summaryrefslogtreecommitdiff
path: root/xsd/documentation/cxx/tree/guide
diff options
context:
space:
mode:
Diffstat (limited to 'xsd/documentation/cxx/tree/guide')
-rw-r--r--xsd/documentation/cxx/tree/guide/cxx-tree-guide.pdfbin94183 -> 0 bytes
-rw-r--r--xsd/documentation/cxx/tree/guide/cxx-tree-guide.ps3470
-rw-r--r--xsd/documentation/cxx/tree/guide/guide.html2ps65
-rw-r--r--xsd/documentation/cxx/tree/guide/index.xhtml2690
-rw-r--r--xsd/documentation/cxx/tree/guide/makefile53
5 files changed, 0 insertions, 6278 deletions
diff --git a/xsd/documentation/cxx/tree/guide/cxx-tree-guide.pdf b/xsd/documentation/cxx/tree/guide/cxx-tree-guide.pdf
deleted file mode 100644
index 03d94fd..0000000
--- a/xsd/documentation/cxx/tree/guide/cxx-tree-guide.pdf
+++ /dev/null
Binary files differ
diff --git a/xsd/documentation/cxx/tree/guide/cxx-tree-guide.ps b/xsd/documentation/cxx/tree/guide/cxx-tree-guide.ps
deleted file mode 100644
index de3f351..0000000
--- a/xsd/documentation/cxx/tree/guide/cxx-tree-guide.ps
+++ /dev/null
@@ -1,3470 +0,0 @@
-%!PS
-%%Title: C++/Tree Mapping Getting Started Guide
-%%Creator: html2ps version 1.0 beta5
-%%EndComments
-save
-2000 dict begin
-/d {bind def} bind def
-/D {def} d
-/t true D
-/f false D
-/FL [/Times-Roman
-/Times-Italic
-/Times-Bold
-/Times-BoldItalic
-/Courier
-/Courier-Oblique
-/Courier-Bold
-/Courier-BoldOblique
-/Helvetica
-/Helvetica-Oblique
-/Helvetica-Bold
-/Helvetica-BoldOblique] D
-/WF t D
-/WI 0 D
-/F 1 D
-/IW 471 F div D
-/IL 621 F div D
-/PS 791 D
-/EF [0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 2 2] D
-/EZ [12 10 19 17 15 13 12 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 8 8] D
-/Ey [0 0 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] D
-/EG [-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1] D
-/Tm [1 1 0.8 0.8 0.8 0.8 0.8 0.8 0 0 0 0 0 0 0.5 1 1 1 1 0 0 1.3 0 0] D
-/Bm [1 1 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0.5 1 1 1 1 0 0 1 0 0] D
-/Lm [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 0 0 2 0 0 0] D
-/Rm [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0] D
-/EU [-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0] D
-/NO f D
-/YY [[{()}{ h }][{ h }{()}][{()}{()}]] D
-/ZZ [[{ (April 2010) }{ Pn }][{ Pn }{ (April 2010) }][{ Ti }{ Ti }]] D
-/Ts EZ 0 get D
-/TU f D
-/Xp t D
-/AU f D
-/SN 0 D
-/Cf t D
-/Tp t D
-/Fe f D
-/TI 2 Ts mul D
-/Fm 14 D
-/xL 71 D
-/xR 71 D
-/yL 706 D
-/yR 706 D
-/Wl 471 F div D
-/Wr 471 F div D
-/hL 621 F div D
-/hR 621 F div D
-/FE {newpath Fm neg Fm M CP BB IW Fm add Fm L IW Fm add IL Fm add neg L CP BB
- Fm neg IL Fm add neg L closepath} D
-/LA {PM 0 eq{/IW Wl D /IL hL D}{/IW Wr D /IL hR D}ie /W IW D /LL W D /LS W D
- TU PM 0 eq and{IW 56 F div add SA{Sf div}if 0 translate}
- {PM 0 eq{xL yL}{xR yR}ie translate F SA{Sf mul}if dup scale
- CS CF FS Cf{CA CL get VC}if /Bb f D}ie 0 0 M
- TF not Tc or {Cf{gsave SA{1 Sf div dup scale}if Cb VC FE fill grestore}if}if}D
-/Pi 0 Ts mul D
-/SG [0.8 1 1] D
-/Ab 15 D
-/J 0 D
-/Tc t D
-/NH 6 D
-/Nf f D
-/Pa f D
-/LH 1.2 D
-/XR f D
-/Xr {/pN E D ( [p ) WB pN WB (] )WB} D
-/Db [16#FF 16#FF 16#FF] D
-/Dt [16#00 16#00 16#00] D
-/eA f D
-/Fi f D
-/bT f D
-/Lc t D
-/Dl [16#00 16#00 16#00] D
-/LX f D
-/Br 0.25 D
-/IA ([IMAGE]) D
-/DS {/PF f D()WB NL NP()pop RC ZF} D
-/Gb f D
-/Mb t D
-/Hc [16#00 16#00 16#00] D
-/Bl 3 D
-/MI -15.6 D
-/DX (DRAFT) D
-/Di 0 D
-/Tt 113.385826771654 D
-/Th { (
-) 2 Al()BR (
- ) 0 1 -1 H()4 FZ (C++/Tree Mapping) ES()EH (
- ) 0 1 -1 H()4 FZ (Getting Started Guide) ES()EH (
- ) 0 1 -1 H ( ) EH (
- ) 0 1 -1 H ( ) EH (
- ) 0 1 -1 H ( ) EH (
- ) 0 1 -1 H ( ) EH (
- ) 0 1 -1 H ( ) EH (
- ) 0 1 -1 H ( ) EH (
-) Ea()BR (
- ) 0 P (Copyright © 2005-2010 CODE SYNTHESIS TOOLS CC) EP (
-
- ) 0 P (Permission is granted to copy, distribute and/or modify this
- document under the terms of the
- ) R0 2 A (GNU Free
- Documentation License, version 1.2) EA (; with no Invariant Sections,
- no Front-Cover Texts and no Back-Cover Texts.
- ) EP (
-
- ) 0 P (This document is available in the following formats:
- ) R1 2 A (XHTML) EA (,
- ) R2 2 A (PDF) EA (, and
- ) R3 2 A (PostScript) EA (.) EP()} D
-/tH {()0 1 -1 H (Table of Contents) EH()} D
-/FD 2 D
-/Dy 2 D
-/cD [16#F0 16#F0 16#F0] D
-/FW 0.6 D
-/FU [16#00 16#00 16#00] D
-/ET {/RM f D /A0 3 D /PN SN D /OU t D /Ou t D /W IW D /LL W D D1
- Ms not TP and{Ip}if /TF f D} D
-
-%-- End of variable part --
-/MySymbol 10 dict dup begin
- /FontType 3 D /FontMatrix [.001 0 0 .001 0 0 ] D /FontBBox [25 -10 600 600] D
- /Encoding 256 array D 0 1 255{Encoding exch /.notdef put}for
- Encoding (e) 0 get /euro put
- /Metrics 2 dict D Metrics begin
- /.notdef 0 D
- /euro 651 D
- end
- /BBox 2 dict D BBox begin
- /.notdef [0 0 0 0] D
- /euro [25 -10 600 600] D
- end
- /CharacterDefs 2 dict D CharacterDefs begin
- /.notdef {} D
- /euro{newpath 114 600 moveto 631 600 lineto 464 200 lineto 573 200 lineto
- 573 0 lineto -94 0 lineto 31 300 lineto -10 300 lineto closepath clip
- 50 setlinewidth newpath 656 300 moveto 381 300 275 0 360 arc stroke
- -19 350 moveto 600 0 rlineto -19 250 moveto 600 0 rlineto stroke}d
- end
- /BuildChar{0 begin
- /char E D /fontdict E D /charname fontdict /Encoding get char get D
- fontdict begin
- Metrics charname get 0 BBox charname get aload pop setcachedevice
- CharacterDefs charname get exec
- end
- end}D
- /BuildChar load 0 3 dict put /UniqueID 1 D
-end
-definefont pop
-
-/Cd {aload length 2 idiv dup dict begin {D} repeat currentdict end} D
-/EX {EC cvx exec} D
-/DU {} d
-/BB {pop pop}d
-/ie {ifelse} d
-/E {exch} d
-/M {moveto} d
-/R {rmoveto} d
-/L {lineto} d
-/RL {rlineto} d
-/CP {currentpoint} d
-/SW {stringwidth} d
-/GI {getinterval} d
-/PI {putinterval} d
-/Sg {setgray} d
-/LW {setlinewidth} d
-/S {dup () ne OU and{0 Co R AT 3 eq LB and HF not and A1 0 ne A2 0 ne or and
- {A2 0 32 A1 0 6 -1 roll awidthshow}{show}ie 0 Co neg R}{pop}ie
- OU PH 3 eq or{/Ms t D}if} D
-/U {OU{gsave CP currentfont /FontInfo get /UnderlinePosition get
- 0 E currentfont /FontMatrix get dtransform E pop add newpath M dup SW pop
- CJ 0 RL stroke grestore}if} D
-/B {OU Br 0 gt and{CP Ts neg Ts .33 mul R gsave 0 Sg
- CP newpath Ts Br mul 0 360 arc closepath UI 2 mod 0 eq{stroke}{fill}ie
- grestore M CP E Ts Br 1 add mul sub E BB /Ms t D}if}D
-/NP {Ms TP not or PA and OU and{TP{OR}if f1{mF k2 /mF E D /YC 0 D}if
- TP TU not PM 0 eq or and{showpage}if DU Ip TE not{LA}if 0.6 LW
- /CI 0 D /TP t D /Hs f D /hl 6 D /Hv 6 D /HI hi D /Ms f D}if Bs XO BO M} D
-/Np {LE sub CP E pop gt PL 0 eq and{NP}if}D
-/Ip {/PN PN 1 add D /Pn RM{1}{4}ie PN Ns D /PM PN SN sub 2 mod D} D
-/GP {E dup 3 -1 roll get PN 1 add 2 mod get dup type /integertype eq
- {get 0 get}{E pop}ie}d
-/Fc {dup 2 GP exec SW pop /S1 E D dup 1 GP exec SW pop /S2 E D 0 GP exec SW
- pop /S3 E D S1 0 gt{S2 2 mul S1 add S3 2 mul S1 add 2 copy lt{E}if pop}{0}ie
- S2 S3 add 2 copy lt{E}if pop IW .9 mul div dup 1 gt{1 E div}{pop 1}ie}D
-/OR {Df{Sd}if tp not{gsave SA{1 Sf div dup scale}if Fe{Cf{FU VC}if FW LW
- 1 setlinejoin FE stroke}if /YO {60 F div dup 40 gt{pop 40}if}D /cs CS D
- /cf CF D /CF 0 D /pf PF D /PF f D /Fn FN D /At AT D /AT 0 D /FN EF Hf 1 add
- get D Fz Fs FS ZZ Fc Fz mul Fs FS EU Hf 1 add get dup type /arraytype eq
- Cf and{VC}{pop 0 Sg}ie IW IL neg YO sub M ZZ 1 GP exec dup SW pop neg 0 R Sh
