--gamut/nearsmth.c1803
1 files changed, 1136 insertions, 667 deletions
diff --git a/gamut/nearsmth.c b/gamut/nearsmth.c
index c0bd2be..c65704e 100644
--- a/gamut/nearsmth.c
+++ b/gamut/nearsmth.c
@@ -52,6 +52,7 @@
#include <fcntl.h>
#include <string.h>
#include <math.h>
+#include "counters.h"
#include "icc.h"
#include "numlib.h"
#include "rspl.h"
@@ -60,12 +61,14 @@
#include "vrml.h"
#undef SAVE_VRMLS /* [Und] Save various vrml's */
+#undef PLOT_SMOOTHING_CHANGE /* [Und] Dest point change due to smoothing in "dst_smvec.wrl" */
#undef PLOT_MAPPING_INFLUENCE /* [Und] Plot sci_gam colored by dominant guide influence: */
/* Absolute = red, Relative = yellow, Radial = blue, Depth = green */
#undef PLOT_AXES /* [Und] */
#undef PLOT_EVECTS /* [Und] Create VRML of error correction vectors */
#undef VERB /* [Und] [0] If <= 1, print progress headings */
/* if > 1, print information about everything */
+#undef SHOW_NEIGB /* [Und] Show the neighborhood point group in src */
#undef SHOW_NEIGB_WEIGHTS /* [Und] Show the weighting for each point of neighbours in turn */
#undef DIAG_POINTS /* [Und] Short circuite mapping and show vectors of various */
@@ -78,9 +81,8 @@
#define DARK_L 5.0 /* "dark" L/J value */
#define NEUTRAL_C 20.0 /* "neutral" C value */
#define NO_TRIALS 6 /* [6] Number of random trials */
-#define VECSMOOTHING /* [Def] Enable vector smoothing */
-#define VECADJPASSES 3 /* [3] Adjust vectors after smoothing to be on dest gamut */
-#define RSPLPASSES 4 /* [4] Number of rspl adjustment passes */
+#define VECADJPASSES 8 /* [8] Vector smoothing and adjust passes. */
+#define RSPLPASSES 4 /* [4] Number of rspl smoothing & adjustment passes */
#define RSPLSCALE 1.8 /* [1.8] Offset within gamut for rspl smoothing to aim for */
#define SHRINK 5.0 /* [5.0] Shrunk destination evect surface factor */
#define CYLIN_SUBVEC /* [Def] Make sub-vectors always cylindrical direction */
@@ -114,7 +116,7 @@
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
#if defined(SAVE_VRMLS) && defined(PLOT_MAPPING_INFLUENCE)
-static void create_influence_plot(nearsmth *smp, int nmpts);
+static void create_influence_plot(nearsmth *smp, int nmpts, int mapres);
#endif
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
@@ -194,7 +196,7 @@ double sumpow /* Sum power. 0.0 == 2.0 */
/* Compute the LCh differences squared of in1 - in2 */
/* (This is like the CIE DE94) */
-static void diffLCh(
+static void diffLChsq(
double out[3],
double in1[3], /* Destination location */
double in2[3] /* Source location */
@@ -258,7 +260,7 @@ double dcratio, /* Depth compression ratio of mapping */
double dxratio /* Depth expansion ratio of mapping */
) {
double a_o;
- double va, vr = 0.0, vl, vd, vv = 0.0;
+ double va, vr, vd, vv = 0.0;
/* Absolute, Delta E^2 between test point and destination closest */
/* aodv is already positioned acording to the LCh weights, */
@@ -267,7 +269,7 @@ double dxratio /* Depth expansion ratio of mapping */
va = wdesq(dtp, aodv, a_o, a_o, a_o, SUM_POW);
/* Radial. Delta E^2 between test point and source mapped radially to dest gamut */
- vl = wdesq(dtp, drv, w->rl.l, w->rl.c, w->rl.h, SUM_POW);
+ vr = wdesq(dtp, drv, w->rl.l, w->rl.c, w->rl.h, SUM_POW);
/* Depth ratio error^2. */
vd = w->d.co * dcratio * dcratio
@@ -276,17 +278,16 @@ double dxratio /* Depth expansion ratio of mapping */
/* Diagnostic values */
p->dbgv[0] = va;
p->dbgv[1] = vr;
- p->dbgv[2] = vl;
- p->dbgv[3] = vd;
+ p->dbgv[2] = vd;
- vv = va + vr + vl + vd; /* Sum of squares */
-// vv = sqrt(va) + sqrt(vr) + sqrt(vl) + sqrt(vd); /* Linear sum is better ? */
-// vv = pow(va, 0.7) + pow(vr, 0.7) + pow(vl, 0.7) + pow(vd, 0.7); /* Linear sum is better ? */
+ vv = va + vr + vd; /* Sum of squares */
+// vv = sqrt(va) + sqrt(vr) + sqrt(vd); /* Linear sum is better ? */
+// vv = pow(va, 0.7) + pow(vr, 0.7) + pow(vd, 0.7); /* Linear sum is better ? */
#ifdef NEVER
printf("~1 dtp %f %f %f\n", dtp[0], dtp[1], dtp[2]);
printf("~1 va = %f from aodv %f %f %f, weight %f\n", va, aodv[0], aodv[1], aodv[2], a_o);
- printf("~1 vl = %f from drv %f %f %f, weights %f %f %f\n", vl, drv[0], drv[1], drv[2], w->rl.l, w->rl.c, w->rl.h);
+ printf("~1 vr = %f from drv %f %f %f, weights %f %f %f\n", vr, drv[0], drv[1], drv[2], w->rl.l, w->rl.c, w->rl.h);
printf("~1 vd = %f from d.co %f d.xo %f, weights %f %f\n", vd, w->d.co,w->d.xo,dcratio * dcratio,dxratio * dxratio);
printf("~1 return vv = %f\n", vv);
#endif /* NEVER */
@@ -300,12 +301,13 @@ double dxratio /* Depth expansion ratio of mapping */
/* and cusp mapping function. */
struct _smthopt {
/* optimisation */
+ int debug; /* debug flag */
int pass; /* Itteration round */
int ix; /* Index of point being optimized */
nearsmth *p; /* Point being optimised */
int useexp; /* Flag indicating whether expansion is permitted */
- int debug; /* debug flag */
- gamut *shgam; /* for optfunc1a */
+ double *wn; /* Target of weighted nearest */
+ gamut *wngam; /* for optfunc1 and optfunc1a */
/* Setup state */
int isJab; /* Flag indicating Jab rather than Lab space */
@@ -334,7 +336,7 @@ struct _smthopt {
}; typedef struct _smthopt smthopt;
-static void init_ce(smthopt *s, gamut *sc_gam, gamut *d_gam, int src_kbp, int dst_kbp, double d_bp[3]);
+static void init_ce(smthopt *s, gamut *sc_gam, gamut *si_gam, gamut *d_gam, int src_kbp, int dst_kbp, double d_bp[3]);
static void comp_ce(smthopt *s, double out[3], double in[3], gammapweights *wt);
static void inv_comp_ce(smthopt *s, double out[3], double in[3], gammapweights *wt);
static double comp_naxbf(smthopt *s, double in[3]);
@@ -357,84 +359,97 @@ static void spow3(double *out, double *in, double ex) {
}
}
-/* Powell optimisation function for setting minimal absolute error target point. */
-/* We get a 2D plane in the 3D space, of the destination point, */
-/* who's location we are optimizing. */
-static double optfunc1(
-void *fdata,
-double *_dv
+/* Absolute error function, used by optfunc1() & optfunc1a() */
+static double aerrf(
+ nearsmth *p,
+ double *dv,
+ double *sv
) {
- smthopt *s = (smthopt *)fdata;
- nearsmth *p = s->p; /* Point being optimised */
- int i, j, k;
- double dv[3]; /* 3D point in question */
- double ddv[3]; /* Point in question mapped to dst surface */
- double delch[3];
- double rv; /* Out of gamut, return value */
-
- /* Convert from 2D to 3D. */
- dv[2] = _dv[1];
- dv[1] = _dv[0];
- dv[0] = 50.0;
- icmMul3By3x4(dv, p->m3d, dv);
-
-//printf("~1 optfunc1 got 2D %f %f -> 3D %f %f %f\n", _dv[0], _dv[1], dv[0], dv[1], dv[2]);
- p->dgam->radial(p->dgam, ddv, dv); /* Map to dst surface to check current location */
-//printf("~1 optfunc1 got %f %f %f -> surface %f %f %f\n", dv[0], dv[1], dv[2], ddv[0], ddv[1], ddv[2]);
-
- if (p->swap) {
- /* This is actually a point on the real source gamut, so */
- /* convert to cusp mapped rotated source gamut value */
- comp_ce(s, ddv, ddv, &p->wt);
-//printf("~1 after cusp rot got %f %f %f\n",ddv[0],ddv[1],ddv[2]);
- }
+ double delch[3], rv;
#ifdef NEVER
/* Absolute weighted delta E between source and dest test point */
- rv = wdesq(ddv, p->sv, p->wt.ra.l, p->wt.ra.c, p->wt.ra.h, SUM_POW);
+ rv = wdesq(dv, sv, p->wt.ra.l, p->wt.ra.c, p->wt.ra.h, SUM_POW);
#else
{
- double ppp = p->wt.a.lxpow;
+ double ppp = p->wt.a.lxpow; /* Extra power when L de is over thr */
double thr = p->wt.a.lxthr; /* Xover between normal and power */
double sumpow = SUM_POW;
+ double del;
- diffLCh(delch, ddv, p->sv);
+ diffLChsq(delch, dv, sv);
+ del = sqrt(delch[0]); /* delta L */
if (sumpow == 0.0 || sumpow == 2.0) { /* Normal sum of squares */
#ifdef LINEAR_HUE_SUM
double ll, cc, hh;
- ll = p->wt.ra.l * pow(delch[0], ppp) * thr/pow(thr, ppp);
+ ll = p->wt.ra.l * pow(delch[0], 1.0 + (ppp - 1.0) * del/(del + thr));
cc = p->wt.ra.c * delch[1];
hh = p->wt.ra.h * delch[2];
rv = sqrt(ll + cc) + sqrt(hh);
rv *= rv;
#else
- rv = p->wt.ra.l * pow(delch[0], ppp) * thr/pow(thr, ppp)
+ rv = p->wt.ra.l * pow(delch[0], 1.0 + (ppp - 1.0) * del/(del + thr))
+ p->wt.ra.c * delch[1]
+ p->wt.ra.h * delch[2];
#endif
} else {
sumpow *= 0.5;
-
- rv = p->wt.ra.l * pow(delch[0], ppp * sumpow) * thr/pow(thr, ppp * sumpow)
+ rv = p->wt.ra.l * pow(delch[0], (1.0 + (ppp - 1.0) * del/(del + thr)) * sumpow)
+ p->wt.ra.c * pow(delch[1], sumpow)
+ p->wt.ra.h * pow(delch[2], sumpow);
}
}
#endif
+ return rv;
+}
+
+/* Powell optimisation function for setting minimal absolute error target point, */
+/* with a correction for swap. */
+/* We get a 2D plane in the 3D space, of the destination point, */
+/* who's location we are optimizing to wngam. */
+static double optfunc1(
+void *fdata,
+double *_dv
+) {
+ smthopt *s = (smthopt *)fdata;
+ nearsmth *p = s->p; /* Point being optimised */
+ int i, j, k;
+ double dv[3]; /* 3D point in question */
+ double ddv[3]; /* Point in question mapped to wngam surface */
+ double rv; /* Out of gamut, return value */
+
+ /* Convert from 2D to 3D. */
+ dv[2] = _dv[1];
+ dv[1] = _dv[0];
+ dv[0] = 50.0;
+ icmMul3By3x4(dv, p->m3d, dv);
+
+//printf("~1 optfunc1 got 2D %f %f -> 3D %f %f %f\n", _dv[0], _dv[1], dv[0], dv[1], dv[2]);
+ s->wngam->radial(s->wngam, ddv, dv); /* Map to dst surface to check current location */
+//printf("~1 optfunc1 got %f %f %f -> surface %f %f %f\n", dv[0], dv[1], dv[2], ddv[0], ddv[1], ddv[2]);
+
+ if (p->swap) {
+ /* This is actually a point on the real source gamut, so */
+ /* convert to cusp mapped rotated source gamut value */
+ comp_ce(s, ddv, ddv, &p->wt);
+//printf("~1 after cusp rot got %f %f %f\n",ddv[0],ddv[1],ddv[2]);
+ }
+
+ rv = aerrf(p, ddv, s->wn);
if (s->debug)
- printf("debug: rv = %f from %f %f %f\n",rv, ddv[0], ddv[1], ddv[2]);
+ printf("debug: rv = %f from %f %f %f -> %f %f %f\n",rv, s->wn[0], s->wn[1], s->wn[2], ddv[0], ddv[1], ddv[2]);
-//printf("~1 sv %4.2f %4.2f %4.2f, ddv %4.2f %4.2f %4.2f\n", p->sv[0], p->sv[1], p->sv[2], ddv[0], ddv[1], ddv[2]);
+//printf("~1 sv %4.2f %4.2f %4.2f, ddv %4.2f %4.2f %4.2f\n", p->wm[0], p->wm[1], p->wm[2], ddv[0], ddv[1], ddv[2]);
//printf("~1 rv = %f\n",rv);
return rv;
}
/* Powell optimisation function for setting minimal absolute error target point, */
-/* from dest gamut to shrunk destination gamut. */
+/* with no correction for swap. */
/* We get a 2D plane in the 3D space, of the destination point, */
-/* who's location we are optimizing. */
+/* who's location we are optimizing to wngam. */
static double optfunc1a(
void *fdata,
double *_dv
@@ -443,9 +458,8 @@ double *_dv
nearsmth *p = s->p; /* Point being optimised */
int i, j, k;
double dv[3]; /* 3D point in question */
- double ddv[3]; /* Point in question mapped to shgam surface */
- double delch[3];
- double rv; /* Out of gamut, return value */
+ double ddv[3]; /* Point in question mapped to wngam surface */
+ double rv; /* Out of gamut, return value */
/* Convert from 2D to 3D. */
dv[2] = _dv[1];
@@ -453,48 +467,16 @@ double *_dv
dv[0] = 50.0;
icmMul3By3x4(dv, p->m3d, dv);
-//printf("~1 optfunc1a got 2D %f %f -> 3D %f %f %f\n", _dv[0], _dv[1], dv[0], dv[1], dv[2]);
- s->shgam->radial(s->shgam, ddv, dv); /* Map to shgam surface to check current location */
-//printf("~1 optfunc1a got %f %f %f -> surface %f %f %f\n", dv[0], dv[1], dv[2], ddv[0], ddv[1], ddv[2]);
-
-#ifdef NEVER
- /* Absolute weighted delta E between source and dest test point */
- rv = wdesq(ddv, p->sv, p->wt.ra.l, p->wt.ra.c, p->wt.ra.h, SUM_POW);
-#else
- {
- double ppp = p->wt.a.lxpow;
- double thr = p->wt.a.lxthr; /* Xover between normal and power */
- double sumpow = SUM_POW;
-
- diffLCh(delch, ddv, p->dv);
+//if (s->debug) printf("~1 optfunc1a got 2D %f %f -> 3D %f %f %f\n", _dv[0], _dv[1], dv[0], dv[1], dv[2]);
+ s->wngam->radial(s->wngam, ddv, dv); /* Map to shgam surface to check current location */
+//if (s->debug) printf("~1 optfunc1a got %f %f %f -> surface %f %f %f\n", dv[0], dv[1], dv[2], ddv[0], ddv[1], ddv[2]);
