summaryrefslogtreecommitdiff
path: root/src/_transformation.c
blob: 7c5a7b092614a32070b6301f1ec310b71927875f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
/* Copyright 2016 Software Freedom Conservancy Inc.
 * Copyright 2017 Jens Georg <mail@jensge.org>
 *
 * This software is licensed under the GNU LGPL (version 2.1 or later).
 * See the COPYING file in this distribution.
 */

#include "shotwell-graphics-processor.h"

static inline void _pixel_transformer_apply_transformations (PixelTransformer* self, RGBAnalyticPixel* p, RGBAnalyticPixel* result) {
    PixelFormat current_format = PIXEL_FORMAT_RGB;
    RGBAnalyticPixel p_rgb = {p->red, p->green, p->blue };
    HSVAnalyticPixel p_hsv = {0.0f, 0.0f, 0.0f};
    gint i = 0;

    for (i = 0; i < self->optimized_slots_used; i++) {
        PixelTransformation* trans = NULL;
        PixelFormat preferred_format;

        trans = self->optimized_transformations[i];
        preferred_format = pixel_transformation_get_preferred_format (trans);
        if (preferred_format == PIXEL_FORMAT_RGB) {
            RGBAnalyticPixel _tmp14_ = {0};
            if (current_format == PIXEL_FORMAT_HSV) {
                hsv_analytic_pixel_to_rgb (&p_hsv, &p_rgb);
                current_format = PIXEL_FORMAT_RGB;
            }
            pixel_transformation_transform_pixel_rgb (trans, &p_rgb, &_tmp14_);
            p_rgb.red =_tmp14_.red;
            p_rgb.green =_tmp14_.green;
            p_rgb.blue =_tmp14_.blue;
        } else {
            HSVAnalyticPixel _tmp19_ = {0};
            if (current_format == PIXEL_FORMAT_RGB) {
                rgb_analytic_pixel_to_hsv (&p_rgb, &p_hsv);
                current_format = PIXEL_FORMAT_HSV;
            }
            pixel_transformation_transform_pixel_hsv (trans, &p_hsv, &_tmp19_);
            p_hsv.hue = _tmp19_.hue;
            p_hsv.saturation = _tmp19_.saturation;
            p_hsv.light_value = _tmp19_.light_value;
        }
    }

    if (current_format == PIXEL_FORMAT_HSV) {
        hsv_analytic_pixel_to_rgb (&p_hsv, &p_rgb);
    }

    result->red = p_rgb.red;
    result->green = p_rgb.green;
    result->blue = p_rgb.blue;
}

void pixel_transformer_apply_transformations (PixelTransformer* self, RGBAnalyticPixel* p, RGBAnalyticPixel* result) {
    _pixel_transformer_apply_transformations (self, p, result);
}

void pixel_transformer_apply_transformation (PixelTransformer* self,
                                             guint row,
                                             gint rowstride,
                                             gint rowbytes,
                                             gint n_channels,
                                             guchar* source_pixels, int source_pixels_length1,
                                             guchar* dest_pixels, int dest_pixels_length1) {
    guint row_start_index = row * rowstride;
    guint row_end_index = row_start_index + rowbytes;
    guint i = 0;

    for (i = row_start_index; i < row_end_index; i += n_channels) {
        RGBAnalyticPixel current_pixel = { rgb_lookup_table[source_pixels[i]],
                                           rgb_lookup_table[source_pixels[i+1]],
                                           rgb_lookup_table[source_pixels[i+2]] };
        RGBAnalyticPixel transformed_pixel = { 0.0f, 0.0f, 0.0f };
        _pixel_transformer_apply_transformations (self, &current_pixel, &transformed_pixel);
        dest_pixels[i] = (guchar) (transformed_pixel.red * 255.0f);
        dest_pixels[i+1] = (guchar) (transformed_pixel.green * 255.0f);
        dest_pixels[i+2] = (guchar) (transformed_pixel.blue * 255.0f);
    }
}