- 0 IL neg YO sub M ZZ 0 GP exec Sh ZZ 2 GP exec dup SW pop IW E sub 2 div
- IL neg YO sub M Sh Fz Fs FS NO{/AW IW Pn SW pop sub D AW 2 div IL neg YO sub
- S1 0 gt S2 AW .45 mul gt or S3 AW .45 mul gt or{Fz 2 mul sub}if M Pn Sh}if
- EU Hf get dup type /arraytype eq Cf and{VC}{pop 0 Sg}ie YY Fc /FN EF Hf get D
- Hz mul HS FS IW YO M YY 1 GP exec dup SW pop neg 0 R Sh 0 YO M YY 0 GP exec Sh
- YY 2 GP exec dup SW pop IW E sub 2 div YO M Sh /FN Fn D /AT At D t Pb XO SZ
- SL get neg R /PF pf D grestore /CF 0 D cs cf FS}if}D
-/Sh {dup () ne{CP Hz 4 div sub BB show CP CS add BB}{pop}ie}D
-/Pb {/OU E D /Ou OU D /PB t D 0 0 M Ba{/Sa save D /BP t D /Fl t D RC /PL 0 D
- /PH 0 D /W IW D /LE IL .7 mul D /EO 0 D SI ZF /YA 0 D /BO 0 D /C1 () D
- BA 0 Ts neg R Bb{Xl Yl Xh Yh}if Bb CP Sa restore M
- {/Yh E D /Xh E D /Yl E D /Xl E D}if /Fl t D}if
- BL /OU t D /HM f D /Ou t D /PB f D} D
-/Bs {/BP Ba not D}D
-/reencodeISO {
- dup dup findfont dup length dict begin{1 index /FID ne{D}{pop pop}ie}forall
- /Encoding ISOLatin1Encoding D currentdict end definefont} D
-/ISOLatin1Encoding [
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/space/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright
-/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash
-/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon
-/less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N
-/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright
-/asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m
-/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
-/.notdef/space/exclamdown/cent/sterling/currency/yen/brokenbar
-/section/dieresis/copyright/ordfeminine/guillemotleft/logicalnot
-/hyphen/registered/macron/degree/plusminus/twosuperior/threesuperior
-/acute/mu/paragraph/periodcentered/cedilla/onesuperior/ordmasculine
-/guillemotright/onequarter/onehalf/threequarters/questiondown
-/Agrave/Aacute/Acircumflex/Atilde/Adieresis/Aring/AE/Ccedilla
-/Egrave/Eacute/Ecircumflex/Edieresis/Igrave/Iacute/Icircumflex
-/Idieresis/Eth/Ntilde/Ograve/Oacute/Ocircumflex/Otilde/Odieresis
-/multiply/Oslash/Ugrave/Uacute/Ucircumflex/Udieresis/Yacute
-/Thorn/germandbls/agrave/aacute/acircumflex/atilde/adieresis
-/aring/ae/ccedilla/egrave/eacute/ecircumflex/edieresis/igrave
-/iacute/icircumflex/idieresis/eth/ntilde/ograve/oacute/ocircumflex
-/otilde/odieresis/divide/oslash/ugrave/uacute/ucircumflex/udieresis
-/yacute/thorn/ydieresis
-] D
-[128/backslash 129/parenleft 130/parenright 141/circumflex 142/tilde
-143/perthousand 144/dagger 145/daggerdbl 146/Ydieresis 147/scaron 148/Scaron
-149/oe 150/OE 151/guilsinglleft 152/guilsinglright 153/quotesinglbase
-154/quotedblbase 155/quotedblleft 156/quotedblright 157/endash 158/emdash
-159/trademark]
-aload length 2 idiv 1 1 3 -1 roll{pop ISOLatin1Encoding 3 1 roll put}for
-/colorimage where{pop}{
- /colorimage {
- pop pop /Pr E D {/Cv Pr D /Gr Cv length 3 idiv string D 0 1 Gr length 1 sub
- {Gr E dup /i E 3 mul D Cv i get 0.299 mul Cv i 1 add get 0.587 mul add
- Cv i 2 add get 0.114 mul add cvi put}for Gr} image} D
-}ie
-/pdfmark where{pop}{userdict /pdfmark /cleartomark load put}ie
-WF{FL{reencodeISO D}forall}{4 1 FL length 1 sub{FL E get reencodeISO D}for}ie
-/Symbol dup dup findfont dup length dict begin
- {1 index /FID ne{D}{pop pop}ie}forall /Encoding [Encoding aload pop]
- dup 128 /therefore put D currentdict end definefont D
-
-/SF {/CS E D SZ SL CS put FO SL FN put /YI CS LH neg mul D dup ST cvs ( ) join
- CS ST cvs join C1 E join ( NF ) join /C1 E D CS NF /Wf WF FN 0 gt or D
- /BW Wf{( ) SW pop}{0}ie D}D
-/NF {/cS E D /cF E D cF 0 ge{FL cF get}{cF -1 eq{/Symbol}{/MySymbol}ie}ie
- findfont cS scalefont setfont} D
-/FS {CF or /CF E D FR SL CF put CF CF 0 ge{FN 4 mul add}if E SF} D
-/PC {SH /BP f D fin not GL not and{NL}if /HM t D /LL LS D} D
-/BS {/TX E D Wf{/fin f D /CW 0 D /LK 0 D /SC 0 D
- /RT TX D {RT ( ) search{/NW E D pop /RT E D /WH NW SW pop D CW WH add LL gt
- {TX SC LK SC sub 1 sub NN GI GL{SH cF cS OC
- 2 copy cS ne E cF ne or{NF}{pop pop}ie}{PC /CW WH BW add D}ie
- /SC LK D}
- {GL{JC}if
- /CW CW WH add BW add D /HM t D}ie /GL f D /Ph f D
- /LK LK NW length 1 add add D}{pop exit}ie}loop
- /fin t D TX SC LK SC sub GI SH RT () ne{GL not{CC}if}if
- /LC TX length D /WH RT SW pop D CW WH add Hy{HC SW pop add}if LL gt
- {RT GL{SH cF cS OC 2 copy cS ne E cF ne or{NF}{pop pop}ie
- Hy{/Ph t D}if /LL LS D}{NL /LL LS D SH}ie}
- {RT PC Hy{CC}if /Ph Ph Hy or D}ie RT () ne{/GL t D /HM t D}if}
- {TX SW pop LL le{TX SH}{/NW () D 0 2 TX length 1 sub
- {/CW E D TX 0 CW GI dup SW pop LL gt{pop NW SH /HM t D NL/LL W XO sub MR sub D
- /CW CW 2 sub NN D /TX TX CW TX length CW sub GI D TX BS exit}
- {/NW E D}ie}for}ie}ie /HM t D}D
-/CC {C0 length 0 gt{JC}if /C0 [C1 L1 YA YB Mf NS NB TB AF Bw] D
- /C1 () D /L0 L1 D /YA 0 D /YB 0 D /Mf 0 D /NS 0 D /NB 0 D}D
-/JC {C0 aload length 0 gt{pop pop pop NB add /NB E D NS add /NS E D
- dup Mf gt{/Mf E D}{pop}ie dup YB gt{/YB E D}{pop}ie
- dup YA gt{/YA E D}{pop}ie pop C1 join /C1 E D /C0 [] D}if}D
-/OC {C0 length 0 gt{C1 L1 L0 sub YA YB Mf NS NB TB AF Bw GL C0 aload pop
- /Bw E D /AF E D /TB E D /NB E D /NS E D /Mf E D /YB E D /YA E D /C0 [] D
- /L1 E D /C1 E D Ph{HC SH}if NL /GL E D /Bw E D /AF E D /TB E D /NB E D /NS E D
- /Mf E D /YB E D /YA E D /L1 E D /LL W L1 sub XO sub MR sub WH sub D /CW 0 D
- C1 E join /C1 E D}if}D
-/BT {/LB t D dup length string copy RS dup dup () ne E ( ) ne and
- {/CI 0 D /LS LL D /LL W L1 sub XO sub MR sub D BS}
- {dup ( ) eq{/GL f D}if dup () eq L1 0 eq or{pop}{SH /BP f D /Ph f D}ie}ie
- /LB f D} D
-/BL {CP E pop XO E M} D
-/NL {JC /GL f D /SK W XO sub MR sub L1 sub TB{Bw add}if D
- /YA LF{Mf HM Fl not and PF or{LH mul}if}{0 /LF t D}ie YA 2 copy lt{E}if pop D
- C1 () ne{/FB YB Mf SA{Sf mul}if 4 div 2 copy lt{E}if pop D}if Fl{/Ya YA D}if
- CP E pop YA sub YB sub LE neg lt Fl not and PB not and{NP}if NT TL BL
- OU PF not and PB or{/RE L1 TB{Bw sub}if
- W XO sub MR sub div YA YB add LE BO add div 2 copy lt{E}if pop D
- RE 1 gt{BL 1 RE div dup scale}if}if
- AT 2 le{SK AT mul 2 div YA neg R}if
- AT 3 eq{0 YA neg R TB{/NB NB 1 sub D /NS NS 1 sub D}if /NB NB 1 sub NN D
- /A3 NS 6 mul NB add D NS NB add 0 eq
- {/A1 0 D /A2 0 D}
- {NS 0 eq{/A1 SK NB div dup J gt{pop 0}if D /A2 0 D}{J A3 mul SK lt
- {/A1 J D /A2 SK J NB mul sub NS div dup Ab gt{/A1 0 D pop 0}if D}
- {/A1 SK A3 div D /A2 A1 6 mul D}ie}ie}ie /A1 A1 NN D /A2 A2 NN D}if
- AT 4 eq{0 YA neg R PH 2 le{PD 0 lt{/PD L1 D}if PD M1 gt{/M1 PD D}if
- L1 PD sub M2 gt{/M2 L1 PD sub D}if}{DV ID 1 sub get 0 ge{Lo 0 R}if}ie}if
- F0 cF ne Cs cS ne or{F0 Cs NF}if
- /ms Ms D /Ms f D CP FB sub
- C1 cvx exec XO EO sub L1 add TB{BW sub}if dup LM gt{/LM E D}{pop}ie
- PH 0 eq PH 4 eq or Ms and{HF not{/PO t D /AH t D}if
- BB CP YA add E AT 3 eq LB and{A1 sub}if TB{BW sub}if E BB}
- {pop pop}ie Ms HM PH 3 eq and or{/BP f D /Fl f D}if
- /Lo 0 D /L1 0 D /F0 cF D /Cs cS D BP not{0 YB NN neg R}if
- OU f1 and mF not and{k2 /f1 f D}if
- OU PF not and PB or{RE 1 gt{RE dup scale}if}if /Ms ms Ms or D
- /C1 AF{(Cp )}{()}ie D /YA 0 D /YB 0 D BL
- AT 4 eq LB not and PH 3 ge and
- {ID DV length lt{DV ID get dup 0 ge{DO E sub /Lo E D /L1 Lo D}{pop}ie
- /ID ID 1 add D}if}if /T t D CD{/LN LN 1 add D PD}if
- /PD -1 D /NS 0 D /NB 0 D /TB f D /Ph f D /Mf 0 D /HM f D} D