- if (sumpow == 0.0 || sumpow == 2.0) { /* Normal sum of squares */
-#ifdef LINEAR_HUE_SUM
- double ll, cc, hh;
- ll = p->wt.ra.l * pow(delch[0], ppp) * thr/pow(thr, ppp);
- cc = p->wt.ra.c * delch[1];
- hh = p->wt.ra.h * delch[2];
- rv = sqrt(ll + cc) + sqrt(hh);
- rv *= rv;
-#else
- rv = p->wt.ra.l * pow(delch[0], ppp) * thr/pow(thr, ppp)
- + p->wt.ra.c * delch[1]
- + p->wt.ra.h * delch[2];
-#endif
- } else {
- sumpow *= 0.5;
-
- rv = p->wt.ra.l * pow(delch[0], ppp * sumpow) * thr/pow(thr, ppp * sumpow)
- + p->wt.ra.c * pow(delch[1], sumpow)
- + p->wt.ra.h * pow(delch[2], sumpow);
- }
- }
-#endif
+ rv = aerrf(p, ddv, s->wn);
if (s->debug)
- printf("debug: rv = %f from %f %f %f\n",rv, ddv[0], ddv[1], ddv[2]);
+ printf("debug: rv = %f from %f %f %f -> %f %f %f\n",rv, s->wn[0], s->wn[1], s->wn[2], ddv[0], ddv[1], ddv[2]);
-//printf("~1 sv %4.2f %4.2f %4.2f, ddv %4.2f %4.2f %4.2f\n", p->sv[0], p->sv[1], p->sv[2], ddv[0], ddv[1], ddv[2]);
+//if (s->debug) printf("~1 sv %4.2f %4.2f %4.2f, ddv %4.2f %4.2f %4.2f\n", p->wm[0], p->wm[1], p->wm[2], ddv[0], ddv[1], ddv[2]);
//printf("~1 rv = %f\n",rv);
return rv;
}
@@ -563,7 +545,7 @@ double *dv /* 3D Location being evaluated */
}
}
-/* Powell optimisation function for non-relative error optimization. */
+/* Powell optimisation function for overall non-relative smoothed error optimization. */
/* We get a 2D point in the 3D space. */
static double optfunc2(
void *fdata,
@@ -582,8 +564,8 @@ double *_dv
//printf("~1 optfunc2 got 2D %f %f -> 3D %f %f %f\n", _dv[0], _dv[1], dv[0], dv[1], dv[2]);
p->dgam->radial(p->dgam, ddv, dv); /* Map to dst surface to check current location */
-//printf("~1 optfunc2 got %f %f %f -> surface %f %f %f\n", dv[0], dv[1], dv[2], ddv[0], ddv[1], ddv[2]);
+//printf("~1 optfunc2 got %f %f %f -> surface %f %f %f\n", dv[0], dv[1], dv[2], ddv[0], ddv[1], ddv[2]);
//printf("~1 optfunc2 sv %4.2f %4.2f %4.2f, dv %4.2f %4.2f %4.2f\n", p->sv[0], p->sv[1], p->sv[2], ddv[0], ddv[1], ddv[2]);
/* Compute available depth errors p->dcratio and p->dxratio */
@@ -597,12 +579,13 @@ double *_dv
printf("~1 dv = %f %f %f\n", ddv[0], ddv[1], ddv[2]);
printf("~1 aodv = %f %f %f\n", p->aodv[0], p->aodv[1], p->aodv[2]);
printf("~1 drv = %f %f %f\n", p->drv[0], p->drv[1], p->drv[2]);
+ printf("~1 va = %f, vr = %f, vd = %f\n", p->dbgv[0], p->dbgv[1], p->dbgv[2]);
printf("debug:%d: rv = %f from %f %f %f\n",s->ix, rv, dv[0], dv[1], dv[2]);
}
//printf("~1 rv = %f from %f %f\n",rv, _dv[0], _dv[1]);
-
//printf("~1 rv = %f\n\n",rv);
+
return rv;
}
@@ -612,6 +595,7 @@ double *_dv
static void init_ce(
smthopt *s, /* Context for cusp mapping being set. */
gamut *sc_gam, /* Source colorspace gamut */
+gamut *si_gam, /* Source image gamut */
gamut *d_gam, /* Destination colorspace gamut */
int src_kbp, /* Use K only black point as src gamut black point */
int dst_kbp, /* Use K only black point as dst gamut black point */
@@ -640,9 +624,9 @@ double d_bp[3] /* Override destination target black point (may be NULL) */
/* Set some default values for src white/black/grey */
- /* Get the white and black point info */
+ /* Get the colorspace white and black point info */
if (src_kbp) {
- if (sc_gam->getwb(sc_gam, NULL, NULL, NULL, s->cusps[0][6], NULL, s->cusps[0][7]) != 0) {
+ if (sc_gam->getwb(sc_gam, s->cusps[0][6], NULL, s->cusps[0][7], NULL, NULL, NULL) != 0) {
VB(("getting src wb points failed\n"));
s->cusps[0][6][0] = 100.0;
s->cusps[0][7][0] = 0.0;
@@ -650,7 +634,7 @@ double d_bp[3] /* Override destination target black point (may be NULL) */
s->donaxis = 0;
}
} else {
- if (sc_gam->getwb(sc_gam, NULL, NULL, NULL, s->cusps[0][6], s->cusps[0][7], NULL) != 0) {
+ if (sc_gam->getwb(sc_gam, s->cusps[0][6], s->cusps[0][7], NULL, NULL, NULL, NULL) != 0) {
VB(("getting src wb points failed\n"));
s->cusps[0][6][0] = 100.0;
s->cusps[0][7][0] = 0.0;
@@ -660,7 +644,7 @@ double d_bp[3] /* Override destination target black point (may be NULL) */
}
if (dst_kbp) {
- if (d_gam->getwb(d_gam, NULL, NULL, NULL, s->cusps[1][6], NULL, s->cusps[1][7]) != 0) {
+ if (d_gam->getwb(d_gam, s->cusps[1][6], NULL, s->cusps[1][7], NULL, NULL, NULL) != 0) {
VB(("getting dest wb points failed\n"));
s->cusps[1][6][0] = 100.0;
s->cusps[1][7][0] = 0.0;
@@ -668,7 +652,7 @@ double d_bp[3] /* Override destination target black point (may be NULL) */
s->donaxis = 0;
}
} else {
- if (d_gam->getwb(d_gam, NULL, NULL, NULL, s->cusps[1][6], s->cusps[1][7], NULL) != 0) {
+ if (d_gam->getwb(d_gam, s->cusps[1][6], s->cusps[1][7], NULL, NULL, NULL, NULL) != 0) {
VB(("getting dest wb points failed\n"));
s->cusps[1][6][0] = 100.0;
s->cusps[1][7][0] = 0.0;
@@ -680,6 +664,21 @@ double d_bp[3] /* Override destination target black point (may be NULL) */
icmCpy3(s->cusps[1][7], d_bp);
}
+#ifdef NEVER
+ {
+ double iwp[3] = { -1, -1, -1}, ibp[3] = { -1, -1, -1};
+ if (src_kbp) {
+ si_gam->getwb(si_gam, NULL, NULL, NULL, iwp, NULL, ibp);
+ } else {
+ si_gam->getwb(si_gam, NULL, NULL, NULL, iwp, ibp, NULL);
+ }
+ printf("~1 src white = %f, black = %f\n",s->cusps[0][6][0],s->cusps[0][7][0]);
+ printf("~1 img white = %f, black = %f\n",s->cusps[0][6][0],s->cusps[0][7][0]);
+ printf("~1 dst white = %f, black = %f\n",s->cusps[1][6][0],s->cusps[1][7][0]);
+ }
+
+#endif /* NEVER */
+
/* Get the cusp info */
if (sc_gam->getcusps(sc_gam, s->cusps[0]) != 0 || d_gam->getcusps(d_gam, s->cusps[1]) != 0) {
int isJab;
@@ -1166,6 +1165,7 @@ gammapweights *src
NSCOPY(r.rdl);
NSCOPY(r.rdh);
+ NSCOPY(r.dsm);
NSCOPY(d.co);
NSCOPY(d.xo);
@@ -1207,6 +1207,50 @@ gammapweights *src2, double wgt2
NSBLEND(r.rdl);
NSBLEND(r.rdh);
+ NSBLEND(r.dsm);
+
+ NSBLEND(d.co);
+ NSBLEND(d.xo);
+
+ NSBLEND(f.x);
+#undef NSBLEND
+}
+
+/* Blend a three groups of individual weights into one, given three weightings */
+void near_wblend3(
+gammapweights *dst,
+gammapweights *src1, double wgt1,
+gammapweights *src2, double wgt2,
+gammapweights *src3, double wgt3
+) {
+
+#define NSBLEND(xxx) dst->xxx = wgt1 * src1->xxx + wgt2 * src2->xxx + wgt3 * src3->xxx
+
+ NSBLEND(c.w.l);
+ NSBLEND(c.w.c);
+ NSBLEND(c.w.h);
+ NSBLEND(c.tw);
+ NSBLEND(c.cx);
+
+ NSBLEND(l.o);
+ NSBLEND(l.h);
+ NSBLEND(l.l);
+
+ NSBLEND(a.o);
+ NSBLEND(a.h);
+ NSBLEND(a.wl);
+ NSBLEND(a.gl);
+ NSBLEND(a.bl);
+
+ NSBLEND(a.wlth);
+ NSBLEND(a.blpow);
+
+ NSBLEND(a.lxpow);
+ NSBLEND(a.lxthr);
+
+ NSBLEND(r.rdl);
+ NSBLEND(r.rdh);
+ NSBLEND(r.dsm);
NSBLEND(d.co);
NSBLEND(d.xo);
@@ -1349,8 +1393,9 @@ void tweak_weights(gammapweights out[14], int dst_cmymap, int rel_oride) {
}
if (rel_oride == 1) { /* A high saturation "clip" like mapping */
- out[i].r.rdl = 1.0; /* No relative neighbourhood */
- out[i].r.rdh = 1.0; /* No relative neighbourhood */
+ out[i].r.rdl = 1.0; /* No relative neighbourhood/smoothing */
+ out[i].r.rdh = 1.0; /* No relative neighbourhood/smoothing */
+ out[i].r.dsm = 0.0; /* No relative neighbourhood/smoothing */
out[i].d.co = 0.0; /* No depth weighting */
out[i].d.xo = 0.0; /* No depth weighting */
@@ -1361,7 +1406,7 @@ void tweak_weights(gammapweights out[14], int dst_cmymap, int rel_oride) {
}
}
-/* Blend a two expanded groups of individual weights into one */
+/* Blend two expanded groups of individual weights into one */
void near_xwblend(
gammapweights *dst,
gammapweights *src1, double wgt1,
@@ -1372,6 +1417,18 @@ gammapweights *src2, double wgt2
near_wblend(&dst[i], &src1[i], wgt1, &src2[i], wgt2);
}
+/* Blend three expanded groups of individual weights into one */
+void near_xwblend3(
+gammapweights *dst,
+gammapweights *src1, double wgt1,
+gammapweights *src2, double wgt2,
+gammapweights *src3, double wgt3
+) {
+ int i;
+ for (i = 0; i < 14; i++)
+ near_wblend3(&dst[i], &src1[i], wgt1, &src2[i], wgt2, &src3[i], wgt3);
+}
+
/* Convert overall, hue dom & l dom to iweight */
static void comp_iweight(iweight *iw, double o, double h, double l) {
double c, lc;
@@ -1536,14 +1593,15 @@ void interp_xweights(gamut *gam, gammapweights *out, double pos[3],
}
}
-/* Callback used by compdstgamut() to establish the expected compression */
-/* mapping direction. */
+/* Callback used by expdstbysrcmdst() to establish the expected compression */
+/* mapping direction. p2 should be the center point, so depth from the center */
+/* can be computed. We return a point on the neutral axis. */
static void cvect(
void *cntx, /* smthopt * */
double *p2, /* Return point displaced from p1 in desired direction */
double *p1 /* Given point */
) {
- double vv, gv[3], lv[3];
+ double vv, lv[3];
smthopt *s = (smthopt *)cntx;
gammapweights out;
@@ -1559,18 +1617,26 @@ double *p1 /* Given point */
/* Parameter along neutral axis black to white */
vv = (p1[0] - s->cusps[0][7][0])/(s->cusps[0][6][0] - s->cusps[0][7][0]);
+
/* lv is point at same L on neutral axis */
lv[0] = p1[0];
lv[1] = vv * (s->cusps[0][6][1] - s->cusps[0][7][1]) + s->cusps[0][7][1];
lv[2] = vv * (s->cusps[0][6][2] - s->cusps[0][7][2]) + s->cusps[0][7][2];
- icmSub3(lv, lv, p1); /* Vector */
- icmNormalize3(lv, lv, out.ra.l);
- icmSub3(gv, s->cusps[0][8], p1); /* Grey vector */
- icmNormalize3(gv, gv, out.ra.c);
+ /* Normalise l * c weight to sum to 1.0 */
+ vv = fabs(out.ra.l + out.ra.c);
+ if (vv < 1e-7) { /* Hmm. */
+ out.ra.l = out.ra.c = 0.5;
+ } else {
+ out.ra.l /= vv;
+ out.ra.c /= vv;
+ }
- icmAdd3(p2, gv, p1);
- icmAdd3(p2, lv, p2); /* Combined destination */
+ /* Make p2 the weighted sum of equivalent L value and grey value on */
+ /* the neutral axis. */
+ icmScale3(lv, lv, out.ra.l);
+ icmScale3(p2, s->cusps[0][8], out.ra.c);
+ icmAdd3(p2, p2, lv);
//printf("~1 p2 %f %f %f\n", p2[0], p2[1], p2[2]);
}
@@ -1687,18 +1753,23 @@ double p1[3] /* Point */
/* ============================================ */
/* Return the maximum number of points that will be generated */
+/* (This isn't accurate due to manipulation of the gamuts in nearsmth!) */
int near_smooth_np(
+ gamut **pp_gam, /* Return gamut that was used for points */
gamut *sc_gam, /* Source colorspace gamut */
gamut *si_gam, /* Source image gamut (== sc_gam if none) */
- gamut *d_gam, /* Destination colorspace gamut */
- double xvra /* Extra vertex ratio */
+ gamut *dc_gam, /* Destination colorspace gamut */
+ double xvra, /* Extra vertex ratio */
+ int gmult, /* Guide point multiplier, typically 4 */
+ int surfgres /* surface grid point resolution, 0 for none */
) {
gamut *p_gam; /* Gamut used for points - either source colorspace or image */
int ntpts, nmpts, nspts, nipts, ndpts;
+ int hsurfgres = (surfgres + 1)/2; /* near_smooth uses half */
nspts = sc_gam->nverts(sc_gam);
nipts = si_gam->nverts(si_gam);
- ndpts = d_gam->nverts(d_gam);
+ ndpts = dc_gam->nverts(dc_gam);
p_gam = sc_gam;
/* Target number of points is max of any gamut */
@@ -1714,6 +1785,16 @@ int near_smooth_np(
xvra = ntpts/(double)nspts;
nmpts = p_gam->nssverts(p_gam, xvra); /* Stratified Sampling source points */
+ nmpts *= gmult; /* Allow for sub-surface points etc. */
+
+ if (hsurfgres >= 4) {
+ nmpts += hsurfgres * hsurfgres * hsurfgres
+ - (hsurfgres -4) * (hsurfgres -4) * (hsurfgres -4);
+ }
+
+ if (pp_gam != NULL)
+ *pp_gam = p_gam;
+
return nmpts;
}
@@ -1726,7 +1807,7 @@ int verb, /* Verbose flag */
int *npp, /* Return the actual number of points returned */
gamut *sc_gam, /* Source colorspace gamut - uses cusp info if availablle */
gamut *si_gam, /* Source image gamut (== sc_gam if none), just used for surface. */
-gamut *d_gam, /* Destination colorspace gamut */
+gamut *dc_gam, /* Destination colorspace gamut */
int src_kbp, /* Use K only black point as src gamut black point */
int dst_kbp, /* Use K only black point as dst gamut black point */
double d_bp[3], /* Override destination target black point - may be NULL */
@@ -1738,22 +1819,22 @@ int useexp, /* Flag indicating whether smoothed expanded value will be used