void hsv_analytic_pixel_to_rgb (HSVAnalyticPixel *self, RGBAnalyticPixel* result) {
    if (self->saturation == 0.0f) {
        result->red = self->light_value;
        result->green = self->light_value;
        result->blue = self->light_value;

        return;
    }

    float hue_denorm = self->hue * 360.0f;
    if (hue_denorm == 360.0f)
        hue_denorm = 0.0f;

    float hue_hexant = hue_denorm / 60.0f;
    int hexant_i_part = (int) hue_hexant;
    float hexant_f_part = hue_hexant - ((float) hexant_i_part);

    float p = self->light_value * (1.0f - self->saturation);
    float q = self->light_value * (1.0f - (self->saturation * hexant_f_part));
    float t = self->light_value * (1.0f - (self->saturation * (1.0f - hexant_f_part)));

    switch (hexant_i_part) {
        case 0:
            result->red = self->light_value; result->green = t; result->blue = p;
        break;
        case 1:
            result->red = q; result->green = self->light_value; result->blue = p;
        break;
        case 2:
            result->red = p; result->green = self->light_value; result->blue = t;
        break;
        case 3:
            result->red = p; result->green = q; result->blue = self->light_value;
        break;
        case 4:
            result->red = t; result->green = p; result->blue = self->light_value;
        break;
        case 5:
            result->red = self->light_value; result->green = p; result->blue = q;
        break;
        default:
            g_assert_not_reached();
    }
}

void hsv_analytic_pixel_init_from_rgb (HSVAnalyticPixel *self, RGBAnalyticPixel* p) {
    gfloat max_component = MAX(MAX(p->red, p->green), p->blue);
    gfloat min_component = MIN(MIN(p->red, p->green), p->blue);

    self->light_value = max_component;
    gfloat delta = max_component - min_component;
    self->saturation = (max_component != 0.0f) ? ((delta) / max_component) : 0.0f;
    if (self->saturation == 0.0f) {
        self->hue = 0.0f;

        return;
    }

    if (p->red == max_component) {
        self->hue = (p->green - p->blue) / delta;
    } else if (p->green == max_component) {
        self->hue = 2.0f + ((p->blue - p->red) / delta);
    } else if (p->blue == max_component) {
        self->hue = 4.0f + ((p->red - p->green) / delta);
    }

    self->hue *= 60.0f;
    if (self->hue < 0.0f) {
        self->hue += 360.0f;
    }

    self->hue /= 360.0f;
    self->hue = CLAMP(self->hue, 0.0f, 1.0f);
    self->saturation = CLAMP(self->saturation, 0.0f, 1.0f);
    self->light_value = CLAMP(self->light_value, 0.0f, 1.0f);
}

void rgb_transformation_real_transform_pixel_rgb (PixelTransformation* base, RGBAnalyticPixel* p, RGBAnalyticPixel* result) {
    RGBTransformation *self = RGB_TRANSFORMATION(base);
    result->red = CLAMP(p->red * self->matrix_entries[0] +
                        p->green * self->matrix_entries[1] +
                        p->blue * self->matrix_entries[2] +
                                  self->matrix_entries[3], 0.0f, 1.0f);
    result->green = CLAMP(p->red * self->matrix_entries[4] +
                          p->green * self->matrix_entries[5] +
                          p->blue * self->matrix_entries[6] +
                                    self->matrix_entries[7], 0.0f, 1.0f);
    result->blue = CLAMP(p->red * self->matrix_entries[8] +
                         p->green * self->matrix_entries[9] +
                         p->blue * self->matrix_entries[10] +
                                   self->matrix_entries[11], 0.0f, 1.0f);
}


void hsv_transformation_real_transform_pixel_hsv (PixelTransformation* base, HSVAnalyticPixel* pixel, HSVAnalyticPixel* result) {
    HSVTransformation *self = HSV_TRANSFORMATION(base);
    result->hue = pixel->hue;
    result->saturation = pixel->saturation;
    result->light_value = CLAMP(self->remap_table[(int) (pixel->light_value * 255.0f)], 0.0f, 1.0f);
}