-/RS {/TM E D /CN 0 D TM{10 eq{TM CN ( ) PI}if /CN CN 1 add D}forall
- /CN 0 D /BK HM EN and{0}{1}ie D TM
- {dup 32 ne{TM CN 3 2 roll put /CN CN 1 add D /BK 0 D}
- {pop BK 0 eq{TM CN 32 put /CN CN 1 add D}if /BK 1 D}ie}forall
- TM 0 CN GI dup dup () ne E ( ) ne and
- {dup CN 1 sub get 32 eq{/EN f D}{/EN t D}ie}if} D
-/join {2 copy length E length add string dup 4 2 roll 2 index 0 3 index
- PI E length E PI}d
-/WR {(\n) search{dup () ne BP not or
- {Li 4 le CP E pop YI Li mul add LE add 0 lt and PL 0 eq and{NP}if
- SH NL pop /Li Li 1 sub D WR}{pop pop WR}ie}{SH}ie /CI 0 D /BP f D} D
-/SH {dup dup () ne E ( ) ne and PF or CS Mf gt and{/Mf CS D}if
- T not Wf and{( ) E join /T t D}if dup BP{/MF CS D}if
- AT 3 eq{2 copy length dup 0 gt{/NB E NB add D
- {( ) search{/NS NS 1 add D pop pop}{pop exit}ie}loop}{pop pop}ie}if
- CD PD 0 lt and{dup DC search{SW pop /PD E L1 add D pop pop}{pop}ie}if
- 0 Np dup SW pop L1 add /L1 E D dup () ne
- {C1 (\() join E join (\)) join AU AF and UF or Wf and{( U ) join}if
- sF{( s ) join}if ( S ) join
- /C1 E D dup length 1 sub get 32 eq /TB E D /Bw BW D}{pop pop}ie} D
-/BG {AI LG BC add add 0 eq} D
-/ON {OU{Ty AR AI NN get dup 1 add Ln Ns Ty 2 mod 0 eq{(. )}{(\) )}ie join
- dup SW pop neg 0 R CP E 0 lt{0 E M}{pop}ie CP BB show /Ms t D}if} D
-/Ln {AR AI 3 -1 roll put}D
-/SP {dup CI lt BP not and{dup CI sub 0 E R /CI E D}{pop}ie} D
-/BN {PF{WR /HM f D}{BT NL}ie} D
-/NN {dup 0 lt{pop 0}if} D
-/h {(h) HI ST cvs join cvx exec dup 1 get E Nf{0 get E join}{pop}ie} D
-/H {/fn FN D /Hi E 1 add D 1 sub /HL E D /H2 HL 2 add D /GS EZ H2 get D
- E Tm H2 get GS mul BE dup 0 gt{1 sub}{pop EG H2 get dup 0 lt{pop AT}if}ie NA
- WW Np /SL SL 1 add D /FN EF H2 get D GS Ey H2 get FS
- EU H2 get Sc Hs not HL Hl lt and Hs HL hl lt and or Hi 0 eq or
- {/HI Hi D /Hs t D /hl HL D /Hv HL D}if HL Hl lt{/hi Hi D}if
- Nf HI 0 gt and{(h) Hi ST cvs join cvx exec 0 get WB}if
- /HF t D /AH f D /PO f D} D
-/EH {Bm H2 get GS mul BE OA /SL SL 1 sub NN D /CF 0 D /FN fn D
- SZ SL get FR SL get FS /HF f D /GS Ts D ()Ec} D
-/P {E PF{WR}{PO{EP}{BN}ie Ts 4 mul Np AE not{Tm 0 get Ts mul neg SP}if
- dup 0 ge AH and{Pi Pd}if}ie 1 sub dup 0 lt{pop AV AL get}if /AT E D /PO t D} D
-/EP {PF{WR}{BN Ts 4 mul Np}ie AE not{Bm 0 get Ts mul neg SP}if
- /AT AV AL get D /PO f D} D
-/BE {E PO{EP}{BN}ie Ts 4 mul Np neg SP} D
-/HR {/Aw W EO sub D /RW E dup 0 gt{Aw mul}{neg}ie dup Aw gt{pop Aw}if D /RZ E D
- E BN Ts neg SP 1 sub 2 div Aw RW sub mul EO add CP E pop M PF{0 Ps neg R}if
- 0 Np OU{gsave RZ LW Cf{Hc VC}{0 Sg}ie CP BB RW 0 RL CP BB stroke grestore}if
- /CI 0 D /BP f D PF not{Ts neg SP}if /Ms t D} D
-/AD {I NL EG 14 get dup 0 lt{pop AT}if NA /AE t D Tm 14 get Ts mul neg SP
- Cf{EU 14 get dup -1 eq{pop CA CL get}if Sc}if} D
-/DA {BN ()ES OA /AE f D ()Ec Bm 14 get Ts mul neg SP} D
-/PR {/MW E D /Li E D Tm 1 get Ps mul BE 0 NA /FN Fp D /PF t D SI /SL SL 1 add D
- /CF 0 D Ps CS mul Ts div MW WC mul CS mul Ts div dup LL gt PL 0 eq and
- {LL div div}{pop}ie Ey 1 get FS CP E pop LE add YI neg div cvi dup Li lt
- AH and{4 lt YI Li mul 5 mul LE add 0 gt or PL 0 eq and{NP}if}{pop}ie
- EU 1 get Sc /GS Ps D}D
-/RP {WR NL () /PF f D SI /FN 0 D ES Bm 1 get Ps mul neg SP OA /GS Ts D} D
-/SI {/XO Lm 15 get BC NN mul Lm 16 get AI UI sub NN mul add
- Lm 17 get UI NN mul add Lm 20 get LG NN mul add Ts mul
- PF{Lm 1 get Ps mul add}if EO add D
- /MR Rm 15 get BC NN mul Rm 16 get AI UI sub NN mul add
- Rm 17 get UI NN mul add Rm 20 get LG NN mul add Ts mul
- PF{Rm 1 get Ps mul add}if D /LL W XO sub MR sub D} D
-/DT {/cC E D BN /LG LG 1 sub D SI /LG LG 1 add D WW 2 div Np BL} D
-/DD {WB Cc 0 eq cC 0 eq and L1 0 eq or Lm 20 get Ts mul L1 sub TB{BW add}if
- Ts 2 div lt or NL /LF E D SI BL /cC 0 D} D
-/DL {Dc LG Cc put /Cc E D BG{Tm 18 get Ts mul BE}{BN}ie /LG LG 1 add D BL} D
-/LD {BN LG 0 gt{/LG LG 1 sub D}if /Cc Dc LG get D SI
- BG{()Bm 18 get Ts mul BE}if BL} D
-/UL {BG{Tm 17 get Ts mul BE}{BN}ie NR AI NN 0 put /UI UI 1 add D
- /AI AI 1 add D SI BL} D
-/LU {BN /UI UI 1 sub D /AI AI 1 sub D SI BG{()Bm 17 get Ts mul BE}if BL} D
-/OL {E BG{Tm 16 get Ts mul BE}{BN}ie TR AI NN Ty put /Ty E D NR AI NN 1 put
- /AI AI 1 add D SI BL 1 Ln} D
-/LO {BN /AI AI 1 sub D /Ty TR AI get D SI BG{()Bm 16 get Ts mul BE}if BL} D
-/LI {E BN -1 SP /BP f D /CI 0 D 0 Np NR AI 1 sub NN get 1 eq
- {dup dup 0 gt E 4 le and{/Ty E D}{pop}ie
- /L1 L1 Ty AR AI NN get Ns SW pop XO sub dup 0 lt{pop 0}if add D ( ON )}
- {pop ( B )}ie C1 E join /C1 E D CS Mf gt{/Mf CS D}if BL} D
-/BQ {Tm 15 get Ts mul BE /BC BC 1 add D SI BL} D
-/QB {Bm 15 get Ts mul BE /BC BC 1 sub D SI BL} D
-/Al {E EP 1 sub dup 0 lt{pop AV AL get}if NA} D
-/Ea {EP OA} D
-/WB {PF{WR}{BT}ie} D
-/F1 {WB /FN 0 D CS 0 FS} D
-/F2 {WB /FN WI D CS 0 FS} D
-/HY {/Hy t D WB /Hy f D} D
-/YH {WB} D
-/A {/LT E D LT 1 eq{/RN E D}if /Lh E D WB /C1 C1 ( Cp ) join D
- Lc AF not and{Cl Sc}if /AF t D} D
-/EA {Lc AF and{Ec}{WB}ie TL Pa AF and Lh 0 ne and
- {( \() Lh join (\)) join /AF f D WB}if /AF f D} D
-/TL {C1 ( Tl ) apa /C1 E D} d
-/apa {AF OU and Lh 0 ne LT 1 eq or and{LT 1 eq{RN ( /) E ST cvs join}
- {(\() Lh join (\)) join}ie E join join}{pop}ie} d
-/Cp {/Xc CP /Yc E D D} D
-/SS {Cf{dup 0 ge{EU E get dup -1 eq{pop CA CL get}if}{pop CA CL get}ie Sc}
- {pop}ie SZ SL get /SL SL 1 add D} D
-/I {WB 8 SS 1 FS} D
-/EM {WB 8 SS /CF CF 1 xor D 0 FS} D
-/BD {WB 9 SS 2 FS} D
-/TT {WB 10 SS /FN Fp D 0 FS} D
-/KB {WB 11 SS /FN Fp D 2 FS} D
-/CT {WB 12 SS 1 FS} D
-/SM {WB 13 SS /FN Fp D 0 FS} D
-/Q {/QL QL 1 add D QO QL 2 mod get La get join WB} D
-/EQ {QC QL 2 mod get La get join WB /QL QL 1 sub D} D
-/RO {WB -1 SS /CF 0 D 0 FS} D
-/SY {WB -1 SS -1 FS} D
-/MY {WB -1 SS -2 FS} D
-/ES {WB /SL SL 1 sub NN D /CF 0 D /FN FO SL get D SZ SL get FR SL get FS ()Ec}D
-/FZ {3 sub 1.2 E exp GS mul E WB TL /C1 C1 ( Cp ) join D /SL SL 1 add D 0 FS} D
-/Ef {WB TL ()ES /C1 C1 ( Cp ) join D} D
-/BZ {dup /Bf E D FZ}D
-/Sc {dup -1 ne Cf and{/CL CL 1 add D dup 0 eq{pop [0 0 0]}if
- dup CA E CL E put VS ( VC ) join C1 E join /C1 E D}{pop}ie} D
-/Ec {WB Cf{/CL CL 1 sub NN D CA CL get VS ( VC ) join C1 E join /C1 E D}if} D
-/VS {dup type /arraytype eq{([) E {ST cvs join ( ) join}forall (]) join}if} D
-/VC {{255 div}forall setrgbcolor} D
-/Sl {dup type /integertype ne{Ds}if /La E D WB}d
-/UN {WB /UF t D} D
-/NU {WB /UF f D} D
-/SE {WB /sF t D} D
-/XE {WB /sF f D} D
-/sM {/C1 C1 ( k1 ) join D}d
-/eM {/C1 C1 ( k2 ) join D}d
-/k1 {/YC CP E pop Ts add D /mF t D /f1 t D}d
-/k2 {gsave 3 LW -9 CP E pop Ts 0.2 mul sub M -9 YC L stroke grestore /mF f D}d
-/Ac {/AC E D WB}d
-/Ca {eA{( \()join AC join(\) )join}if WB}d
-/s {OU{gsave 0 CS .25 mul R dup SW pop CJ 0 RL stroke grestore}if}D
-/CJ {AT 3 eq LB and{E dup dup length 1 sub A1 mul E
- {( ) search{pop pop E A2 add E}{pop exit}ie}loop 3 -1 roll add
- W CP pop sub 2 copy gt{E}if pop}if}D
-/So {/Co E D} D
-/SO {C1 Yo ST cvs join ( So ) join /C1 E D (j) SW pop 2 div Pd} D
-/Se {E WB CS E div Pd}D
-/Pd {dup type /stringtype eq{SW pop}if dup /L1 E L1 add D
- ST cvs ( 0 R ) join C1 E join /C1 E D} D
-/Sp {0.35 CO} D
-/Sb {-0.2 CO} D
-/CO {OV Io Yo put /Yo E CS mul Yo add D /Io Io 1 add D -1.5 Io mul 3 add FZ SO
- CS Yo add dup YA gt{/YA E D}{pop}ie
- Yo neg dup YB gt{/YB E D}{pop}ie} D
-/Es {ES /Io Io 1 sub NN D /Yo OV Io get D SO} D
-/SB {/N2 0 D 0 1 NI{/N E D{IX N2 get 0 lt{/N2 N2 1 add D}{exit}ie}loop