double xvra, /* Extra number of vertexes ratio */
int mapres, /* Grid res for 3D RSPL */
double mapsmooth, /* Target smoothing for 3D RSPL */
-datai map_il, /* Preliminary rspl input range */
+double gexp, /* Grid expansion ratio, none = 1.0 */
+int surfpnts, /* Flag - add surface grid points */
+datai map_il, /* Return expanded input range */
datai map_ih,
-datao map_ol, /* Preliminary rspl output range */
+datao map_ol, /* Return expanded output range */
datao map_oh
) {
smthopt opts; /* optimisation and cusp mapping context */
int ix, i, j, k;
- gamut *p_gam; /* Gamut used for points - either source colorspace or image */
- gamut *sci_gam; /* Intersection of src and img gamut gamut */
- gamut *di_gam; /* Modified destination gamut suitable for mapping from sci_gam. */
- /* If just compression, this is the smaller of sci_gam and d_gam. */
- /* If just expansion, this is the sci_gam expanded by d_gam - sc_gam. */
- /* If both exp & comp, then where
- d_gam is outside sci_gam this is sci_gam expanded by d_gam - sc_gam
- else it is the smaller of sci_gam and d_gam */
- gamut *nedi_gam;/* Same as above, but not expanded. */
+ gamut *p_gam; /* Gamut used for points == either source colorspace or image */
+ gamut *src_gam; /* Intersection of src and img gamut gamut */
+ gamut *dst_gam; /* Modified destination gamut suitable for mapping from src_gam. */
+ /* If compression, this is the intersection of src_gam and dc_gam. */
+ /* If expansion, this is the src_gam expanded by dc_gam - sc_gam. */
+ gamut *nedst_gam;/* Same as above, but not expanded. */
+ int mxnmpts; /* Allocated number of mapping points */
int nmpts; /* Number of mapping gamut points */
nearsmth *smp; /* Absolute delta E weighting */
int pass;
@@ -1762,39 +1843,21 @@ datao map_oh
double codf; /* Itteration overshoot/damping factor */
double mxmv; /* Maximum a point gets moved */
int nmxmv; /* Number of maxmoves less than stopping threshold */
+ int dmapres = 1; /* Change in mapres when applying gexp */
+ int hmapres; /* Half mapres */
+ int hdmapres; /* Half change in mapres */
+ rspl *lastmap = NULL; /* Last gamut mapping map created, if any */
/* Check gamuts are compatible */
- if (sc_gam->compatible(sc_gam, d_gam) == 0
+ if (sc_gam->compatible(sc_gam, dc_gam) == 0
|| (si_gam != NULL && sc_gam->compatible(sc_gam, si_gam) == 0)) {
fprintf(stderr,"gamut map: Gamuts aren't compatible\n");
*npp = 0;
return NULL;
}
- {
- int ntpts, nspts, nipts, ndpts;
-
- nspts = sc_gam->nverts(sc_gam);
- nipts = si_gam->nverts(si_gam);
- ndpts = d_gam->nverts(d_gam);
- p_gam = sc_gam;
-
- /* Target number of points is max of any gamut */
- ntpts = nspts > nipts ? nspts : nipts;
- ntpts = ntpts > ndpts ? ntpts : ndpts;
- ntpts = (int)(ntpts * xvra + 0.5);
-
- /* Use image gamut if it exists */
- if (nspts < nipts || si_gam != sc_gam) {
- nspts = nipts; /* Use image gamut instead */
- p_gam = si_gam;
- }
- xvra = ntpts/(double)nspts;
- nmpts = p_gam->nssverts(p_gam, xvra); /* Stratified Sampling source points */
-
- if (verb) printf("Vertex count: mult. = %f, src %d, img %d dst %d, target %d\n",
- xvra,nspts,nipts,ndpts,nmpts);
- }
+ mxnmpts = near_smooth_np(&p_gam, sc_gam, si_gam, dc_gam, xvra, 1, surfpnts ? mapres : 0);
+ nmpts = 0;
/* Setup opts structure */
opts.useexp = useexp; /* Expansion used ? */
@@ -1805,80 +1868,106 @@ datao map_oh
/* Setup source & dest neutral axis transform if white/black available. */
/* If cusps are available, also figure out the transformations */
/* needed to map source cusps to destination cusps */
- init_ce(&opts, sc_gam, d_gam, src_kbp, dst_kbp, d_bp);
+ init_ce(&opts, sc_gam, si_gam, dc_gam, src_kbp, dst_kbp, d_bp);
/* Allocate our guide points */
- if ((smp = (nearsmth *)calloc(nmpts, sizeof(nearsmth))) == NULL) {
+ if ((smp = (nearsmth *)calloc(mxnmpts, sizeof(nearsmth))) == NULL) {
fprintf(stderr,"gamut map: Malloc of near smooth points failed\n");
*npp = 0;
return NULL;
}
- /* Create a source gamut surface that is the intersection of the src colorspace */
- /* and image gamut, in case (for some strange reason) the image gamut. */
- /* exceeds the source colorspace size. */
- sci_gam = sc_gam; /* Alias to source space gamut */
+ /* Create a source gamut surface that is the image gamut intersected */
+ /* with the source colorspace gamut, in case something strange with the */
+ /* image gamut. (gammap.c may have already done this) */
+ src_gam = sc_gam; /* Alias to source space gamut */
if (si_gam != sc_gam) {
- if ((sci_gam = new_gamut(0.0, 0, 0)) == NULL) {
+ if ((src_gam = new_gamut(0.0, 0, 0)) == NULL) {
fprintf(stderr,"gamut map: new_gamut failed\n");
free_nearsmth(smp, nmpts);
*npp = 0;
return NULL;
}
- sci_gam->intersect(sci_gam, sc_gam, si_gam);
+ src_gam->intersect(src_gam, si_gam, sc_gam);
#ifdef SAVE_VRMLS
{
- char sci_gam_name[40] = "sci_gam";
- strcat(sci_gam_name, vrml_ext());
- printf("###### gamut/nearsmth.c: writing diagnostic sci_gam%s and di_gam%s\n",vrml_ext(),vrml_ext());
- sci_gam->write_vrml(sci_gam, sci_gam_name, 1, 0);
+ char src_gam_name[40] = "si_gam";
+
+ printf("###### gamut/nearsmth.c: writing diagnostic si_gam%s, src_gam%s\n",vrml_ext(),vrml_ext());
+
+ strcat(src_gam_name, vrml_ext());
+ src_gam->write_vrml(si_gam, src_gam_name, 1, 0);
+
+ strcpy(src_gam_name, "src_gam");
+ strcat(src_gam_name, vrml_ext());
+ src_gam->write_vrml(src_gam, src_gam_name, 1, 0);
}
#endif
}
- di_gam = sci_gam; /* Default no compress or expand */
+ dst_gam = src_gam; /* Default no compress or expand */
+
+ /* non-expanded dst_gam for testing double back img points against: */
+ nedst_gam = src_gam; /* Default same as dst_gam */
+
+ /* Convert dst_gam to compress and/or expand target for mapping src_gam to. */
if (usecomp || useexp) {
- if ((di_gam = new_gamut(0.0, 0, 0)) == NULL) {
+
+ if ((nedst_gam = dst_gam = new_gamut(0.0, 0, 0)) == NULL) {
fprintf(stderr,"gamut map: new_gamut failed\n");
- if (si_gam != sc_gam)
- sci_gam->del(sci_gam);
+ if (src_gam != sc_gam)
+ src_gam->del(src_gam);
free_nearsmth(smp, nmpts);
*npp = 0;
return NULL;
}
+ /* For compression only, nedst_gam and dst_gam are smaller of src_gam and dc_gam space. */
+ /* Augment the dst_gam with neutral axis points in case the source gamut */
+ /* has a "spike" that separates it from the neutral axis, allowing */
+ /* mapping. */
+ nedst_gam->nexpintersect(nedst_gam, dc_gam, src_gam);
+
if (useexp) {
- /* Non-expand di_gam for testing double back img points against */
- if ((nedi_gam = new_gamut(0.0, 0, 0)) == NULL) {
- fprintf(stderr,"gamut map: new_gamut failed\n");
- di_gam->del(di_gam);
- if (si_gam != sc_gam)
- sci_gam->del(sci_gam);
- free_nearsmth(smp, nmpts);
- *npp = 0;
- return NULL;
+ /* No image gamut - dest colorspace is target */
+ if (si_gam == sc_gam) {
+ dst_gam = dc_gam; /* Expanded dest is colorspace dest */
+
+ /* There is an image gamut, so */
+ /* Expand nedst_gam to create dst_gam expanded in proportion to where */
+ /* dc_gam is outside sc_gam */
+ } else {
+ if ((dst_gam = new_gamut(0.0, 0, 0)) == NULL) {
+ fprintf(stderr,"gamut map: new_gamut failed\n");
+ if (src_gam != sc_gam)
+ src_gam->del(src_gam);
+ free_nearsmth(smp, nmpts);
+ *npp = 0;
+ return NULL;
+ }
+
+ /* Initialise this gamut with the nedst_gam expanded by ((dc_gam - sc_gam) > 0) */
+ dst_gam->expdstbysrcmdst(dst_gam, nedst_gam, sc_gam, dc_gam, cvect, &opts);
}
- } else {
- nedi_gam = di_gam;
}
-
- /* Initialise this gamut with a destination mapping gamut. */
- /* This will be the smaller of the image and destination gamut if compressing, */
- /* and will be expanded by the (dst - src) if expanding. */
- di_gam->compdstgamut(di_gam, sci_gam, sc_gam, d_gam, usecomp, useexp, nedi_gam,
- cvect, &opts);
}
#ifdef SAVE_VRMLS
{
- char di_gam_name[30] = "di_gam";
- strcat(di_gam_name, vrml_ext());
- di_gam->write_vrml(di_gam, di_gam_name, 1, 0);
+ char dst_gam_name[30] = "dst_gam";
+
+ printf("###### gamut/nearsmth.c: writing diagnostic dst_gam%s, nedst_gam%s\n",vrml_ext(),vrml_ext());
+ strcat(dst_gam_name, vrml_ext());
+ dst_gam->write_vrml(dst_gam, dst_gam_name, 1, 0);
+
+ strcpy(dst_gam_name, "nedst_gam");
+ strcat(dst_gam_name, vrml_ext());
+ nedst_gam->write_vrml(nedst_gam, dst_gam_name, 1, 0);
}
#endif
/* Create a list of the mapping guide points, setup for a null mapping */
VA(("Creating the mapping guide point list\n"));
- for (ix = i = 0; i < nmpts; i++) {
+ for (ix = i = 0; i < mxnmpts; i++) {
double imv[3], imr; /* Image gamut source point and radius */
double inorm[3]; /* Normal of image gamut surface at src point */
@@ -1890,12 +1979,12 @@ datao map_oh
//printf("~1 got point %d out of %d\n",i+1,nmpts);
if (p_gam != sc_gam) { /* If src colorspace point, map to img gamut surface */
- imr = sci_gam->radial(sci_gam, imv, imv);
+ imr = src_gam->radial(src_gam, imv, imv);
}
/* If point is within non-expanded modified destination gamut, */
- /* then it is a "double back" image point, and should be ignored. */
- if (nedi_gam->radial(nedi_gam, NULL, imv) > (imr + 1e-4)) {
+ /* then it is a "double back"/convex image point, and should be ignored. */
+ if (nedst_gam->radial(nedst_gam, NULL, imv) > (imr + 1e-4)) {
VB(("Rejecting point %d because it's inside destination\n",i));
i--;
continue;
@@ -1903,17 +1992,18 @@ datao map_oh
/* Lookup radialy equivalent point on modified destination gamut, */
/* in case we need it for compression or expansion */
- smp[i].drr = di_gam->radial(di_gam, smp[i].drv, imv);
+ smp[i].drr = dst_gam->radial(dst_gam, smp[i].drv, imv);
/* Default setup a null mapping of source image space point to source image point */
- smp[i].vflag = smp[i].gflag = 0;
+ smp[i].uflag = smp[i].vflag = smp[i].gflag = 0;
smp[i].dr = smp[i].sr = smp[i]._sr = imr;
smp[i].dv[0] = smp[i].sv[0] = smp[i]._sv[0] = imv[0];
smp[i].dv[1] = smp[i].sv[1] = smp[i]._sv[1] = imv[1];
smp[i].dv[2] = smp[i].sv[2] = smp[i]._sv[2] = imv[2];
- smp[i].sgam = sci_gam;
- smp[i].dgam = sci_gam;
- smp[i].mapres = mapres;
+ smp[i].w1 = 1.0;
+ smp[i].sgam = src_gam;
+ smp[i].dgam = src_gam;
+ smp[i].dcgam = dc_gam;
VB(("In Src %d = %f %f %f\n",i,smp[i].sv[0],smp[i].sv[1],smp[i].sv[2]));
@@ -1927,7 +2017,7 @@ datao map_oh
double mv[3], ml; /* Radial inward mapping vector */
double dir;
- icmSub3(mv, sci_gam->cent, smp[i].sv); /* Vector to center */
+ icmSub3(mv, src_gam->cent, smp[i].sv); /* Vector to center */
ml = icmNorm3(mv); /* It's length */
if (ml > 0.001) {
@@ -1947,6 +2037,7 @@ datao map_oh
smp[i].anv[0] = smp[i].aodv[0] = smp[i].dv[0];
smp[i].anv[1] = smp[i].aodv[1] = smp[i].dv[1];
smp[i].anv[2] = smp[i].aodv[2] = smp[i].dv[2];
+ smp[i].w1 = 1.01; /* Use 1.01 as marker value */
VB(("Src %d = %f %f %f\n",i,smp[i].sv[0],smp[i].sv[1],smp[i].sv[2]));
VB(("Dst %d = %f %f %f\n",i,smp[i].dv[0],smp[i].dv[1],smp[i].dv[2]));
@@ -1955,17 +2046,17 @@ datao map_oh
*npp = nmpts;
/* Don't need this anymore */
- if (nedi_gam != di_gam)
- nedi_gam->del(nedi_gam);
- nedi_gam = NULL;
+ if (nedst_gam != src_gam && nedst_gam != dst_gam)
+ nedst_gam->del(nedst_gam);
+ nedst_gam = NULL;
/* If nothing to be compressed or expanded, then return */
if (usecomp == 0 && useexp == 0) {
VB(("Neither compression nor expansion defined\n"));
- if (si_gam != sc_gam)
- sci_gam->del(sci_gam);
- if (di_gam != sci_gam && di_gam != sci_gam)
- di_gam->del(di_gam);
+ if (src_gam != sc_gam)
+ src_gam->del(src_gam);
+ if (dst_gam != src_gam && dst_gam != dc_gam)
+ dst_gam->del(dst_gam);
return smp;
}
@@ -1978,6 +2069,15 @@ datao map_oh
interp_xweights(opts.sgam, &smp[i].wt, smp[i]._sv, opts.xwh, &opts, 0);
}
+ /* ~~ would be nice to eliminate the need for dst_gam that is the intersection
+ * of dc_gam and sc/img_gam here. Problem is determining expansion vector
+ * direction in a way that is consistent with the absolute error weighting.
+ *
+ * For the moment leave the current appoach of using the dst_gam that has been
+ * expanded in proportion to dc_gam - sc_gam in cvec() direction, since
+ * the absolute error weighting is use to map the sv to that surface.
+ */
+
VA(("Setting up cusp rotated compression or expansion mappings\n"));
VB(("rimv = Cusp rotated cspace/image gamut source point\n"));
VB(("imv = cspace/image gamut source point\n"));
@@ -2000,7 +2100,7 @@ datao map_oh
/* Compute the cusp rotated version of the cspace/image points */
comp_ce(&opts, rimv, imv, &smp[i].wt);
VB(("%f de, ix %d: cusp mapped %f %f %f -> %f %f %f\n", icmNorm33(rimv,imv), i, imv[0], imv[1], imv[2], rimv[0], rimv[1], rimv[2]));
- rimr = icmNorm33(rimv, sci_gam->cent);
+ rimr = icmNorm33(rimv, src_gam->cent);
/* Default setup a no compress or expand mapping of */
/* source space/image point to modified destination gamut. */
@@ -2008,8 +2108,8 @@ datao map_oh
smp[i].sv[0] = rimv[0]; /* Temporary rotated src point */
smp[i].sv[1] = rimv[1];
smp[i].sv[2] = rimv[2];
- smp[i].sgam = sci_gam;
- smp[i].dgam = di_gam;
+ smp[i].sgam = src_gam;
+ smp[i].dgam = dst_gam;
VB(("\n"));
VB(("point %d:, rimv = %f %f %f, rimr = %f\n",i,rimv[0],rimv[1],rimv[2],rimr));
@@ -2043,7 +2143,7 @@ datao map_oh
double tc[3] = { 0.0, 0.0, 0.0 };
for (ix = 0; ix < nmpts; ix++) {
- /* Coompute a rotation that brings the target point location to 50,0,0 */
+ /* Compute a rotation that brings the target point location to 50,0,0 */
icmVecRotMat(smp[ix].m2d, smp[ix].sv, sc_gam->cent, ta, tc);
/* And inverse */
@@ -2052,171 +2152,149 @@ datao map_oh
}
/* Figure out which neighbors of the source values to use */
- /* for the relative error calculations. */
+ /* for the relative error & smoothing calculations. */
/* Locate the neighbor within the radius for this point, */
/* and weight them with a Gausian filter weight. */
/* The radius is computed on the normalised surface for this point. */
VA(("Establishing filter neighbourhoods\n"));
{
- double mm[3][4]; /* Tangent alignment rotation */
- double m2[2][2]; /* Additional matrix to alight a with L axis */
- double ta[3] = { 50.0, 0.0, 0.0 };
- double tc[3] = { 0.0, 0.0, 0.0 };
double avgnd = 0.0; /* Total the average number of neighbours */
int minnd = 1e6; /* Minimum number of neighbours */
for (ix = 0; ix < nmpts; ix++) {
- double tt[3], rrdl, rrdh, rrdc, dd;
- double msv[3], ndx[4]; /* Midpoint source value, quadrant distance */
- double pr; /* Average point radius */
+ int sit;
+ double rr;
+ double rrdl, rrdh;
//printf("~1 computing neigbourhood for point %d at %f %f %f\n",ix, smp[ix].sv[0], smp[ix].sv[1], smp[ix].sv[2]);
- /* Compute a rotation that brings the target point location to 50,0,0 */
- icmNormalize33(tt, smp[ix].sv, smp[ix].sgam->cent, 1.0);
- icmVecRotMat(mm, tt, smp[ix].sgam->cent, ta, tc);
-
- /* Add another rotation to orient it so that [1] corresponds */
- /* with the L direction, and [2] corresponds with the */
- /* hue direction. */
- m2[0][0] = m2[1][1] = 1.0;
- m2[0][1] = m2[1][0] = 0.0;
- tt[0] = smp[ix].sv[0] + 1.0;
- tt[1] = smp[ix].sv[1];
- tt[2] = smp[ix].sv[2];
- icmNormalize33(tt, tt, smp[ix].sgam->cent, 1.0);
- icmMul3By3x4(tt, mm, tt);
- dd = tt[1] * tt[1] + tt[2] * tt[2];
- if (dd > 1e-6) { /* There is a sense of L direction */
-
- /* Create the 2x2 rotation matrix */
- dd = sqrt(dd);
- tt[1] /= dd;
- tt[2] /= dd;
-
- m2[0][0] = m2[1][1] = tt[1];
- m2[0][1] = tt[2];
- m2[1][0] = -tt[2];
- }
- /* Make rr inversely proportional to radius, so that */
- /* filter scope is constant delta E */
rrdl = smp[ix].wt.r.rdl;
rrdh = smp[ix].wt.r.rdh;
-//printf("~1 rdl %f, rdh %f\n",smp[ix].wt.r.rdl,smp[ix].wt.r.rdh);
+//printf("~1 rdl %f, rdh %f\n",rrdl, rrdh);
+
if (rrdl < 1e-3) rrdl = 1e-3;
if (rrdh < 1e-3) rrdh = 1e-3;
- /* Average radius of source and destination */
- pr = 0.5 * (smp[ix]._sr + smp[ix].dr);
-
-//printf("~1 pr = %f from _sr %f & dr %f\n",pr,smp[ix]._sr,smp[ix].dr);
- if (pr < 5.0)
- pr = 5.0;
- rrdl *= 50.0/pr;
- rrdh *= 50.0/pr;
- rrdc = 0.5 * (rrdl + rrdh); /* Chrominance radius */
-
- /* Scale the filter radius by the L/C value, */
- /* so that the filters are largest at the equator, and smallest */
- /* at the white & black points. This allows the wt.a.lx wt.a.cx to work. */
- pr = smp[ix].naxbf + 0.1; /* "spherical" type weighting, 0.707 at 45 degrees */
- rrdl *= pr;
- rrdh *= pr;
- rrdc *= pr;
-//printf("~1 at %f %f %f, rrdl = %f, rrdh = %f\n",smp[ix]._sv[0], smp[ix]._sv[1], smp[ix]._sv[2], rrdl, rrdh);
-
- smp[ix].nnd = 0; /* Nothing in lists */
-
- /* Search for points within the gausian radius */
- for (i = 0; i < nmpts; i++) {
- double x, y, z, tv[3];
-
- /* compute tangent alignment rotated location */
- icmNormalize33(tt, smp[i].sv, smp[ix].sgam->cent, 1.0);
- icmMul3By3x4(tv, mm, tt);
- icmMulBy2x2(&tv[1], m2, &tv[1]);
-
- x = tv[1]/rrdl;
- y = tv[2]/rrdh;
- z = (tv[0] - 50.0)/rrdc;
-
- /* Compute normalized delta normalized tangent surface */
- dd = x * x + y * y + z * z;
-
- /* If we're within the direction filtering radius, */
- /* and not of the opposite hue */
- if (dd <= 1.0 && tv[0] > 0.0) {
- double w;
-
- dd = sqrt(dd); /* Convert to radius <= 1.0 */
-
- /* Add this point into the list */
- if (smp[ix].nnd >= smp[ix]._nnd) {
- neighb *nd;
- int _nnd;
- _nnd = 5 + smp[ix]._nnd * 2;
- if ((nd = (neighb *)realloc(smp[ix].nd, _nnd * sizeof(neighb))) == NULL) {
- VB(("realloc of neighbs at vector %d failed\n",ix));
- if (si_gam != sc_gam)
- sci_gam->del(sci_gam);
- if (di_gam != sci_gam && di_gam != sci_gam)
- di_gam->del(di_gam);
- free_nearsmth(smp, nmpts);
- *npp = 0;
- return NULL;
+ rr = sqrt(smp[ix].sv[1] * smp[ix].sv[1] + smp[ix].sv[2] * smp[ix].sv[2]);
+
+ if (rr < 5.0)
+ rr = 5.0;
+ rr = sqrt(rr / 50.0);
+
+ // Scale radius aprox. by cylindrical distance ?? */
+ //rrdh *= rr;
+
+ rrdl = 1.0/rrdl;
+ rrdh = 1.0/rrdh;
+
+ smp[ix].nnd = 0;
+
+ /* Until we get a minimum number of neighbors */
+ for (sit = 0; smp[ix].nnd < 8 && sit < 10; sit++) {
+
+ smp[ix].nnd = 0;
+
+ /* Search for points within the radius */
+ for (i = 0; i < nmpts; i++) {
+ double tt, dd, tv;
+
+ /* Dot of neighbor color and point */
+ tv = smp[i].sv[1] * smp[ix].sv[1] + smp[i].sv[2] * smp[ix].sv[2];
+
+ /* Ignore if of the opposote hue */
+ if (tv < 0.0)
+ continue;
+
+ dd = 0.0;
+ tt = rrdl * (smp[i].sv[0] - smp[ix].sv[0]);
+ dd += tt * tt;
+ tt = rrdh * (smp[i].sv[1] - smp[ix].sv[1]);
+ dd += tt * tt;
+ tt = rrdh * (smp[i].sv[2] - smp[ix].sv[2]);
+ dd += tt * tt;
+
+ /* If we're within the filtering radius, */
+ /* and not of the opposite hue */
+ if (dd <= 1.0) {
+ double w;
+
+ dd = sqrt(dd); /* Convert to radius <= 1.0 */
+
+ /* Add this point into the list */
+ if (smp[ix].nnd >= smp[ix]._nnd) {
+ neighb *nd;
+ int _nnd;
+ _nnd = 5 + smp[ix]._nnd * 2;
+ if ((nd = (neighb *)realloc(smp[ix].nd, _nnd * sizeof(neighb))) == NULL) {
+ VB(("realloc of neighbs at vector %d failed\n",ix));
+ if (src_gam != sc_gam)
+ src_gam->del(src_gam);
+ if (dst_gam != src_gam && dst_gam != dc_gam)
+ dst_gam->del(dst_gam);
+ free_nearsmth(smp, nmpts);
+ *npp = 0;
+ return NULL;
+ }
+ smp[ix].nd = nd;
+ smp[ix]._nnd = _nnd;
}
- smp[ix].nd = nd;
- smp[ix]._nnd = _nnd;
- }
- smp[ix].nd[smp[ix].nnd].n = &smp[i];
+ smp[ix].nd[smp[ix].nnd].n = &smp[i];
- /* Box filter */
-// w = 1.0;
+ /* Box filter */
+// w = 1.0;
- /* Triangle filter */
-// w = 1.0 - dd;
+ /* Triangle filter */
+// w = 1.0 - dd;
-// /* Cubic spline filter */
-// w = 1.0 - dd;
-// w = w * w * (3.0 - 2.0 * w);
+// /* Cubic spline filter (default) */
+ w = 1.0 - dd;
+ w = w * w * (3.0 - 2.0 * w);
- /* Gaussian filter (default) */
- w = exp(-9.0 * dd/2.0);
+ /* Gaussian filter */
+// w = exp(-9.0 * dd/2.0);
- /* Sphere filter */
-// w = sqrt(1.0 - dd * dd);
+ /* Sphere filter */
+// w = sqrt(1.0 - dd * dd);
- /* Sinc^2 filter */
-// w = 3.1415926 * dd;
-// if (w < 1e-9)
-// w = 1e-9;
-// w = sin(w)/w;
-// w = w * w;
+ /* Sinc^2 filter */
+// w = 3.1415926 * dd;
+// if (w < 1e-9)
+// w = 1e-9;
+// w = sin(w)/w;
+// w = w * w;
- smp[ix].nd[smp[ix].nnd].w = w; /* Will be normalized to sum to 1.0 */
+ /* Save weighting */
+ smp[ix].nd[smp[ix].nnd].w = w; /* Will be normalized to sum to 1.0 */
-// /* Sphere filter for depth */
-// w = sqrt(1.0 - dd * dd);
+// /* Sphere filter for depth */
+// w = sqrt(1.0 - dd * dd);
- /* Cubic spline filter for depth */
-// w = 1.0 - dd;
-// w = w * w * (3.0 - 2.0 * w);
+ /* Cubic spline filter for depth (default) */
+// w = 1.0 - dd;
+// w = w * w * (3.0 - 2.0 * w);
- /* Gaussian filter for depth (default) */
- w = exp(-9.0 * dd/2.0);
+// /* Gaussian filter for depth */
+// w = exp(-9.0 * dd/2.0);
- smp[ix].nd[smp[ix].nnd].rw = w; /* Won't be normalized */
+ /* Save weighting */
+ smp[ix].nd[smp[ix].nnd].rw = w; /* Won't be normalized */
//printf("~1 adding %d at %f %f %f, rad %f L %f, w %f dir.\n",i, smp[i].sv[0], smp[i].sv[1], smp[i].sv[2],sqrt(dd),tv[0],smp[ix].nd[smp[ix].nnd].w);
- smp[ix].nnd++;
+ smp[ix].nnd++;
+ }
}
+ /* Increase radius in case we haven't found enough neighbors */
+ rrdl /= 1.5;
+ rrdh /= 1.5;
}
+
+//if (smp[ix].nnd < 8) printf("~1 point %d has %d neighbors\n",ix,smp[ix].nnd);
+
if (smp[ix].nnd < minnd)
minnd = smp[ix].nnd;
avgnd += (double)smp[ix].nnd;
-//printf("~1 total of %d dir neigbours\n\n",smp[ix].nnd);
-
+//printf("~1 total of %d dir neigbours after try %d\n",smp[ix].nnd, sit);
}
avgnd /= (double)nmpts;
@@ -2233,16 +2311,44 @@ datao map_oh
for (j = 0; j < smp[i].nnd; j++) {
smp[i].nd[j].w /= tw;
}
+ }
+ }
+
+#ifdef SHOW_NEIGB
+ {
+ vrml *wrl = NULL;
+ double yellow[3] = { 1.0, 1.0, 0.0 };
+ double red[3] = { 1.0, 0.0, 0.0 };
+ double green[3] = { 0.0, 1.0, 0.0 };
+ double magenta[3] = { 1.0, 0.0, 1.0 };
+ double pp[3];
+ for (i = 0; i < nmpts; i++) {
+
+ if ((wrl = new_vrml("neigb", 1, vrml_lab)) == NULL)
+ error("New %s failed for '%s%s'",vrml_format(),"neigb",vrml_ext());
+ for (j = 0; j < smp[i].nnd; j++) {
+ if (smp[i].nd[j].n == &smp[i])
+ continue;
+ wrl->add_col_vertex(wrl, 0, smp[i].sv, yellow);
+ wrl->add_col_vertex(wrl, 0, smp[i].nd[j].n->sv, yellow);
+ }
+ wrl->make_lines(wrl, 0, 2);
+
+ wrl->add_marker(wrl, smp[i].sv, red, 0.5);
+
+ wrl->del(wrl);
+ printf("Waiting for input after writing 'neigb%s' for point %d:\n",vrml_ext(),i);
+ getchar();
}
}
+#endif /* SHOW_NEIGB */
#ifdef SHOW_NEIGB_WEIGHTS
{
vrml *wrl = NULL;
double yellow[3] = { 1.0, 1.0, 0.0 };
double red[3] = { 1.0, 0.0, 0.0 };
- double green[3] = { 0.0, 1.0, 0.0 };
double pp[3];
for (i = 0; i < nmpts; i++) {
@@ -2258,7 +2364,7 @@ datao map_oh
}
for (j = 0; j < smp[i].nnd; j++) {