- /K WS N get FC N get mul D /NY AY N2 get D /BV NY array D
- 0 1 NY 1 sub{/TM K string D currentfile TM readhexstring pop pop BV E TM put}
- for BM N BV put /N2 N2 1 add D}for} D
-/IC [{/MA E D /MB 0 D}{2 div /MA E D /MB MA D}{/MB E CS sub D /MA CS D}
- {pop /MA YS AB mul D /MB 1 AB sub YS mul D}{pop /MA 0 D /MB 0 D}] D
-/IP {BV N get /N N 1 add D} D
-/II {/K E D IX K get 0 lt{/EC E D}if /TY E D
- TY 4 eq{/Y E D /X E D}if TY 3 eq{/AB E D}if
- /XW AX K get D /YW AY K get D /IS SG IT K get get D /XS XW IS mul D
- /YS YW IS mul D YS IC TY get exec /MA MA Fl not{3 add}if D} D
-/IM {II /ty TY D /xs XS D /ys YS D /ya YA D /yb YB D /ma MA D /mb MB D /k K D
- /ec EC D /BP f D /CI 0 D WB TL L1 xs add dup XO add MR add W gt
- {pop /ma ma Fl{3 add}if D NL /YA ma D /YB mb D /YS ys D /L1 xs D}
- {/L1 E D ma YA gt{/YA ma D}if mb YB gt{/YB mb D}if}ie /TB f D
- OU{CP E pop YS sub LE neg lt Fl not and PB not and{NP /YA ma D /YB mb D}if
- /BP f D ty ST cvs ( ) join IX k get 0 lt{(\() join ec join (\) ) join}if
- k ST cvs join ty 3 eq{AB ST cvs ( ) join E join}if
- ty 4 eq{X ST cvs ( ) join Y ST cvs join ( ) join E join}if C1 E join
- ( DI ) join FP 2 eq FP 1 eq AF and or{( FM ) join}if
- ( Il Cp ) apa /C1 E D /EN f D}if /HM t D /T f D} D
-/DI {II /Xc CP /Yc E D D /YN YW neg D /HM t D /CI 0 D /K2 IX K get D gsave
- TY 4 eq{OX X IS mul add OY FY add YS sub Y IS mul sub}
- {/FY YS D CP MB sub 2 copy /OY E D /OX E D}ie
- translate K2 0 ge{/DP AZ K2 get D /BV BM K2 get D XS YS scale /N 0 D XW YW DP
- [XW 0 0 YN 0 YW] {IP} FC K2 get 1 eq{image}{f 3 colorimage}ie}
- {EX}ie grestore XS 0 R /Ms t D} D
-/FM {gsave 0 Sg CP MB sub translate XS neg 0 M 0 YS RL XS 0 RL 0 YS neg RL
- XS neg 0 RL stroke grestore} D
-/NA {/AT E D /AL AL 1 add D AV AL AT put} D
-/OA {AL 0 gt{/AL AL 1 sub D /AT AV AL get D}if} D
-/D1 {/BR {CP E pop E BN Mb{CP E pop eq{0 YI R}if}{pop}ie} D
- /Sn {OU{C1 E ST cvs join ( Ld ) join /C1 E D}{pop}ie} D} D
-/D1 {/BR {BN} D /Sn {OU {C1 E ST cvs join ( Ld ) join /C1 E D} {pop} ie} D} D
-/TC {/TF t D /ML 0 D HN{SW pop dup ML gt{/ML E D}{pop}ie}forall NP /RM RM not D
- RC /OU Tc D Ep /PN 0 D Ms not TP and{Ip}if /W IW ML sub Ts sub D
- /A0 0 D TH{/BR {( ) join BT} D /Sn {pop} D /Au () D}if} D
-/TN {0 eq{E EA PF HF or not XR and{HN E get Xr}{pop}ie}
- {OU{Tn 0 ge{() BN}if /Tn E D}{pop}ie WB}ie} D
-/NT {OU LB not and Tn 0 ge and{PL 0 eq{Ms not{CS CF FS}if CP dup
- /y E YA sub D W 9 sub CS -1.8 mul XO L1 add 2 add{y M (.) show}for
- HN Tn get dup SW pop IW E sub y M show CP BB M}if /Tn -1 D}if} D
-/Ld {/DN E D HN DN Pn put [/View [/XYZ -4 Fl{PS}{CP YA add US E pop}ie null]
- /Dest DN ST cvs cvn /DEST pdfmark} D
-/C {ND 1 eq{1 sub}if TI mul /XO E D NL Nf not{pop()}if 0 3 -1 roll 1 A} D
-/OP {BP not{NP}if PN 2 mod 0 eq{/Ms t D NP}if}D
-/Ep {Xp PN 2 mod 0 eq and OU and{/Pn (-) D showpage /PM 1 D LA}if}D
-/Dg [73 86 88 76 67 68 77] D
-/Rd [0 [1 1 0][2 1 0][3 1 0][2 1 1][1 1 1][2 2 1][3 3 1][4 4 1][2 1 2]] D
-/Ns {/m E D /c E 32 mul D /j m 1000 idiv D /p j 12 add string D
- c 96 le m 0 gt and{c 32 le {/i 0 D /d 77 D /l 100 D /m m j 1000 mul sub D
- j -1 1 {pop p i d c add put /i i 1 add D}for
- 4 -2 0 {/j E D /n m l idiv D /m m n l mul sub D /d Dg j get D
- n 0 gt {/x Rd n get D x 0 get -1 1 {pop p i d c add put /i i 1 add D}for
- p i x 1 get sub Dg x 2 get j add get c add put}if /l l 10 idiv D
- }for p 0 i GI}
- {/i ST length 1 sub D m {1 sub dup 0 ge{dup 26 mod c add 1 add
- ST i 3 -1 roll put 26 idiv dup 0 eq{pop exit}if}if /i i 1 sub D}loop
- ST i ST length i sub GI}ie}
- {m p cvs}ie} D
-/US {matrix currentmatrix matrix defaultmatrix matrix invertmatrix
- matrix concatmatrix transform} D
-/GB {Gb{US}if}D
-/Tl {/Rn E D Xc CP pop ne{
- [/Rect [Xc 1 sub Yc cS 0.25 mul sub GB CP E 1 add E cS 0.85 mul add GB]
- /Subtype /Link /Border [0 0 Cf Lc and LX and AU or{0}{1}ie] Rn type
- /nametype eq {/Dest Rn}{/Action [/Subtype /URI /URI Rn] Cd}ie
- /ANN pdfmark}if} D
-/Il {/Rn E D [/Rect [Xc Yc GB Xc XS add Yc YS add GB] /Subtype /Link
- /Border [0 0 0] Rn type /nametype eq{/Dest Rn}
- {/Action [/Subtype /URI /URI Rn] Cd}ie /ANN pdfmark} D
-/XP {[{/Z Bz 2 div D Z 0 R Z Z RL Z neg Z RL Z neg Z neg RL Z Z neg RL
- Fi cH 1 eq and{fill}if} {Bz 0 RL 0 Bz RL Bz neg 0 RL 0 Bz neg RL
- Fi cH 1 eq and{fill}if} {0 -5 R Bz 0 RL 0 21 RL Bz neg 0 RL 0 -21 RL}]} D
-/MS {/Sm E D WB}D
-/O {BN()0 Sm BX} D
-/BX {/Bt E D Bt 2 lt{/Ch E D CS 0.8 mul}{11 mul}ie W XO sub MR sub
- 2 copy gt{E}if pop /HZ E D Bt 2 eq{Fi not{pop()}if ( )E join /Ft E D TT
- /PF t D /MW 1 D /Li 1 D /Fw Ft SW pop D Fw HZ gt{/HZ Fw 8 add D}if
- HZ ST cvs( )join}{WB Ch ST cvs( )join}ie L1 HZ add XO add MR add W gt{NL}if
- Bt 2 eq{Ft ES Fw neg HM{CS sub}if Pd}if Bt ST cvs join( Bx )join
- Bt 2 eq HM and{CS Pd}if C1 E join /C1 E D /L1 L1 HZ add D /T f D
- ( ) Pd /PF f D Bt 2 lt{YA CS .8 mul lt{/YA CS .8 mul D}if}
- {YB 5 lt{/YB 5 D}if YA 21 lt{/YA 21 D}if}ie /CI 0 D} D
-/Bx {dup 2 eq{E /Bz E D}{E /cH E D /Bz CS .8 mul D}ie
- OU {gsave 0 Sg XP E get exec stroke grestore}{pop}ie Bz 0 R /Ms t D}D
-/SD {FD 4 mul Dy add DZ NF newpath 0 0 M DX t charpath pathbbox
- 3 -1 roll sub /DY E D E dup /X1 E D sub WM mul WX DY mul add WM DG mul E div
- /DF E D /DR WX DF mul DY mul WM div 2 div D} d
-/Sd {gsave 0 IL Di mul neg translate IL IW atan Di 0 eq{neg}if rotate
- FD 4 mul Dy add DZ NF DR X1 sub DY 2 div neg M cD VC DX show grestore} d
-/Pt {/tp t D Tp{NP /Pn (TP) D 0 Tt neg R Th BN NP Ep ET RC ZF}if /tp f D} D
-/RC {/AI 0 D /LG 0 D /BC 0 D /UI 0 D /PF f D /Cc 0 D /cC 0 D /Dc 10 array D
- /NR [0 1 9{pop 0}for] D /La Ds D /AR 10 array D /TR 10 array D /AV 30 array D
- SI /AL -1 D /AT A0 D AT NA /OV 9 array D /Yo 0 D /Co 0 D /Io 0 D /Hy f D
- /Ph f D /CL -1 D Ct Sc}D
-/ZF {/FR [0 1 30{pop 0}for] D /SZ [0 1 30{pop 0}for] D /FO [0 1 30{pop 0}for] D
- /SL 0 D /CF 0 D /FN 0 D 0 Ts SF}D
-/QO [[(\234)(\233)(\253\240)(\232)(\273)(\253)][(')(`)(\253\240)(\231)(\273)(\253)]] D
-/QC [[(\234)(\234)(\240\273)(\233)(\253)(\273)][(')(')(\240\273)(`)(\253)(\273)]] D
-/Hf EF length 2 sub D
-/Hz EZ Hf get D
-/HS Ey Hf get D
-/Fz EZ Hf 1 add get D
-/Fs Ey Hf 1 add get D
-/LE IL D
-/Ps EZ 1 get D
-/Fp EF 1 get D
-/XO 0 D
-/YI 0 D
-/CI 0 D
-/FP 0 D
-/WW Ts 7 mul D
-/Mf 0 D
-/YA 0 D
-/YB 0 D
-/Cs Ts D
-/GS Ts D
-/F0 0 D
-/NS 0 D
-/NB 0 D
-/N 0 D
-/C0 [] D
-/C1 () D
-/Lo 0 D
-/L1 0 D
-/LM 0 D
-/PH 0 D
-/EC 0 D
-/Lh 0 D
-/LT 0 D
-/CH 1 string D
-/ST 16 string D
-/CA 9 array D
-/HC (\255) D
-/HM f D
-/PF f D
-/EN f D
-/TB f D
-/UF f D
-/sF f D
-/AE f D
-/AF f D
-/BP t D
-/CD f D
-/PA t D
-/GL f D
-/T t D
-/HF f D
-/AH f D
-/SA f D
-/PB f D
-/f1 f D
-/mF f D
-/OX 0 D
-/OY 0 D
-/FY 0 D
-/EO 0 D
-/FB 0 D
-/PL 0 D
-/Bw 0 D
-/PD -1 D
-/TP f D
-/tp f D
-/TH t D
-/Ty 4 D
-/Tn -1 D
-/Fl t D
-/LB t D
-/PM 1 D
-/Ms f D
-/Ba f D
-/Bb f D
-/Hl 3 D
-/hl 6 D
-/Hv 6 D
-/Hs f D
-/HI 0 D
-/hi 0 D
-/PO t D
-/TE f D
-/LF t D
-/BO 0 D
-/Sm 1 D
-/Bf 3 D
-/A1 0 D
-/A2 0 D
-/Ds 1 D
-/QL -1 D
-/Cb Db D
-/Ct Dt D
-/Cl Dl D
-[/Creator (html2ps version 1.0 beta5) /Author () /Keywords (xsd, xml, schema, c++, mapping, data, binding, parsing, serialization, validation) /Subject ()
- /Title (C++/Tree Mapping Getting Started Guide) /DOCINFO pdfmark
-/ND 1 D
-/HN [(1) (1) (1) (1) (1) (1) (1) (2) (2) (3) (3) (5) (6) (7) (8) (11) (13) (15)
-(16) (16) (16) (17) (17) (20) (22) (24) (26) (29) (??) (31) (32) (34) (36)