wrl->add_col_vertex(wrl, 0, smp[i].sgam->cent, smp[i].nd[j].n == &smp[i] ? red : yellow);
- icmNormalize33(pp, smp[i].nd[j].n->_sv, smp[i].sgam->cent, smp[i].nd[j].w * 50.0/maxw);
+ icmNormalize33(pp, smp[i].nd[j].n->sv, smp[i].sgam->cent, smp[i].nd[j].w * 50.0/maxw);
wrl->add_col_vertex(wrl, 0, pp, smp[i].nd[j].n == &smp[i] ? red : yellow);
}
wrl->make_lines(wrl, 0, 2);
@@ -2315,6 +2421,8 @@ datao map_oh
smp[i].sv[1] = smp[i].drv[1];
smp[i].sv[2] = smp[i].drv[2];
}
+ opts.wngam = smp[i].dgam; /* Nearest to dgam */
+ opts.wn = smp[i].sv; /* minimize optfunc1 sv -> dgam */
/* Convert our start value from 3D to 2D for speed. */
icmMul3By3x4(iv, smp[i].m2d, smp[i].dv);
@@ -2350,10 +2458,10 @@ datao map_oh
nv[1] = iv[1] = iv[2];
powell(NULL, 2, nv, s, 0.01, 1000, optfunc1, (void *)(&opts), NULL, NULL);
#endif
- if (si_gam != sc_gam)
- sci_gam->del(sci_gam);
- if (di_gam != sci_gam && di_gam != sci_gam)
- di_gam->del(di_gam);
+ if (src_gam != sc_gam)
+ src_gam->del(src_gam);
+ if (dst_gam != src_gam && dst_gam != dc_gam)
+ dst_gam->del(dst_gam);
free_nearsmth(smp, nmpts);
*npp = 0;
return NULL;
@@ -2391,14 +2499,12 @@ datao map_oh
smp[i].aodv[2] = smp[i].drv[2];
}
}
- if (verb) {
- printf("."); fflush(stdout);
- }
}
- VA(("Locating weighted mapping vectors without smoothing:\n"));
+ VA(("Locating weighted mapping vectors without smoothing\n"));
+
/* Second pass to locate the optimized overall weighted point nrdv[], */
- /* not counting relative error. */
+ /* which is a balance of absolute error, radial error, depth room weighting */
{
double s[2] = { 20.0, 20.0 }; /* 2D search area */
double iv[3]; /* Initial start value */
@@ -2455,10 +2561,10 @@ datao map_oh
nv[1] = iv[1] = iv[2];
powell(NULL, 2, nv, s, 0.01, 1000, optfunc2, (void *)(&opts), NULL, NULL);
#endif
- if (si_gam != sc_gam)
- sci_gam->del(sci_gam);
- if (di_gam != sci_gam && di_gam != sci_gam)
- di_gam->del(di_gam);
+ if (src_gam != sc_gam)
+ src_gam->del(src_gam);
+ if (dst_gam != src_gam && dst_gam != dc_gam)
+ dst_gam->del(dst_gam);
free_nearsmth(smp, nmpts);
*npp = 0;
return NULL;
@@ -2473,37 +2579,90 @@ datao map_oh
/* Remap it to the destinaton gamut surface */
smp[i].dgam->radial(smp[i].dgam, tp, tp);
+ icmCpy3(smp[i].dv, tp); /* Default current solution */
icmCpy3(smp[i].nrdv, tp); /* Non smoothed result */
icmCpy3(smp[i].anv, tp); /* Starting point for smoothing */
- icmCpy3(smp[i].dv, tp); /* Default current solution */
smp[i].dr = icmNorm33(smp[i].dv, smp[i].dgam->cent);
//printf("~1 %d: dv %f %f %f\n", i, smp[i].dv[0], smp[i].dv[1], smp[i].dv[2]);
}
- if (verb) {
- printf("."); fflush(stdout);
+ }
+
+ /* Make sure the input and output ranges encompas the points */
+ for (i = 0; i < nmpts; i++) {
+ for (j = 0; j < 3; j++) {
+ if (smp[i]._sv[j] < map_il[j])
+ map_il[j] = smp[i]._sv[j];;
+ if (smp[i]._sv[j] > map_ih[j])
+ map_ih[j] = smp[i]._sv[j];
+
+ if (smp[i].sv[j] < map_il[j])
+ map_il[j] = smp[i].sv[j];;
+ if (smp[i].sv[j] > map_ih[j])
+ map_ih[j] = smp[i].sv[j];
+
+ if (smp[i].dv[j] < map_ol[j])
+ map_ol[j] = smp[i].dv[j];;
+ if (smp[i].dv[j] > map_oh[j])
+ map_oh[j] = smp[i].dv[j];
}
}
-#ifdef DIAG_POINTS
- /* Show just the closest vectors etc. */
- for (i = 0; i < nmpts; i++) { /* Move all the points */
-// icmCpy3(smp[i].dv, smp[i].drv); /* Radial */
- icmCpy3(smp[i].dv, smp[i].aodv); /* Nearest */
-// icmCpy3(smp[i].dv, smp[i].nrdv); /* No smoothed weighted */
-// icmCpy3(smp[i].dv, smp[i].dv); /* pre-filter smooothed */
- smp[i].dr = icmNorm33(smp[i].dv, smp[i].dgam->cent);
+#ifdef NEVER
+ if (verb) {
+ printf("Input bounding box:\n");
+ printf(" %f -> %f, %f -> %f, %f -> %f\n",
+ map_il[0], map_ih[0], map_il[1], map_ih[1], map_il[2], map_ih[2]);
}
-#else
- /* The smoothed direction and raw depth is a single pass, */
- /* but we use multiple passes to determine the extra depth that */
- /* needs to be added so that the smoothed result lies within */
- /* the destination gamut. */
+#endif
+
+ /* Expand the bounding box by gexp so that our surface grid points */
+ /* establish the extrapolation behaviour. Ensure that boundary */
+ /* lands on the new grid though. */
+ {
+ double scale;
+
+ dmapres = (int)(((mapres-1) - (mapres-1)/gexp)/2.0 + 0.5);
+ if (dmapres < 1)
+ dmapres = 1;
+
+ scale = (double)(mapres-1-dmapres)/(double)(mapres-1 - 2 * dmapres);
+
+ for (j = 0; j < 3; j++) {
+ double low, high;
+ high = map_ih[j];
+ low = map_il[j];
+ map_ih[j] = (scale * (high - low)) + low;
+ map_il[j] = (scale * (low - high)) + high;
+ }
+#ifdef NEVER
+ if (verb) {
+ printf("After scaling up by %f, input bounding box:\n",scale);
+ printf(" %f -> %f, %f -> %f, %f -> %f\n",
+ map_il[0], map_ih[0], map_il[1], map_ih[1], map_il[2], map_ih[2]);
+ }
+#endif
+
+ /* Values for grid surface points */
+ hmapres = (mapres+1)/2;
+ hdmapres = (dmapres+1)/2;
+ }
+
+#if RSPLPASSES > 0 || VECADJPASSES > 0
+
+ VA(("Computing fine tuning correction direction:\n"));
+
+ /* We need inward pointing correction vectors to be able */
+ /* to do clipping and fine tuning. We create a shrunken */
+ /* version of the dst_gamut and a mapping based on the */
+ /* weighted minimum absolute error metric, and then */
+ /* create a rspl to represent that mapping. */
-#if VECADJPASSES > 0 || RSPLPASSES > 0
- /* We will need inward pointing correction vectors */
+ /* This sort of clipping direction helps preserve the */
+ /* mapping shape (hence smoothness), while minimizing the */
+ /* loss of saturation and change in dest. mapping location. */
{
- gamut *shgam; /* Shrunken di_gam */
+ gamut *shgam; /* Shrunken dst_gam */
double cusps[6][3];
double wp[3], bp[3], kp[3];
double p[3], p2[3], rad;
@@ -2523,14 +2682,13 @@ datao map_oh
double avgdev[MXDO];
/* Create a gamut that is a shrunk version of the destination */
-
- if ((shgam = new_gamut(di_gam->getsres(di_gam), di_gam->getisjab(di_gam),
- di_gam->getisrast(di_gam))) == NULL) {
+ if ((shgam = new_gamut(dst_gam->getsres(dst_gam), dst_gam->getisjab(dst_gam),
+ dst_gam->getisrast(dst_gam))) == NULL) {
fprintf(stderr, "new_gamut failed\n");
- if (si_gam != sc_gam)
- sci_gam->del(sci_gam);
- if (di_gam != sci_gam && di_gam != sci_gam)
- di_gam->del(di_gam);
+ if (src_gam != sc_gam)
+ src_gam->del(src_gam);
+ if (dst_gam != src_gam && dst_gam != dc_gam)
+ dst_gam->del(dst_gam);
free_nearsmth(smp, nmpts);
*npp = 0;
return NULL;
@@ -2542,14 +2700,14 @@ datao map_oh
for (i = 0;;) {
double len;
- if ((i = di_gam->getrawvert(di_gam, p, i)) < 0)
+ if ((i = dst_gam->getrawvert(dst_gam, p, i)) < 0)
break;
doshrink(&opts, p, p, SHRINK);
shgam->expand(shgam, p);
}
/* Translate cusps */
- if (di_gam->getcusps(di_gam, cusps) == 0) {
+ if (dst_gam->getcusps(dst_gam, cusps) == 0) {
shgam->setcusps(shgam, 0, NULL);
for (i = 0; i < 6; i++) {
doshrink(&opts, p, cusps[i], SHRINK);
@@ -2558,7 +2716,7 @@ datao map_oh
shgam->setcusps(shgam, 2, NULL);
}
/* Translate white and black points */
- if (di_gam->getwb(di_gam, wp, bp, kp, NULL, NULL, NULL) == 0) {
+ if (dst_gam->getwb(dst_gam, wp, bp, kp, NULL, NULL, NULL) == 0) {
doshrink(&opts, wp, wp, SHRINK);
doshrink(&opts, bp, bp, SHRINK);
doshrink(&opts, kp, kp, SHRINK);
@@ -2568,10 +2726,10 @@ datao map_oh
if ((gpnts = (cow *)malloc(nmpts * sizeof(cow))) == NULL) {
fprintf(stderr,"gamut map: Malloc of near smooth points failed\n");
shgam->del(shgam);
- if (si_gam != sc_gam)
- sci_gam->del(sci_gam);
- if (di_gam != sci_gam && di_gam != sci_gam)
- di_gam->del(di_gam);
+ if (src_gam != sc_gam)
+ src_gam->del(src_gam);
+ if (dst_gam != src_gam && dst_gam != dc_gam)
+ dst_gam->del(dst_gam);
free_nearsmth(smp, nmpts);
*npp = 0;
return NULL;
@@ -2579,7 +2737,7 @@ datao map_oh
/* Now locate the closest points on the shrunken gamut */
/* and set them up for creating a rspl */
- opts.shgam = shgam;
+ opts.wngam = shgam;
for (i = 0; i < nmpts; i++) { /* Move all the points */
gtri *ctri = NULL;
double tmp[3];
@@ -2591,9 +2749,10 @@ datao map_oh
opts.pass = 0; /* Itteration pass */
opts.ix = i; /* Point to optimise */
opts.p = &smp[i];
+ opts.wn = smp[i].dv; /* minimize optfunc1a dv -> shgam */
/* Convert our start value from 3D to 2D for speed. */
- icmMul3By3x4(iv, smp[i].m2d, smp[i].dv);
+ icmMul3By3x4(iv, smp[i].m2d, smp[i].nrdv);
nv[0] = iv[0] = iv[1];
nv[1] = iv[1] = iv[2];
@@ -2619,16 +2778,16 @@ datao map_oh
#ifdef DEBUG_POWELL_FAILS
/* Optimise the point with debug on */
opts.debug = 1;
- icmMul3By3x4(iv, smp[i].m2d, smp[i].dv);
+ icmMul3By3x4(iv, smp[i].m2d, smp[i].nrdv);
nv[0] = iv[0] = iv[1];
nv[1] = iv[1] = iv[2];
powell(NULL, 2, nv, s, 0.01, 1000, optfunc1a, (void *)(&opts), NULL, NULL);
#endif
shgam->del(shgam); /* Done with this */
- if (si_gam != sc_gam)
- sci_gam->del(sci_gam);
- if (di_gam != sci_gam && di_gam != sci_gam)
- di_gam->del(di_gam);
+ if (src_gam != sc_gam)
+ src_gam->del(src_gam);
+ if (dst_gam != src_gam && dst_gam != dc_gam)
+ dst_gam->del(dst_gam);
free_nearsmth(smp, nmpts);
*npp = 0;
return NULL;
@@ -2644,12 +2803,11 @@ datao map_oh
shgam->radial(shgam, tp, tp);
/* Compute mapping vector from dst to shdst */
- icmSub3(smp[i].temp, tp, smp[i].dv);
-
+ icmSub3(smp[i].temp, tp, smp[i].nrdv);
/* In case shrunk vector is very short, add a small part */
/* of the nearest normal. */
- smp[i].dgam->nearest_tri(smp[i].dgam, NULL, smp[i].dv, &ctri);
+ smp[i].dgam->nearest_tri(smp[i].dgam, NULL, smp[i].nrdv, &ctri);
icmScale3(tmp, ctri->pe, 0.1); /* Scale to small inwards */
icmAdd3(smp[i].temp, smp[i].temp, tmp);
@@ -2657,13 +2815,12 @@ datao map_oh
icmNormalize3(smp[i].temp, smp[i].temp, 1.0);
/* Place it in rspl setup array */
- icmCpy3(gpnts[i].p, smp[i].dv);
+ icmCpy3(gpnts[i].p, smp[i].nrdv);
icmCpy3(gpnts[i].v, smp[i].temp);
gpnts[i].w = 1.0;
}
for (j = 0; j < 3; j++) { /* Set resolution for all axes */
-// gres[j] = (mapres+1)/2; /* Half resolution */
gres[j] = mapres; /* Full resolution */
avgdev[j] = GAMMAP_RSPLAVGDEV;
}
@@ -2672,7 +2829,6 @@ datao map_oh
evectmap->fit_rspl_w(evectmap, GAMMAP_RSPLFLAGS, gpnts, nmpts,
map_il, map_ih, gres, map_ol, map_oh, 1.0, avgdev, NULL);
-// ~~999
#ifdef PLOT_EVECTS /* Create VRML of error correction vectors */
{
vrml *wrl = NULL;
@@ -2690,7 +2846,7 @@ datao map_oh
printf("###### gamut/nearsmth.c: writing diagnostic evects%s\n",vrml_ext());
if ((wrl = new_vrml("evects", doaxes, vrml_lab)) == NULL)
error("new_vrml failed for '%s%s'","evects",vrml_ext());
- wrl->make_gamut_surface_2(wrl, di_gam, 0.6, 0, cc);
+ wrl->make_gamut_surface_2(wrl, dst_gam, 0.6, 0, cc);
cc[0] = -1.0;
wrl->make_gamut_surface(wrl, shgam, 0.2, cc);
@@ -2698,16 +2854,16 @@ datao map_oh
wrl->start_line_set(wrl, 0);
for (i = 0; i < nmpts; i++) {
- wrl->add_col_vertex(wrl, 0, smp[i].dv, red);
+ wrl->add_col_vertex(wrl, 0, smp[i].nrdv, red);
#ifdef NEVER /* Plot created vectors */
icmScale3(tmp, smp[i].temp, 4.0);
- icmSub3(tmp, smp[i].dv, tmp);
+ icmSub3(tmp, smp[i].nrdv, tmp);
#else
/* Plot interpolated vectors */
- icmCpy3(cp.p, smp[i].dv);
+ icmCpy3(cp.p, smp[i].nrdv);
evectmap->interp(evectmap, &cp);
icmScale3(tmp, cp.v, 4.0);
- icmSub3(tmp, smp[i].dv, tmp);
+ icmSub3(tmp, smp[i].nrdv, tmp);
#endif
wrl->add_col_vertex(wrl, 0, tmp, green);
}
@@ -2718,267 +2874,265 @@ datao map_oh
shgam->del(shgam); /* Done with this */
free(gpnts);
}
-#endif /* VECADJPASSES > 0 || RSPLPASSES > 0 */
-
-#ifdef VECSMOOTHING
- VA(("Smoothing guide vectors:\n"));
-
- /* Compute the neighbourhood smoothed anv[] from dv[] */
- for (i = 0; i < nmpts; i++) {
- double anv[3]; /* new anv[] */
- double tmp[3];
-
- /* Compute filtered value */
- anv[0] = anv[1] = anv[2] = 0.0;
- for (j = 0; j < smp[i].nnd; j++) {
- nearsmth *np = smp[i].nd[j].n; /* Pointer to neighbor */
- double nw = smp[i].nd[j].w; /* Weight */
- double tmp[3];
-
- icmSub3(tmp, smp[i].sv, np->sv); /* Vector from neighbour src to src */
- icmAdd3(tmp, tmp, np->dv); /* Neigbour dst + vector */
- icmScale3(tmp, tmp, nw); /* weight for filter */
- icmAdd3(anv, anv, tmp); /* sum filtered value */
- }
-
- /* Blend to un-smoothed value on neutral axis */
- icmBlend3(anv, smp[i].dv, anv, smp[i].naxbf);
-
- icmCpy3(smp[i].dv, anv);
- icmCpy3(smp[i].anv, anv);
- smp[i].rext = 0.0; /* No correction */
- }
+#endif /* RSPLPASSES > 0 */
#if VECADJPASSES > 0
/* Fine tune vectors to compensate for side effects of vector smoothing */
- VA(("Fine tuning out of gamut guide vectors:\n"));
-
- /* Loopkup correction vectors */
- VA(("Computing fine tuning direction:\n"));
- for (i = 0; i < nmpts; i++) {
- co cp;
- double nd, id, tmp[3];
-
- icmCpy3(cp.p, smp[i].dv);
- evectmap->interp(evectmap, &cp);
- icmNormalize3(smp[i].evect, cp.v, 1.0);
-
- /* ~~99 ?? should we deal with white & black direction here ?? */
-
- /* Use closest as a default */
- smp[i].dgam->nearest(smp[i].dgam, smp[i].tdst, smp[i].dv);
- nd = icmNorm33(smp[i].tdst, smp[i].dv); /* Dist to nearest */
-
- /* Compute intersection with dest gamut as tdst */
- if (!vintersect2(smp[i].dgam, NULL, tmp, smp[i].evect, smp[i].dv)) {
- /* Got an intersection */
- id = icmNorm33(tmp, smp[i].dv); /* Dist to intersection */
- if (id <= (nd + 5.0)) /* And it seems sane */
- icmCpy3(smp[i].tdst, tmp);
- }
-
- smp[i].rext = 0.0;
- }
-
- VA(("Fine tuning guide vectors:\n"));
- for (it = 0; it < VECADJPASSES; it++) {
- double avgog = 0.0, maxog = 0.0, nog = 0.0;
- double avgig = 0.0, maxig = 0.0, nig = 0.0;
+ /* Lookup correction vectors */
+ VA(("Smoothing guide vectors:\n"));
+ {
+ int pncliped = nmpts;
+ double delta;
- /* Filter the level of out/in gamut, and apply correction vector */
+ /* Compute the source to destination neighborhood scale factors */
for (i = 0; i < nmpts; i++) {
- double cvec[3], clen;
- double minext = 1e80;
- double maxext = -1e80; /* Max weighted depth extension */
- double dext, gain;
+ double tmp[3];
+ double sav[3], dav[3]; /* Average center locations */
+ double sdev[3], ddev[3]; /* Average devation in each direction from center */
+ double scev, dcev; /* Average spherical deviation */
- minext = -20.0;
+ for (j = 0; j < 3; j++)
+ sav[j] = dav[j] = sdev[j] = ddev[j] = 0.0;
+ scev = dcev = 0.0;
- /* Compute filtered value */
+ /* Compute center average values */
for (j = 0; j < smp[i].nnd; j++) {
nearsmth *np = smp[i].nd[j].n; /* Pointer to neighbor */
- double nw = smp[i].nd[j].rw; /* Weight */
- double tmpl;
-
- icmSub3(cvec, np->tdst, np->anv); /* Vector needed to target for neighbour */
- clen = icmDot3(smp[i].evect, cvec); /* Error in this direction */
-
- tmpl = nw * (clen - minext); /* Track maximum weighted extra depth */
- if (tmpl < 0.0)
- tmpl = 0.0;
- if (tmpl > maxext)
- maxext = tmpl;
+ double nw = smp[i].nd[j].w; /* Weight */
+
+ icmScale3(tmp, np->sv, nw);
+ icmAdd3(sav, sav, tmp);
+ icmScale3(tmp, np->dv, nw);
+ icmAdd3(dav, dav, tmp);
}
- maxext += minext;
- if (it == 0)
- gain = 1.2;
- else
- gain = 0.8;
+ /* Compute average deviation in each direction */
+ for (j = 0; j < smp[i].nnd; j++) {
+ nearsmth *np = smp[i].nd[j].n; /* Pointer to neighbor */
+ double nw = smp[i].nd[j].w; /* Weight */
+ double tt;
+
+ icmSub3(tmp, sav, np->sv);
+ icmAbs3(tmp, tmp);
+ icmScale3(tmp, tmp, nw);
+ icmAdd3(sdev, sdev, tmp);
+
+ tt = icmNorm33(sav, np->sv);
+ tt *= nw;
+ scev += tt;
+
+ icmSub3(tmp, dav, np->dv);
+ icmAbs3(tmp, tmp);
+ icmScale3(tmp, tmp, nw);
+ icmAdd3(ddev, ddev, tmp);
+
+ tt = icmNorm33(dav, np->dv);
+ tt *= nw;
+ dcev += tt;
+ }
- /* Accumulate correction with damping */
- smp[i].rext += gain * maxext;
+//printf("~1 %d: sdev %f %f %f, scev %f\n",i,sdev[0],sdev[1],sdev[2],scev);
+//printf("~1 %d: ddev %f %f %f, dcev %f\n",i,ddev[0],ddev[1],ddev[2],dcev);
- /* Error for just this point */
- icmSub3(cvec, smp[i].tdst, smp[i].anv);
- clen = icmDot3(smp[i].evect, cvec);
+ /* Try and protect against silliness */
+ if (scev < 1e-3 || dcev < 1e-3)
+ scev = dcev = 1e-3;
- /* Blend to individual correction on neutral axis */
- dext = smp[i].naxbf * smp[i].rext + (1.0 - smp[i].naxbf) * clen;
+ for (j = 0; j < 3; j++) {
+ if (sdev[j] < 1e-3 || ddev[j] < 1e-3) {
+ sdev[j] = scev;
+ ddev[j] = dcev;
+ }
+ }
- /* Apply integrated correction */
- icmScale3(cvec, smp[i].evect, dext);
- icmAdd3(smp[i].anv, smp[i].dv, cvec);
+ /* Compute scale factors */
+ icmDiv3(smp[i].nscale, ddev, sdev); /* Scale = ddev/sdev */
- if (clen > 0.0) { /* Compression */
- if (clen > maxog)
- maxog = clen;
- avgog += clen;
- nog++;
+#ifdef NEVER
+if (smp[i].nscale[0] > 1.5 || smp[i].nscale[0] < 0.01
+ || smp[i].nscale[1] > 1.5 || smp[i].nscale[1] < 0.01
+ || smp[i].nscale[2] > 1.5 || smp[i].nscale[2] < 0.01) {
+ printf("~1 %d: scale factors %f %f %f\n",i,smp[i].nscale[0], smp[i].nscale[1], smp[i].nscale[2]);
+ printf("~1 %d: from sdev %f %f %f\n",i,sdev[0], sdev[1], sdev[2]);
+ printf("~1 %d: from ddev %f %f %f\n",i,ddev[0], ddev[1], ddev[2]);
+}
+#endif /* NEVER */
- } else { /* Expansion */
- if (-clen > maxig)
- maxig = -clen;
- avgig += -clen;
- nig++;
- }
}
- if (verb)
- printf("No og %4.0f max %f avg %f, No ig %4.0f max %f avg %f\n",
- nog,maxog,nog > 1 ? avgog/nog : 0.0, nig,maxig,nig > 1 ? avgig/nig : 0.0);
- }
- /* Copy final results */
- for (i = 0; i < nmpts; i++) {
- icmCpy3(smp[i].dv, smp[i].anv);
- smp[i].dr = icmNorm33(smp[i].dv, smp[i].dgam->cent);
- }
+ /* Itterate smoothing until we're happy */
+ for (it = 0; it < VECADJPASSES; it++) {
+ int ncliped = 0;
+ double maxclipby = 0.0;
+ double avgclipby = 0.0;
+
+ /* Compute the neighbourhood smoothed anv[] from dv[] */
+ for (i = 0; i < nmpts; i++) {
+ double sav[3], dav[3]; /* Average locations */
+ double tmp[3], c1[3], c2[3];
+ double rdsm;
+
+ /* Compute average values */
+ sav[0] = sav[1] = sav[2] = 0.0;
+ dav[0] = dav[1] = dav[2] = 0.0;
+ for (j = 0; j < smp[i].nnd; j++) {
+ nearsmth *np = smp[i].nd[j].n; /* Pointer to neighbor */
+ double nw = smp[i].nd[j].w; /* Weight */
+
+ icmScale3(tmp, np->sv, nw); /* weight for filter */
+ icmAdd3(sav, sav, tmp); /* sum filtered value */
+
+ /* weight for filter */
+ tmp[0] = nw * np->dv[0]; /* Don't itterate J */
+ tmp[1] = nw * np->anv[1];
+ tmp[2] = nw * np->anv[2];
+ icmAdd3(dav, dav, tmp); /* sum filtered value */
+ }
+
+ /* Compute filtered value with source to dest scaling */
+ icmSub3(tmp, smp[i].sv, sav); /* Vector from average to src */
+ icmMul3(tmp, tmp, smp[i].nscale); /* Scale */
+ icmAdd3(tmp, tmp, dav); /* average dst + vector */
- if (verb) {
- double avgog = 0.0, maxog = 0.0, nog = 0.0;
- double avgig = 0.0, maxig = 0.0, nig = 0.0;
+ rdsm = 1.0 - sqrt(smp[i].wt.r.dsm); /* To degree of blending with unchanged */
- /* Check the result */
- for (i = 0; i < nmpts; i++) {
- double cvec[3], clen;
-
- /* Error for just this point, for stats */
- icmSub3(cvec, smp[i].tdst, smp[i].anv);
- clen = icmDot3(smp[i].evect, cvec);
-
- if (clen > 0.0) { /* Compression */
- if (clen > maxog)
- maxog = clen;
- avgog += clen;
- nog++;
-
- } else { /* Expansion */
- if (-clen > maxig)
- maxig = -clen;
- avgig += -clen;
- nig++;
+ icmBlend3(tmp, tmp, smp[i].dv, rdsm); /* Less than full imprint */
+
+#if VECADJPASSES > 1
+ /* Clip to gamut */
+ if (dc_gam->nradial(dc_gam, c1, tmp) > (1.0 + 1e-6)) {
+ co cp;
+ double cvec[3];
+
+ /* Lookup "shrunk gamut" cliping direction */
+ icmCpy3(cp.p, tmp);
+ evectmap->interp(evectmap, &cp);
+ icmNormalize3(cvec, cp.v, 1.0);
+
+ if (!vintersect2(dc_gam, NULL, c2, cvec, tmp)) { /* Got an intersection */
+ double id;
+
+//printf("~1 clipped %f %f %f -> %f %f %f\n", tmp[0], tmp[1], tmp[2], c2[0], c2[1], c2[2]);
+ id = icmNorm33(c2, tmp); /* Dist to intersection */
+ icmCpy3(tmp, c2);
+
+ ncliped++;
+ if(id > maxclipby)
+ maxclipby = id;
+ avgclipby += id;
+ } else {
+//printf("~1 rclipped %f %f %f -> %f %f %f\n", tmp[0], tmp[1], tmp[2], c1[0], c1[1], c1[2]);
+ icmCpy3(tmp, c1); /* Use radial clip */
+ }
+ }
+#endif
+
+ /* Blend to un-smoothed value on neutral axis */
+ icmBlend3(tmp, smp[i].dv, tmp, smp[i].naxbf);
+
+ /* Updated value for next itteration */
+ icmCpy3(smp[i].anv, tmp);
+ }
+
+ if (ncliped > 0)
+ avgclipby /= (double)ncliped;
+
+ delta = (pncliped - ncliped)/(double)nmpts;
+
+ if (verb) {
+ printf("It %d: No clip %d/%d delta %f max by %f, avg by %f\n",it,ncliped, nmpts+1, delta, maxclipby, avgclipby);
}
+ pncliped = ncliped;
+ }
+
+ /* Copy final results */
+ for (i = 0; i < nmpts; i++) {
+ icmCpy3(smp[i].dv, smp[i].anv);
+ smp[i].dr = icmNorm33(smp[i].dv, smp[i].dgam->cent);
}
- printf("No og %4.0f max %f avg %f, No ig %4.0f max %f avg %f\n",
- nog,maxog,nog > 1 ? avgog/nog : 0.0, nig,maxig,nig > 1 ? avgig/nig : 0.0);
}
-#endif /* VECADJUST */
+
#endif /* VECADJPASSES > 0 */
+#ifdef DIAG_POINTS
+ /* Show just the closest vectors etc. */
+ for (i = 0; i < nmpts; i++) { /* Move all the points */
+// icmCpy3(smp[i].dv, smp[i].drv); /* Radial */
+ icmCpy3(smp[i].dv, smp[i].aodv); /* Nearest */
+// icmCpy3(smp[i].dv, smp[i].nrdv); /* No smoothed weighted */
+ smp[i].dr = icmNorm33(smp[i].dv, smp[i].dgam->cent); /* Vector smoothed */
+ }
+#else
+ /* The smoothed direction and raw depth is a single pass, */
+ /* but we use multiple passes to determine the extra depth that */
+ /* needs to be added so that the smoothed result lies within */
+ /* the destination gamut. */
+
#if RSPLPASSES > 0
+