-(37) (38) (1) (1) (1) (1) (2) (2) (3) (3) (5) (6) (7) (8) (11) (13) (15)
-(16) (16) (16) (17) (17) (20) (22) (24) (26) (29) (31) (32) (34) (36) (37)
-(38)] D
-/h0 [()(Table of Contents)] D
-/h1 [(1\240\240)(Preface)] D
-/h2 [(1.1\240\240)(About This Document)] D
-/h3 [(1.2\240\240)(More Information)] D
-/h4 [(2\240\240)(1 Introduction)] D
-/h5 [(2.1\240\240)(1.1 Mapping Overview)] D
-/h6 [(2.2\240\240)(1.2 Benefits)] D
-/h7 [(3\240\240)(2 Hello World Example)] D
-/h8 [(3.1\240\240)(2.1 Writing XML Document and Schema)] D
-/h9 [(3.2\240\240)(2.2 Translating Schema to C++)] D
-/h10 [(3.3\240\240)(2.3 Implementing Application Logic)] D
-/h11 [(3.4\240\240)(2.4 Compiling and Running)] D
-/h12 [(3.5\240\240)(2.5 Adding Serialization)] D
-/h13 [(3.6\240\240)(2.6 Selecting Naming Convention)] D
-/h14 [(3.7\240\240)(2.7 Generating Documentation)] D
-/h15 [(4\240\240)(3 Overall Mapping Configuration)] D
-/h16 [(4.1\240\240)(3.1 Character Type and Encoding)] D
-/h17 [(4.2\240\240)(3.2 Support for Polymorphism)] D
-/h18 [(4.3\240\240)(3.3 Namespace Mapping)] D
-/h19 [(4.4\240\240)(3.4 Thread Safety)] D
-/h20 [(5\240\240)(4 Working with Object Models)] D
-/h21 [(5.1\240\240)(4.1 Attribute and Element Cardinalities)] D
-/h22 [(5.2\240\240)(4.2 Accessing the Object Model)] D
-/h23 [(5.3\240\240)(4.3 Modifying the Object Model)] D
-/h24 [(5.4\240\240)(4.4 Creating the Object Model from Scratch)] D
-/h25 [(5.5\240\240)(4.5 Mapping for the Built-in XML Schema Types)] D
-/h26 [(6\240\240)(5 Parsing)] D
-/h27 [(6.1\240\240)(5.1 XML Schema Validation and Searching)] D
-/h28 [(6.2\240\240)(5.2 Error Handling)] D
-/h29 [(7\240\240)(6 Serialization)] D
-/h30 [(7.1\240\240)(6.1 Namespace and Schema Information)] D
-/h31 [(7.2\240\240)(6.2 Error Handling)] D
-/Hr [35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
-57 58 59 60 61 62 63 64 65]D
-/HV [1 2 2 1 2 2 1 2 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 1 2 2 1 2 2]D
-/Cn [2 0 0 2 0 0 7 0 0 0 0 0 0 0 4 0 0 0 0 5 0 0 0 0 0 2 0 0 2 0 0]D
-Hr length 0 gt{[/PageMode /UseOutlines /DOCVIEW pdfmark}if
-/Hn 1 D
-0 1 Hr length 1 sub{
- /Bn E D [Cn Bn get dup 0 gt{/Count E HV Bn get Bl ge{neg}if}{pop}ie
- /Dest Hr Bn get dup abs ST cvs cvn E 0 ge{(h)Hn ST cvs join cvx exec
- dup 1 get E Nf{0 get E join}{pop}ie /Hn Hn 1 add D}{()}ie
- /Title E dup length 255 gt{0 255 getinterval}if /OUT pdfmark}for
-ZF /FN Fp D Ps 0 FS /WC Wf{( )}{<A1A1>}ie SW pop D
-ET RC ZF
-/Df f D
-/R0 (http://www.codesynthesis.com/licenses/fdl-1.2.txt) D
-/R1 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/index.xhtml) D
-/R2 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/cxx-parser-guide.pdf) D
-/R3 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/cxx-parser-guide.ps) D
-/R1 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/) D
-/R2 (http://wiki.codesynthesis.com/Tree/Customization_guide) D
-/R3 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/dbxml/) D
-/R4 (http://wiki.codesynthesis.com/Tree/FAQ) D
-/R5 (http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml) D
-/R6 (http://www.codesynthesis.com/mailman/listinfo/xsd-users) D
-/R7 (http://www.codesynthesis.com/pipermail/xsd-users/) D
-/R8 (http://www.w3.org/TR/xmlschema-0/) D
-/R9 (http://www.doxygen.org/) D
-/R10 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/hello/html/annotated.html) D
-/R11 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.11) D
-/R12 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.8) D
-/R13 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.5) D
-/R14 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.9) D
-/R15 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#3) D
-/R16 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#3.3) D
-/R17 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#4) D
-/R18 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#4.4) D
-/TS {
- tables E get /table E D
- table aload pop /rdesc E D /cdesc E D /tdesc E D
- tdesc aload pop /capalg E D /caption E D /rules E D /frame E D /nfoot E D
- /nhead E D /ncol E D /nrow E D /border E D /twid E D /units E D /talign E D
- /flow E D /clear E D /tclass E D pop pop
- /w W D /eps 0.1 D /OU f D /PL 1 D
- /FN EF 21 get D EZ 21 get Ey 21 get FS
- 0 1 1{
- /pass E D
- 0 1 nrow{
- /irow E D
- /cells rdesc irow get 6 get D
- 0 1 ncol{
- /icol E D
- /cell cells icol get D
- cell 0 ne{
- cell aload pop /ang E D /CB E D pop pop pop
- /DV E D /bot E D /top E D /right E D /left E D /nowrap E D /valign E D
- /dp E D /align E D /rspan E D /cspan E D /cclass E D /ctype E D /cmax E D
- /cmin E D /proc E D
- rspan 0 eq{/rspan nrow irow sub 1 add D}if
- cspan 0 eq{/cspan ncol icol sub 1 add D}if
- pass 0 eq cspan 1 eq and pass 1 eq cspan 1 gt and or{
- /W 1e5 D /LL W D /PH 1 D
- ctype 1 eq{() BD}if
- RC align NA
- AT 4 eq{/CD t D /DC dp D /LN 0 D /M1 0 D /M2 0 D}{/CD f D}ie
- 0 0 M /LM 0 D proc exec BN
- AT 4 eq{
- LN array astore cell 15 3 -1 roll put
- cdesc icol get dup dup 5 get M1 lt{5 M1 put}{5 get /M1 E D}ie
- dup 6 get M2 lt{6 M2 put}{6 get /M2 E D}ie
- /LM M1 M2 add D
- }if
- /CD f D
- ang 0 ne{/LM CP E pop neg D}if
- /thiswid LM left add right add eps add D
- /oldmin 0 D /oldmax 0 D
- 0 1 cspan 1 sub{
- icol add cdesc E get dup 2 get /oldmax E oldmax add D
- 1 get /oldmin E oldmin add D
- }for
- thiswid oldmax ge{
- 0 1 cspan 1 sub{
- icol add cdesc E get dup 2 E 2 get oldmax 0 eq
- {pop thiswid cspan div}{thiswid mul oldmax div}ie
- put
- }for
- }if
- nowrap 1 eq{
- thiswid oldmin ge{
- 0 1 cspan 1 sub{
- icol add cdesc E get dup 1 E 1 get oldmin 0 eq
- {pop thiswid cspan div}{thiswid mul oldmin div}ie
- put
- }for
- }if
- }{
- /W 0 D /LL W D /PH 2 D
- ctype 1 eq{() ES () BD}if
- 0 0 M /LM 0 D RC proc exec BN
- /thiswid LM left add right add eps add D
- thiswid oldmin ge{
- 0 1 cspan 1 sub{
- icol add cdesc E get dup 1 E 1 get oldmin 0 eq
- {pop thiswid cspan div}{thiswid mul oldmin div}ie
- put
- }for
- }if
- }ie
- ctype 1 eq{() ES}if
- }if
- }if
- }for
- }for
- }for
- /tmin 0 D /tmax 0 D
- 0 1 ncol{
- cdesc E get dup 1 get E 2 get 2 copy gt{pop dup}if
- tmax add /tmax E D tmin add /tmin E D
- }for
- twid 0 lt{twid neg IW gt{IW neg}{twid}ie /twid E D}if
- tdesc 0 twid neg tmin 2 copy lt{E}if pop put
- tdesc 1 twid neg tmax 2 copy lt{E}if pop put
- /W w D /LL W D /OU t D /PH 0 D /PL 0 D
-} D
-/PT {
- /PL PL 1 add D
- tables E get /table E D Tm 21 get Ts mul BE
- PL 2 ge{save}if
- /SL SL 1 add D /FN EF 21 get D EZ 21 get Ey 21 get FS
- table aload pop /rdesc E D /cdesc E D /tdesc E D
- tdesc aload pop /capalg E D /caption E D /rules E D /frame E D /nfoot E D
- /nhead E D /ncol E D /nrow E D /border E D /twid E D /units E D /talign E D
- /flow E D /clear E D /tclass E D /tmax E D /tmin E D
- /w W D /xo XO D /mr MR D /ll LL D /lg LG D /ai AI D /bc BC D /nr NR D /ar AR D
- /tr TR D /ui UI D /ph PH D /a0 A0 D /pf PF D /at AT D /av AV D /al AL D
- /Le LE D /la La D
- talign 0 lt{/talign AL 0 gt{AV AL get}{A0 2 le{A0}{0}ie}ie D}if
- ph 1 eq ph 2 eq or{
- NL ph 1 eq{tmax}{tmin}ie dup XO add LM gt{/LM E XO add D}{pop}ie LM E
- }{
- /PH 3 D /LE 1e5 D RC %ZF
- border 0 gt{/border 1 D}if
- /twidth 0 D /avail W xo sub D
- twid 0 eq{0 1 ncol{cdesc E get dup 2 get E 3 get dup 0 gt{div neg dup twid lt
- {/twid E D}{pop}ie}{pop pop}ie}for}if
- /twid twid dup 0 lt{neg avail 2 copy gt{E}if pop}{avail mul}ie D