+ VA(("Fine tuning vectors to allow for rspl smoothing:\n"));
+
/* We need to adjust the vectors with extra depth to compensate for */
/* for the effect of rspl smoothing. */
{
cow *gpnts = NULL; /* Mapping points to create 3D -> 3D mapping */
rspl *map = NULL; /* Test map */
- datai il, ih;
- datao ol, oh;
int gres[MXDI];
double avgdev[MXDO];
double icgain, ixgain; /* Initial compression, expansion gain */
double fcgain, fxgain; /* Final compression, expansion gain */
- VA(("Fine tuning vectors to allow for rspl smoothing:\n"));
-
- for (j = 0; j < 3; j++) { /* Copy ranges */
- il[j] = map_il[j];
- ih[j] = map_ih[j];
- ol[j] = map_ol[j];
- oh[j] = map_oh[j];
- }
-
- /* Adjust the input ranges for guide vectors */
- for (i = 0; i < nmpts; i++) {
- for (j = 0; j < 3; j++) {
- if (smp[i]._sv[j] < il[j])
- il[j] = smp[i]._sv[j];
- if (smp[i]._sv[j] > ih[j])
- ih[j] = smp[i]._sv[j];
- }
- }
-
- /* Now expand the bounding box by aprox 5% margin, but scale grid res */
- /* to match, so that the natural or given boundary still lies on the grid. */
- /* (This duplicates code in gammap applied after near_smooth() returns) */
- /* (We are assuming that our changes to the giude vectprs won't expand the ranges) */
- {
- int xmapres;
- double scale;
-
- xmapres = (int) ((mapres-1) * 0.05 + 0.5);
- if (xmapres < 1)
- xmapres = 1;
-
- scale = (double)(mapres-1 + xmapres)/(double)(mapres-1);
-
- for (j = 0; j < 3; j++) {
- double low, high;
- high = ih[j];
- low = il[j];
- ih[j] = (scale * (high - low)) + low;
- il[j] = (scale * (low - high)) + high;
- }
-
- mapres += 2 * xmapres;
- }
-
if ((gpnts = (cow *)malloc(nmpts * sizeof(cow))) == NULL) {
fprintf(stderr,"gamut map: Malloc of near smooth points failed\n");
if (evectmap != NULL)
evectmap->del(evectmap);
- if (si_gam != sc_gam)
- sci_gam->del(sci_gam);
- if (di_gam != sci_gam && di_gam != sci_gam)
- di_gam->del(di_gam);
+ if (src_gam != sc_gam)
+ src_gam->del(src_gam);
+ if (dst_gam != src_gam && dst_gam != dc_gam)
+ dst_gam->del(dst_gam);
free_nearsmth(smp, nmpts);
*npp = 0;
return NULL;
}
- /* Loopkup correction vectors */
- VA(("Computing fine tuning direction for vectors:\n"));
+ /* Lookup correction vectors */
+ VA(("Computing fine tuning target for vectors:\n"));
for (i = 0; i < nmpts; i++) {
- co cp;
double nd, id, tmp[3];
- icmCpy3(cp.p, smp[i].dv);
- evectmap->interp(evectmap, &cp);
- icmNormalize3(smp[i].evect, cp.v, 1.0);
-
- /* ~~99 ?? should we deal with white & black direction here ?? */
-
- /* Use closest as a default */
- smp[i].dgam->nearest(smp[i].dgam, smp[i].tdst, smp[i].dv);
- nd = icmNorm33(smp[i].tdst, smp[i].dv); /* Dist to nearest */
-
- /* Compute intersection with dest gamut as tdst */
- if (!vintersect2(smp[i].dgam, NULL, tmp, smp[i].evect, smp[i].dv)) {
- /* Got an intersection */
- id = icmNorm33(tmp, smp[i].dv); /* Dist to intersection */
- if (id <= (nd + 5.0)) /* And it seems sane */
- icmCpy3(smp[i].tdst, tmp);
+ /* If the sv and dv are within dc_gam, then this point doesn't need */
+ /* to be fine tuned to make it land on the gamut surface - this point */
+ /* either doesn't need gamut mapping, or is being expanded, in which */
+ /* case we prioritize smoothness over exactly hitting the expansion */
+ /* target */
+ if (dc_gam->nradial(dc_gam, NULL, smp[i].sv) <= (1.0 + 1e-6)
+ && dc_gam->nradial(dc_gam, NULL, smp[i].dv) <= (1.0 + 1e-6)) {
+ icmCpy3(smp[i].tdst, smp[i].dv); /* Target is where we are */
+ smp[i].nott = 1;
+
+ } else {
+ co cp;
+ double evect[3];
+
+ /* Lookup fine tuning vector direction for current location */
+ icmCpy3(cp.p, smp[i].dv);
+ evectmap->interp(evectmap, &cp);
+ icmNormalize3(evect, cp.v, 1.0);
+
+ /* Use closest as a default */
+ smp[i].dgam->nearest(smp[i].dgam, smp[i].tdst, smp[i].dv);
+ nd = icmNorm33(smp[i].tdst, smp[i].dv); /* Dist to nearest */
+
+ /* Compute intersection with dest gamut as tdst */
+ if (!vintersect2(smp[i].dgam, NULL, tmp, evect, smp[i].dv)) {
+ /* Got an intersection */
+ id = icmNorm33(tmp, smp[i].dv); /* Dist to intersection */
+ if (id <= (nd + 5.0)) /* And it seems sane */
+ icmCpy3(smp[i].tdst, tmp);
+ }
+ smp[i].nott = 0;
}
smp[i].coff[0] = smp[i].coff[1] = smp[i].coff[2] = 0.0;
@@ -2996,6 +3150,8 @@ datao map_oh
double avgrext = 0.0;
double ovlen;
+ VA(("it %d: Creating rspl\n",it));
+
/* Setup the rspl guide points for creating rspl */
for (i = 0; i < nmpts; i++) {
icmCpy3(gpnts[i].p, smp[i]._sv); /* The orgininal src point */
@@ -3004,13 +3160,14 @@ datao map_oh
}
for (j = 0; j < 3; j++) { /* Set resolution for all axes */
-// gres[j] = (mapres+1)/2; /* Half resolution for speed */
gres[j] = mapres; /* Full resolution */
avgdev[j] = GAMMAP_RSPLAVGDEV;
}
map = new_rspl(RSPL_NOFLAGS, 3, 3); /* Allocate 3D -> 3D */
map->fit_rspl_w(map, GAMMAP_RSPLFLAGS, gpnts, nmpts,
- il, ih, gres, ol, oh, mapsmooth, avgdev, NULL);
+ map_il, map_ih, gres, map_ol, map_oh, mapsmooth, avgdev, NULL);
+
+ VA(("it %d: Evaluate mapping\n",it));
/* See what the source actually maps to via rspl, and how far from */
/* the target point they are. */
@@ -3022,12 +3179,20 @@ datao map_oh
icmCpy3(cp.p, smp[i]._sv);
map->interp(map, &cp);
icmCpy3(smp[i].temp, cp.v);
-
+
+ /* Lookup fine tuning vector direction for that value. */
+ /* (evect[] is then used in the local correction loop below) */
+ icmCpy3(cp.p, smp[i].temp);
+ evectmap->interp(evectmap, &cp);
+ icmNormalize3(smp[i].evect, cp.v, 1.0);
+
/* Compute the correction needed and it's signed length */
icmSub3(cvec, smp[i].tdst, smp[i].temp);
smp[i].clen = icmDot3(smp[i].evect, cvec);
}
+ VA(("it %d: Compute correction vectors\n",it));
+
/* Compute local correction */
for (i = 0; i < nmpts; i++) {
double minext = 1e80;
@@ -3037,6 +3202,8 @@ datao map_oh
double tt;
double cgain, xgain; /* This itters compression, expansion gain */
double gain; /* Gain used */
+ co cp;
+ double evect[3];
/* See what the worst case is in the local area, and */
/* aim to lower the whole local area by enough to */
@@ -3091,6 +3258,7 @@ datao map_oh
/* Keep stats of this point */
clen = smp[i].clen;
+
if (clen > 0.0) {
if (clen > maxog)
maxog = clen;
@@ -3115,20 +3283,32 @@ datao map_oh
gpnts[i].w = 1.0;
}
+ if ((it+1) < RSPLPASSES || !surfpnts)
+ map->del(map); /* Not the last pass, or not doing grid surface points */
+ else
+ lastmap = map; /* Let grid surface creation use this. */
+
+ VA(("it %d: Compute correction rspl\n",it));
+
+ /* Create rspl of corrections */
for (j = 0; j < 3; j++) { /* Set resolution for all axes */
-// gres[j] = (mapres+1)/2; /* Half resolution */
gres[j] = mapres; /* Full resolution */
avgdev[j] = GAMMAP_RSPLAVGDEV;
}
map = new_rspl(RSPL_NOFLAGS, 3, 3); /* Allocate 3D -> 3D */
map->fit_rspl_w(map, GAMMAP_RSPLFLAGS, gpnts, nmpts,
- il, ih, gres, ol, oh, 2.0, avgdev, NULL);
+ map_il, map_ih, gres, map_ol, map_oh, 1.0, avgdev, NULL);
+
+ VA(("it %d: Apply corrections\n",it));
/* Lookup the smoothed extension vector for each point and apply it */
for (i = 0; i < nmpts; i++) {
double tt;
co cp;
+ if (smp[i].nott) /* Don't alter points within the gamut */
+ continue;
+
icmCpy3(cp.p, smp[i].dv);
map->interp(map, &cp);
#ifdef RSPLUSEPOW
@@ -3143,7 +3323,7 @@ datao map_oh
/* Apply accumulated offset */
icmAdd3(smp[i].anv, smp[i].dv, cp.v);
}
- map->del(map);
+ map->del(map); /* Not the last pass, or not doing grid surface points */
if (verb)
printf("No og %4.0f max %f avg %f, No ig %4.0f max %f avg %f, avg rext %f\n",
@@ -3174,18 +3354,15 @@ datao map_oh
}
#endif /* RSPLPASSES > 0 */
-#endif /* NEVER (show debug values) */
+#endif /* !DIAG_POINTS */
VA(("Smoothing passes done, doing final houskeeping\n"));
- if (verb)
- printf("\n");
-
#if defined(SAVE_VRMLS) && defined(PLOT_MAPPING_INFLUENCE)
- create_influence_plot(smp, nmpts);
+ create_influence_plot(smp, nmpts, mapres);
#endif
- VB(("Final guide points:\n"));
+ VA(("Restoring non cusp-rotated source points:\n"));
/* Restore the actual non cusp rotated source point */
for (i = 0; i < nmpts; i++) {
@@ -3236,7 +3413,7 @@ datao map_oh
/* Compute actual depth of ray into destination gamut */
/* to determine if this is expansion or contraction. */
- if (di_gam->vector_isect(di_gam, smp[i].sv, smp[i].dv,
+ if (dst_gam->vector_isect(dst_gam, smp[i].sv, smp[i].dv,
minv, maxv, &mint, &maxt, &mintri, &maxtri) != 0) {
double wp[3], bp[3]; /* Gamut white and black points */
double p1, napoint[3] = { 50.0, 0.0, 0.0 }; /* Neutral axis point */
@@ -3249,7 +3426,7 @@ datao map_oh
/* the guide ray. We use this as a destination direction */
/* if the sub surface ray gets very long, and to compute */
/* a sanity check on the available depth. */
- if (d_gam->getwb(d_gam, NULL, NULL, NULL, wp, dst_kbp ? NULL : bp, dst_kbp ? bp : NULL) == 0) {
+ if (dc_gam->getwb(dc_gam, NULL, NULL, NULL, wp, dst_kbp ? NULL : bp, dst_kbp ? bp : NULL) == 0) {
if (icmLineLineClosest(napoint, NULL, &p1, NULL, bp, wp,
smp[i].sv, smp[i].dv) == 0) {
double nalev[3];
@@ -3295,7 +3472,7 @@ datao map_oh
}
#ifdef VERB
else {
- printf("d_gam->getwb failed\n");
+ printf("dc_gam->getwb failed\n");
}
#endif
@@ -3444,54 +3621,345 @@ datao map_oh
#ifdef SUBVEC_SMOOTHING
VB(("Smoothing sub-surface guide points:\n"));
+ {
+ double maxmv = 0.0, avgmv = 0.0, acount = 0.0;
- /* Smooth the sub-surface mapping points */
- /* dv2[] is duplicated in temp[], so use temp[] as the values to be filtered */
- for (i = 0; i < nmpts; i++) {
- double tmp[3];
- double fdv2[3]; /* Filtered dv2[] */
- double tw; /* Total weight */
- int rc;
-
- if (smp[i].vflag == 0)
- continue;
-
- /* Compute filtered value */
- tw = fdv2[0] = fdv2[1] = fdv2[2] = 0.0;
- for (j = 0; j < smp[i].nnd; j++) {
- nearsmth *np = smp[i].nd[j].n; /* Pointer to neighbor */
- double nw = smp[i].nd[j].w; /* Weight */
- double tmp[3];
+ /* Smooth the sub-surface mapping points */
+ for (i = 0; i < nmpts; i++) {
+ double sav[3], dav[3]; /* Average locations */
+ double scr, dcr; /* Cylindrical radius */
+ double scf; /* Scale factor */
+ double tmp[3], de;
+
+ if (smp[i].vflag == 0)
+ continue; /* Sub value not valid */
- if (np->vflag) {
- icmSub3(tmp, smp[i].sv2, np->sv2); /* Vector from neighbour src to src */
- icmAdd3(tmp, tmp, np->dv2); /* Neigbour dst + vector */
+ /* Compute average values */
+ sav[0] = sav[1] = sav[2] = 0.0;
+ dav[0] = dav[1] = dav[2] = 0.0;
+ for (j = 0; j < smp[i].nnd; j++) {
+ nearsmth *np = smp[i].nd[j].n; /* Pointer to neighbor */
+ double nw = smp[i].nd[j].w; /* Weight */
- icmScale3(tmp, tmp, nw); /* weight for filter */
- icmAdd3(fdv2, fdv2, tmp); /* sum filtered value */
- tw += nw;