- /OK t D 0 1 ncol{cdesc E get dup 1 get E 3 get twid mul gt{/OK f D}if}for
- 0 1 ncol{
- cdesc E get dup 1 get /colmin E D dup 3 get /cwid E twid mul D dup
- tmax avail le{2 get}if
- tmin avail le tmax avail gt and{
- dup 2 get E 1 get dup 3 1 roll sub avail tmin sub mul tmax tmin sub div add
- }if
- tmin avail gt{1 get}if
- 0 E colmin cwid lt OK and{pop cwid}if dup /twidth E twidth add D put
- }for
- /OU f D CP
- tmin twid le{
- 0 1 ncol{cdesc E get dup 0 get twidth div twid mul 0 E put}for
- /twidth twid D
- }if
- CP printcap CP E pop sub /caphig E D pop
- 0 1 1{
- /pass E D
- 0 1 nrow{
- /irow E D
- /cells rdesc irow get 6 get D
- 0 1 ncol{
- /icol E D
- /cell cells icol get D
- cell 0 ne{
- cell aload pop /ang E D /CB E D pop pop pop
- /DV E D /bot E D /top E D /right E D /left E D /nowrap E D /valign E D
- /dp E D /align E D /rspan E D /cspan E D /cclass E D /ctype E D /cmax E D
- /cmin E D /proc E D
- rspan 0 eq{/rspan nrow irow sub 1 add D}if
- cspan 0 eq{/cspan ncol icol sub 1 add D}if
- /W 0 D
- 0 1 cspan 1 sub{icol add cdesc E get 0 get /W E W add D}for
- pass 0 eq rspan 1 eq and pass 1 eq rspan 1 gt and or{
- ctype 1 eq{() BD}if
- /W W left sub right sub D /XO 0 D /EO 0 D SI
- /A0 align D RC align NA
- AT 4 eq{
- /DC dp D /DO 0 D /ID 1 D
- 0 1 DV length 1 sub{DV E get dup DO gt{/DO E D}{pop}ie}for
- /Lo DO DV 0 get sub D /L1 Lo D
- }if
- 0 0 M /BP t D /Fl t D /MF 0 D /FB 0 D
- proc exec T not{/CI 0 D}if BN 0 FB neg R MF 0 eq{/MF CS D}if
- CP /thishig E neg bot add top add CI add D pop
- ang 0 ne{/thishig LM bot add top add D}if
- cell 16 MF put cell 17 Ya put cell 18 thishig put
- valign 4 eq{
- /below thishig Ya sub D
- rdesc irow get dup dup 4 get Ya lt
- {4 Ya put}{4 get /Ya E D}ie
- dup 5 get below lt{5 below put}{5 get /below E D}ie
- /thishig Ya below add D
- }if
- ctype 1 eq{()ES}if
- /oldhig 0 D
- 0 1 rspan 1 sub{
- irow add rdesc E get 0 get /oldhig E oldhig add D
- }for
- thishig oldhig ge{
- 0 1 rspan 1 sub{
- irow add rdesc E get dup 0 E 0 get oldhig 0 eq
- {pop thishig rspan div}{thishig mul oldhig div}ie
- put
- }for
- }if
- }if
- }if
- }for
- }for
- }for M RC %ZF
- /thight 0 D /racc 0 D /maxh 0 D /brk 0 D /rbeg nhead nfoot add D
- 0 1 nrow{
- rdesc E get dup 0 get dup /thight E thight add D
- brk 0 eq{/racc E D}{/racc E racc add D}ie
- racc maxh gt{/maxh racc D}if 2 get /brk E D
- }for
- ph 3 ge{thight caphig add E}if
- ph 0 eq ph 4 eq or{
- /PH 4 D /LE Le D /OU Ou D /yoff 0 D /headsz 0 D
- 0 1 nhead 1 sub{rdesc E get 0 get headsz add /headsz E D}for
- /footsz 0 D
- 0 1 nfoot 1 sub{rdesc E nhead add get 0 get footsz add /footsz E D}for
- /ahig LE BO add MI add D /maxh maxh headsz add footsz add D
- /thight thight headsz add footsz add D
- tmin avail gt maxh ahig gt or
- {/Sf avail tmin div dup ahig maxh div gt{pop ahig maxh div}if D /SA t D}
- {/Sf 1 D}ie
- tclass 1 eq thight LE 15 sub gt and
- {/SA t D LE 15 sub thight div dup Sf lt{/Sf E D}{pop}ie}if
- SA{Sf Sf scale /ll ll Sf div D /xo xo Sf div D /LE LE Sf div D
- /mr mr Sf div D /BO BO Sf div D /ahig ahig Sf div D}if
- nhead nfoot add getwid
- LE CP E pop add capalg 0 eq{caphig sub}if
- bT{f}{dup thight lt thight ahig lt and}ie
- E headsz sub footsz sub rwid lt or{NP}if
- capalg 0 eq{printcap -8 SP}if
- CP /ycur E D pop
- printhead
- rbeg 1 nrow{/row E D row
- getwid
- ycur yoff add rwid sub footsz sub LE add 0 lt
- {nfoot 0 gt{printfoot}if Tf NP /rbeg irow1 D
- Ba{MI /MI MI SA{Sf div}if D MI SP /MI E D}if
- CP /ycur E D pop /yoff 0 D printhead}if
- irow1 printrow
- }for
- printfoot /row row 1 add D Tf
- 0 ycur yoff add M
- capalg 1 eq{/EO 0 D SI -3 SP printcap}if
- Sf 1 lt{1 Sf div dup scale /ll ll Sf mul D /xo xo Sf mul D /LE LE Sf mul D
- /mr mr Sf mul D /BO BO Sf mul D /SA f D}if
- /EO 0 D
- }if
- }ie
- /W w D /XO xo D /MR mr D /LL ll D /LG lg D /AI ai D /BC bc D /NR nr D /AR ar D
- /TR tr D /UI ui D /PH ph D /A0 a0 D /PF pf D /AT at D /AV av D /AL al D
- /La la D
- /SL SL 1 sub NN D /CF 0 D /FN 0 D SZ SL get FR SL get FS Wf not{()F2}if
- PL 2 ge{Ms E restore Ms or /Ms E D PH 1 eq PH 2 eq or
- {/LM E D}if PH 3 ge{/CI 0 D NL 0 E neg R}if
- }if
- /PL PL 1 sub D /CI 0 D /BP f D /PO f D () Bm 21 get Ts mul BE BL %CF CS SF
-} D
-/printcap{
- capalg 0 ge{
- SA{/W w Sf div D}
- {talign 1 eq{/XO xo ll twidth sub 2 div add D}if
- talign 2 eq{/XO xo ll twidth sub add D}if
- /W XO twidth add D
- }ie /XO xo D /LL W XO sub MR sub D
- /PA f D /Fl capalg 0 eq D
- 1 NA BL caption exec BN OA /PA t D
- }if
-} D
-/getwid{
- /irow1 E D
- /irow2 irow1 D
- /rwid 0 D
- {rdesc irow2 get dup 0 get rwid add /rwid E D 2 get 0 eq
- {exit}{/irow2 irow2 1 add D}ie
- }loop
-} D
-/printrow{
- /xoff ll twidth PL 2 ge{Sf div}if sub talign mul 2 div D
- /xleft xoff xo add D
- /irow E D
- /cells rdesc irow get 6 get D
- 0 1 ncol{
- /icol E D
- /cell cells icol get D
- cell 0 ne{
- cell aload pop /ang E D /CB E D /cvsize E D /above E D /fontsz E D
- /DV E D /bot E D /top E D /right E D /left E D /nowrap E D /valign E D
- /dp E D /align E D /rspan E D /cspan E D /cclass E D /ctype E D /cmax E D
- /cmin E D /proc E D
- rspan 0 eq{/rspan nrow irow sub 1 add D}if
- cspan 0 eq{/cspan ncol icol sub 1 add D}if
- /width 0 D
- 0 1 cspan 1 sub{icol add cdesc E get 0 get /width E width add D}for
- /rhight rdesc irow get 0 get D
- /hight rhight D
- 1 1 rspan 1 sub{irow add rdesc E get 0 get /hight E hight add D}for
- /W xo xoff add width add right sub D
- ang 0 ne{/W xo xoff add hight add right sub D}if
- /EO xo xoff add left add D SI
- Cf{
- gsave CB VC xo xoff add ycur yoff add M
- 0 hight neg RL width 0 RL 0 hight RL width neg 0 RL fill
- grestore
- }if
- ctype 1 eq{() BD}if
- /A0 align D RC
- AT 4 eq{
- /DC dp D /ID 1 D /DO cdesc icol get 5 get D /Lo DO DV 0 get sub D /L1 Lo D
- }if
- ang 0 ne{
- gsave ang 90 eq
- {xoff ycur add hight cvsize sub 2 div sub ycur hight sub xoff sub}
- {xoff ycur sub width add hight cvsize sub 2 div add ycur xoff add}ie
- translate ang rotate
- }if
- valign 3 le{0 ycur yoff add top sub
- hight cvsize sub valign 1 sub mul 2 div sub M}
- {0 ycur yoff add top sub above add rdesc irow get 4 get sub M}ie
- /PA f D /BP t D /Fl t D
- BL proc exec BN
- ang 0 ne{grestore}if
- /PA t D
- ctype 1 eq{() ES}if
- }if
- /xoff xoff cdesc icol get 0 get add D
- }for
- /yoff yoff rhight sub D
-} D
-/printhead {0 1 nhead 1 sub{printrow}for} D
-/printfoot {nhead 1 nhead nfoot add 1 sub{printrow}for} D
-/Tf {
- OU{rules 2 ge{/yoff 0 D
- gsave 0 Sg
- [0 1 nhead 1 sub{}for rbeg 1 row 1 sub{}for nhead 1 nhead nfoot add 1 sub{}for]{
- /irow E D
- /xoff ll twidth PL 2 ge{Sf div}if sub talign mul 2 div D
- /cells rdesc irow get 6 get D
- 0 1 ncol{
- /icol E D
- /cell cells icol get D
- cell 0 ne{
- /rspan cell 6 get D
- /cspan cell 5 get D
- rspan 0 eq{/rspan nrow irow sub 1 add D}if
- cspan 0 eq{/cspan ncol icol sub 1 add D}if
- /width 0 D
- 0 1 cspan 1 sub{icol add cdesc E get 0 get /width E width add D}for
- /rhight rdesc irow get 0 get D
- /hight rhight D
- 1 1 rspan 1 sub{irow add rdesc E get 0 get /hight E hight add D}for
- xo xoff add width add ycur yoff add M
- 0 hight neg icol cspan add 1 sub ncol lt
- {cdesc icol 1 add get 4 get dup rules 3 le{1 eq}{pop t}ie
- {1 eq{0.8}{0.3}ie
- LW RL CP stroke M}{pop R}ie}{R}ie
- irow nhead nfoot add 1 sub ne nfoot 0 eq or
- {irow rspan add 1 sub nrow lt
- {rdesc irow rspan add get 3 get}{nfoot 0 eq{0}{1}ie}ie
- dup rules 2 mod 0 eq{1 eq}{pop t}ie
- {1 eq irow rspan add nhead eq or irow rspan add row eq nfoot 0 gt and or
- {0.8}{0.3}ie LW width neg 0 RL CP stroke M}{pop}ie}if
- }if
- /xoff xoff cdesc icol get 0 get add D
- }for
- /yoff yoff rhight sub D
- }forall
- grestore
- /Ms t D
- }if
- frame 1 gt{
- gsave
- 1 LW 0 Sg
- xleft ycur M CP BB
- 0 yoff frame 5 eq frame 7 ge or{RL}{R}ie
- twidth 0 frame 3 eq frame 4 eq or frame 8 ge or{RL}{R}ie CP BB
- 0 yoff neg frame 6 ge{RL}{R}ie
- twidth neg 0 frame 2 eq frame 4 eq or frame 8 ge or{RL}{R}ie
- closepath stroke
- grestore
- /Ms t D
- }if
- }if
-} D
-/tables [[[0 0 0 0 0 -1 0 0 1 55 2 0 0 9 5 {()} -1]
- [[0 0 0 0 0 0 0][0 0 0 0 0 0 0][0 0 0 0 0 0 0]]
- [[0 0 0 0 0 0 [[{()1 Sl()WB(XML Schema type)} 0 0 1 0 1 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB(Alias in the )SM(xml_schema)ES( names)HY(pace)YH()} 0 0 1 0 1 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB(C++ type
- )} 0 0 1 0 1 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB(fixed-length inte)HY(gral)YH( types
- )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-0
-0
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(byte)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(byte)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(signed\240char)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(unsigned)HY(Byte)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(unsigned_byte)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(unsigned\240char)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(short)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(short_)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(short)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(unsigned)HY(Short)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(unsigned_short)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(unsigned\240short)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(int)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(int_)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(int)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(unsignedInt)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(unsigned_int)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(unsigned\240int)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(long)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(long_)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(long\240long)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(unsigned)HY(Long)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(unsigned_long)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(unsigned\240long\240long)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB(arbi)HY(trary)YH(-length inte)HY(gral)YH( types
- )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-0
-0
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(integer)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(integer)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(long\240long)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(nonPos)HY(i)HY(tiveIn)HY(te)HY(ger)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(non_posi)HY(tive)YH(_integer)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(long\240long)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(nonNeg)HY(a)HY(tiveIn)HY(te)HY(ger)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(non_nega)HY(tive)YH(_integer)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(unsigned long\240long)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(posi)HY(tiveIn)HY(te)HY(ger)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(posi)HY(tive)YH(_integer)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(unsigned long\240long)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(nega)HY(tiveIn)HY(te)HY(ger)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(nega)HY(tive)YH(_integer)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(long\240long)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB(boolean types
- )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-0
-0
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(boolean)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(boolean)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(bool)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB(fixed-preci)HY(sion)YH( float)HY(ing)YH(-point types
- )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-0
-0
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(float)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(float_)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(float)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(double)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(double_)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(double)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB(arbi)HY(trary)YH(-preci)HY(sion)YH( float)HY(ing)YH(-point types
- )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-0
-0
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(decimal)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(decimal)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(double)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB(string types
- )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-0
-0
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(string)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(string)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB(type derived from )SM(std::basic_string)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(normal)HY(ized)HY(String)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(normal)HY(ized)YH(_string)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB(type derived from )SM(string)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(token)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(token)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB(type\240derived\240from\240)SM(normal)HY(ized)YH(_string)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(Name)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(name)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB(type derived from )SM(token)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(NMTOKEN)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(nmtoken)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB(type derived from )SM(token)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(NMTO)HY(KENS)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(nmto)HY(kens)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB(type derived from )SM(sequence<nmtoken>)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(NCName)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(ncname)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB(type derived from )SM(name)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(language)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(language)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB(type derived from )SM(token)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB(qual)HY(i)HY(fied)YH( name
- )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-0
-0