+ icmScale3(tmp, np->sv2, nw); /* weight for filter */
+ icmAdd3(sav, sav, tmp); /* sum filtered value */
+
+ icmScale3(tmp, np->dv2, nw); /* weight for filter */
+ icmAdd3(dav, dav, tmp); /* sum filtered value */
}
- }
+
+ /* We want to transfer the relative location (i.e. detail) from */
+ /* the source to destination, but we need to scale the features */
+ /* appropriately for the mapping. */
+ scr = sqrt(sav[1] * sav[1] + sav[2] * sav[2]);
+ dcr = sqrt(dav[1] * dav[1] + dav[2] * dav[2]);
+ scf = dcr/scr;
+
+ /* Compute filtered value */
+ icmSub3(tmp, smp[i].sv2, sav); /* Vector from average to src */
+ tmp[1] *= scf; /* Scale */
+ tmp[2] *= scf; /* Scale */
+ icmAdd3(tmp, tmp, dav); /* average dst + vector */
+
+ de = icmNorm33(smp[i].dv2, tmp);
+ icmCpy3(smp[i].dv2, tmp);
+
+ if (de > maxmv)
+ maxmv = de;
+ avgmv += de;
+ acount++;
- if (tw > 0.0) {
-//printf("~1 %d: moved %f %f %f -> %f %f %f de %f\n", i, smp[i].dv2[0], smp[i].dv2[1], smp[i].dv2[2], fdv2[0], fdv2[1], fdv2[2], icmNorm33(smp[i].dv2,fdv2));
- icmScale3(smp[i].dv2, fdv2, 1.0/tw);
+ VB(("Smthd Src %d = %f %f %f\n",i,smp[i].sv2[0],smp2[i].sv[1],smp2[i].sv2[2]));
+ VB(("Smthd Dst %d = %f %f %f\n",i,smp[i].dv2[0],smp2[i].dv[1],smp2[i].dv2[2]));
}
+ if (acount > 0)
+ avgmv /= acount;
+
+ if (verb)
+ printf("Sub-surface smoothing changed by max %f, average %f\n",maxmv, avgmv);
+
}
#endif /* SUBVEC_SMOOTHING */
VB(("near_smooth is done\n"));
+#ifdef PLOT_SMOOTHING_CHANGE
+ /* Plot change in destination point of un-smoothed to smoothed */
+ {
+ vrml *wrl = NULL;
+ int doaxes = 0;
+
+#ifdef PLOT_AXES
+ doaxes = 1;
+#endif
+ wrl = new_vrml("dst_smvec", doaxes, vrml_lab);
+
+ /* Start of guide vector plot */
+ wrl->start_line_set(wrl, 0);
+
+ for (i = 0; i < nmpts; i++) {
+ double red[3] = { 1.0, 0.0, 0.0 };
+ double green[3] = { 0.0, 1.0, 0.0 };
+
+ wrl->add_col_vertex(wrl, 0, smp[i].nrdv, red);
+ wrl->add_col_vertex(wrl, 0, smp[i].dv, green);
+ }
+ wrl->make_lines(wrl, 0, 2); /* Change vectors */
+
+#ifndef NEVER
+ /* Plot un-smoothed src to dst mappings */
+ wrl->start_line_set(wrl, 0);
+
+ for (i = 0; i < nmpts; i++) {
+ double lblue[3] = { 0.4, 0.4, 0.8 };
+ double magenta[3] = { 0.8, 0.4, 0.8 };
+
+ wrl->add_col_vertex(wrl, 0, smp[i].sv, lblue);
+ wrl->add_col_vertex(wrl, 0, smp[i].nrdv, magenta);
+ }
+ wrl->make_lines(wrl, 0, 2); /* Change vectors */
+#endif
+
+#ifdef NEVER
+ /* Plot index numbers */
+ for (i = 0; i < nmpts; i++) {
+ double cream[3] = { 0.7, 0.7, 0.5 };
+ char buf[100];
+ sprintf(buf, "%d", i);
+ wrl->add_text(wrl, buf, smp[i].dv, cream, 0.5);
+ }
+#endif /* NEVER */
+
+ /* Write transparent destination space gamut surface */
+ dc_gam->write_to_vrml(dc_gam, wrl, 0.5, 0);
+
+ /* Write file */
+ wrl->del(wrl);
+ }
+#endif /* PLOT_SMOOTHING_CHANGE */
+
+ /* If grid surface points are requested */
+ if (surfpnts) {
+ DCOUNT(gc, 3, 3, 0, 0, hmapres);
+ double cent[3];
+
+ VB(("Adding grid surface points:\n"));
+
+ /* If rspl smoothing didn't leave us a map */
+ if (lastmap == NULL) {
+
+ cow *gpnts = NULL; /* Mapping points to create 3D -> 3D mapping */
+ int gres[MXDI];
+ double avgdev[MXDO];
+
+ VB(("Creating rspl map for grid surface points\n",it));
+
+ if ((gpnts = (cow *)malloc(nmpts * sizeof(cow))) == NULL) {
+ fprintf(stderr,"gamut map: Malloc of near smooth points failed\n");
+ if (evectmap != NULL)
+ evectmap->del(evectmap);
+ if (src_gam != sc_gam)
+ src_gam->del(src_gam);
+ if (dst_gam != src_gam && dst_gam != dc_gam)
+ dst_gam->del(dst_gam);
+ free_nearsmth(smp, nmpts);
+ *npp = 0;
+ return NULL;
+ }
+
+ /* Setup the rspl guide points for creating rspl */
+ for (i = 0; i < nmpts; i++) {
+ icmCpy3(gpnts[i].p, smp[i].sv);
+ icmCpy3(gpnts[i].v, smp[i].dv);
+ gpnts[i].w = 1.0;
+ }
+
+ for (j = 0; j < 3; j++) { /* Set resolution for all axes */
+ gres[j] = mapres; /* Full resolution */
+ avgdev[j] = GAMMAP_RSPLAVGDEV;
+ }
+ lastmap = new_rspl(RSPL_NOFLAGS, 3, 3); /* Allocate 3D -> 3D */
+ lastmap->fit_rspl_w(lastmap, GAMMAP_RSPLFLAGS, gpnts, nmpts,
+ map_il, map_ih, gres, map_ol, map_oh, mapsmooth, avgdev, NULL);
+ free(gpnts);
+ }
+
+ sc_gam->getcent(dc_gam, cent);
+
+ DC_INIT(gc);
+ for (;;) {
+ /* If point is in the outer two layers of grid */
+ if ( gc[0] == 0 || gc[0] == hdmapres
+ || gc[0] == (hmapres-1) || gc[0] == (hmapres-1-hdmapres)
+ || gc[1] == 0 || gc[1] == hdmapres
+ || gc[1] == (hmapres-1) || gc[1] == (hmapres-1-hdmapres)
+ || gc[2] == 0 || gc[2] == hdmapres
+ || gc[2] == (hmapres-1) || gc[2] == (hmapres-1-hdmapres))
+
+ /* Only points around gamut, not on top or underneath */
+/*
+ if ( gc[1] == 0 || gc[1] == hdmapres
+ || gc[1] == (hmapres-1) || gc[1] == (hmapres-1-hdmapres)
+ || gc[2] == 0 || gc[2] == hdmapres
+ || gc[2] == (hmapres-1) || gc[2] == (hmapres-1-hdmapres))
+*/
+ {
+ double grid2gamut, gamut2cent, ww;
+ co cp;
+
+ if (nmpts >= mxnmpts) {
+ warning("nearsmth ran out of space for points");
+ break;
+ }
+ smp[nmpts].uflag = 1;
+
+ /* Source location */
+ for (j = 0; j < 3; j++)
+ smp[nmpts].sv[j] = map_il[j] + gc[j]/(hmapres-1.0) * (map_ih[j] - map_il[j]);
+
+ /* If this point is within source gamut, skip it */
+ if (sc_gam->nradial(sc_gam, NULL, smp[nmpts].sv) <= (1.0 + 1e-6)) {
+//printf("~1 point %d %d %d = %f %f %f is inside source gamut\n", gc[0], gc[1], gc[2], smp[nmpts].sv[0], smp[nmpts].sv[1], smp[nmpts].sv[2]);
+ goto next_point;
+ }
+#ifdef NEVER
+ /* Clip the point to the closest location on the source */
+ /* colorspace gamut. */
+ sc_gam->nearest(sc_gam, cp.p, smp[nmpts].sv);
+#else
+ /* Map grid point to weighted nearest on source space gamut */
+ {
+ double ta[3] = { 50.0, 0.0, 0.0 };
+ double tc[3] = { 0.0, 0.0, 0.0 };
+ double s[2] = { 20.0, 20.0 }; /* 2D search area */
+ double nv[2]; /* 2D New value */
+ double tp[3]; /* Resultint value */
+ double ne; /* New error */
+ int notrials = NO_TRIALS;
+ double bnv[3]; /* Best 3d value */
+ double brv; /* Best return value */
+ int trial;
+ double mv;
+
+ /* Determine the parameter weighting at this location */
+ opts.pass = 0; /* Itteration pass */
+ opts.ix = nmpts;
+ opts.p = &smp[nmpts];
+ opts.wngam = sc_gam; /* Optimise to source colorspace gamut */
+ opts.wn = smp[nmpts].sv; /* minimize optfunc1a sv -> sc_gam */
+
+ /* Compute weights at this point */
+ interp_xweights(sc_gam, &smp[nmpts].wt, smp[nmpts].sv, opts.xwh, &opts, 0);
+
+ /* Initial starting point */
+ sc_gam->nearest(sc_gam, bnv, smp[nmpts].sv);
+
+ /* Do several trials from different starting points to avoid */
+ /* any local minima, particularly with nearest mapping. */
+ brv = 1e38;
+ for (trial = 0; trial < notrials; trial++) {
+ double rv; /* Temporary */
+
+ /* Setup the 3D -> 2D tangent conversion and inverse for our start point */
+ icmVecRotMat(smp[nmpts].m2d, bnv, sc_gam->cent, ta, tc);
+ icmVecRotMat(smp[nmpts].m3d, ta, tc, bnv, sc_gam->cent);
+
+ /* Convert our start value from 3D to 2D for speed. */
+ icmMul3By3x4(tp, smp[nmpts].m2d, bnv);
+ nv[0] = tp[1];
+ nv[1] = tp[2];
+
+ if (trial >= 2) {
+ /* Use random offset to avoid local minima */
+ nv[0] += d_rand(-20.0, 20.0);
+ nv[1] += d_rand(-20.0, 20.0);
+ }
+
+ /* Optimise the point */
+ if (powell(&rv, 2, nv, s, 0.01, 1000, optfunc1a, (void *)(&opts), NULL, NULL) == 0
+ && rv < brv) {
+ brv = rv;
+//printf("~1 point %d, trial %d, new best %f\n",i,trial,rv);
+
+ /* Convert best result 2D -> 3D */
+ tp[2] = nv[1];
+ tp[1] = nv[0];
+ tp[0] = 50.0;
+ icmMul3By3x4(tp, smp[nmpts].m3d, tp);
+
+ /* Remap it to the source gamut surface */
+ sc_gam->radial(sc_gam, bnv, tp);
+ }
+//else printf("~1 powell failed with rv = %f\n",rv);
+ }
+ if (brv == 1e38) { /* We failed to get a result */
+ fprintf(stderr, "multiple powells failed to get a result (4)\n");
+ sc_gam->nearest(sc_gam, cp.p, smp[nmpts].sv);
+
+ } else {
+ icmCpy3(cp.p, bnv);
+ }
+ }
+#endif /* NEVER */
+
+//printf("~1 grid %f %f %f -> src %f %f %f\n", smp[nmpts].sv[0], smp[nmpts].sv[1], smp[nmpts].sv[2], cp.p[0], cp.p[1], cp.p[2]);
+
+ /* Then lookup the gamut mapped value */
+ lastmap->interp(lastmap, &cp);
+
+//printf("~1 src %f %f %f -> dst %f %f %f\n", cp.p[0], cp.p[1], cp.p[2], cp.v[0], cp.v[1], cp.v[2]);
+
+ for (j = 0; j < 3; j++)
+ smp[nmpts].dv[j] = cp.v[j];
+
+ /* Compute the distance of the grid surface point to the to the */
+ /* source colorspace gamut, as well as the distance from there */
+ /* to the gamut center point. */
+ for (grid2gamut = gamut2cent = 0.0, j = 0; j < 3; j++) {
+ double tt;
+ tt = smp[nmpts].dv[j] - cp.p[j];
+ grid2gamut += tt * tt;
+ tt = cp.p[j] - cent[j];
+ gamut2cent += tt * tt;
+ }
+ grid2gamut = sqrt(grid2gamut);
+ gamut2cent = sqrt(gamut2cent);
+ if (gamut2cent < 0.1)
+ gamut2cent = 0.1;
+
+ /* Make the weighting inversely related to distance, */
+ /* to reduce influence on in gamut mapping shape, */
+ /* while retaining some influence at the edge of the */
+ /* grid. */
+ ww = grid2gamut / gamut2cent;
+ if (ww > 1.0)
+ ww = 1.0;
+
+ /* A low weight seems to be enough ? */
+ /* The lower the better in terms of geting best hull mapping fidelity */
+ smp[nmpts++].w1 = 0.1 * ww;
+ }
+ next_point:;
+ DC_INC(gc);
+ if (DC_DONE(gc))
+ break;
+ }
+ *npp = nmpts; /* Update returned number of points */
+
+ lastmap->del(lastmap);
+ }
+
if (evectmap != NULL)
evectmap->del(evectmap);
#ifndef PLOT_DIGAM
- if (si_gam != sc_gam)
- sci_gam->del(sci_gam);
- if (di_gam != sci_gam && di_gam != sci_gam)
- di_gam->del(di_gam);
+ if (src_gam != sc_gam)
+ src_gam->del(src_gam);
+ if (dst_gam != src_gam && dst_gam != dc_gam)
+ dst_gam->del(dst_gam);
for (i = 0; i < nmpts; i++) {
smp[i].sgam = NULL;
smp[i].dgam = NULL;
+ smp[i].dcgam = NULL;
}
#else /* !PLOT_DIGAM */
warning("!!!!! PLOT_DIGAM defined !!!!!");
@@ -3504,6 +3972,7 @@ datao map_oh
void free_nearsmth(nearsmth *smp, int nmpts) {
int i;
+ /* Free contents that have been used */
for (i = 0; i < nmpts; i++) {
if (smp[i].nd != NULL)
free(smp[i].nd);
@@ -3518,7 +3987,7 @@ void free_nearsmth(nearsmth *smp, int nmpts) {
/* Create a plot indicating how the source mapping has been guided by the */
/* various weighting forces. */
-static void create_influence_plot(nearsmth *smp, int nmpts) {
+static void create_influence_plot(nearsmth *smp, int nmpts, int mapres) {
int i, j, k;
gamut *gam;
int src = 0; /* 1 = src, 0 = dst gamuts */
@@ -3592,7 +4061,7 @@ static void create_influence_plot(nearsmth *smp, int nmpts) {
/* Create the diagnostic color rspl */
for (j = 0; j < 3; j++) { /* Set resolution for all axes */
- gres[j] = smp->mapres;
+ gres[j] = mapres;
avgdev[j] = 0.001;
}
swdiag = new_rspl(RSPL_NOFLAGS, 3, 3); /* Allocate 3D -> 3D */