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(QName)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(qname)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(xml_schema::qname)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB(ID/IDREF types
- )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-0
-0
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(ID)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(id)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB(type derived from )SM(ncname)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(IDREF)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(idref)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB(type derived from )SM(ncname)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(IDREFS)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(idrefs)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB(type derived from )SM(sequence<idref>)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB(URI types
- )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-0
-0
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(anyURI)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(uri)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB(type derived from )SM(std::basic_string)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB(binary types
- )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-0
-0
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(base64Binary)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(base64_binary)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(xml_schema::base64_binary)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(hexBi)HY(nary)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(hex_binary)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(xml_schema::hex_binary)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB(date/time types
- )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-0
-0
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(date)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(date)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(xml_schema::date)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(date)HY(Time)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(date_time)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(xml_schema::date_time)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(dura)HY(tion)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(dura)HY(tion)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(xml_schema::dura)HY(tion)YH()ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(gDay)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(gday)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(xml_schema::gday)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(gMonth)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(gmonth)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(xml_schema::gmonth)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(gMon)HY(th)HY(Day)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(gmonth_day)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(xml_schema::gmonth_day)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(gYear)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(gyear)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(xml_schema::gyear)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(gYear)HY(Month)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(gyear_month)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(xml_schema::gyear_month)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(time)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(time)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(xml_schema::time)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB(entity types
- )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-0
-0
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(ENTITY)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(entity)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB(type derived from )SM(name)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-[0 0 0 0 0 0 [[{()1 Sl()WB()SM(ENTI)HY(TIES)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB()SM(enti)HY(ties)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-[{()1 Sl()WB(type derived from )SM(sequence<entity>)ES(
- )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
-]]
-]]
-] D
-0 1 0{TS}for RC ZF
-/Ba f D /BO 0 D Bs
-/UR (/home/boris/work/xsd/xsd/documentation/cxx/tree/guide/index.xhtml) D
-/Ti (C++/Tree Mapping Getting Started Guide) D
-/Au () D
-/Df f D
-/ME [] D
-Pt
-/BO 0 D TC /Ba f D Bs /AU f D /UR () D RC ZF
- tH WB
-ND 1 gt{Ts 3 mul Np 0()0 C()BD(C++/Tree Mapping Getting Started Guide)ES()0 1 TN()EA()BN}if
-1 NH le{35(1\240\240)1 C(Preface)WB 3 Sn()35 1 TN()EA()BN}if
-2 NH le{36(1.1\240\240)2 C(About)WB 4 Sn( This Docu)HY(ment)YH()36 1 TN()EA()BN}if
-2 NH le{37(1.2\240\240)2 C(More)WB 5 Sn( Infor)HY(ma)HY(tion)YH()37 1 TN()EA()BN}if
-1 NH le{38(2\240\240)1 C(1)WB 6 Sn( Intro)HY(duc)HY(tion)YH()38 1 TN()EA()BN}if
-2 NH le{39(2.1\240\240)2 C(1.1)WB 7 Sn( Mapping Overview)39 1 TN()EA()BN}if
-2 NH le{40(2.2\240\240)2 C(1.2)WB 8 Sn( Bene)HY(fits)YH()40 1 TN()EA()BN}if
-1 NH le{41(3\240\240)1 C(2)WB 9 Sn( Hello World Example)41 1 TN()EA()BN}if
-2 NH le{42(3.1\240\240)2 C(2.1)WB 10 Sn( Writing XML Docu)HY(ment)YH( and Schema)42 1 TN()EA()BN}if
-2 NH le{43(3.2\240\240)2 C(2.2)WB 11 Sn( Trans)HY(lat)HY(ing)YH( Schema to C++)43 1 TN()EA()BN}if
-2 NH le{44(3.3\240\240)2 C(2.3)WB 12 Sn( Imple)HY(ment)HY(ing)YH( Appli)HY(ca)HY(tion)YH( Logic)44 1 TN()EA()BN}if
-2 NH le{45(3.4\240\240)2 C(2.4)WB 13 Sn( Compil)HY(ing)YH( and Running)45 1 TN()EA()BN}if
-2 NH le{46(3.5\240\240)2 C(2.5)WB 14 Sn( Adding Seri)HY(al)HY(iza)HY(tion)YH()46 1 TN()EA()BN}if
-2 NH le{47(3.6\240\240)2 C(2.6)WB 15 Sn( Select)HY(ing)YH( Naming Conven)HY(tion)YH()47 1 TN()EA()BN}if
-2 NH le{48(3.7\240\240)2 C(2.7)WB 16 Sn( Gener)HY(at)HY(ing)YH( Docu)HY(men)HY(ta)HY(tion)YH()48 1 TN()EA()BN}if
-1 NH le{49(4\240\240)1 C(3)WB 17 Sn( Overall Mapping Config)HY(u)HY(ra)HY(tion)YH()49 1 TN()EA()BN}if
-2 NH le{50(4.1\240\240)2 C(3.1)WB 18 Sn( Char)HY(ac)HY(ter)YH( Type and Encod)HY(ing)YH()50 1 TN()EA()BN}if
-2 NH le{51(4.2\240\240)2 C(3.2)WB 19 Sn( Support for Poly)HY(mor)HY(phism)YH()51 1 TN()EA()BN}if
-2 NH le{52(4.3\240\240)2 C(3.3)WB 20 Sn( Names)HY(pace)YH( Mapping)52 1 TN()EA()BN}if
-2 NH le{53(4.4\240\240)2 C(3.4)WB 21 Sn( Thread Safety)53 1 TN()EA()BN}if
-1 NH le{54(5\240\240)1 C(4)WB 22 Sn( Working with Object Models)54 1 TN()EA()BN}if
-2 NH le{55(5.1\240\240)2 C(4.1)WB 23 Sn( Attribute and Element Cardi)HY(nal)HY(i)HY(ties)YH()55 1 TN()EA()BN}if
-2 NH le{56(5.2\240\240)2 C(4.2)WB 24 Sn( Access)HY(ing)YH( the Object Model)56 1 TN()EA()BN}if
-2 NH le{57(5.3\240\240)2 C(4.3)WB 25 Sn( Modi)HY(fy)HY(ing)YH( the Object Model)57 1 TN()EA()BN}if
-2 NH le{58(5.4\240\240)2 C(4.4)WB 26 Sn( Creat)HY(ing)YH( the Object Model from Scratch)58 1 TN()EA()BN}if
-2 NH le{59(5.5\240\240)2 C(4.5)WB 27 Sn( Mapping for the Built-in XML Schema Types)59 1 TN()EA()BN}if
-1 NH le{60(6\240\240)1 C(5)WB 29 Sn( Parsing)60 1 TN()EA()BN}if
-2 NH le{61(6.1\240\240)2 C(5.1)WB 30 Sn( XML Schema Vali)HY(da)HY(tion)YH( and Search)HY(ing)YH()61 1 TN()EA()BN}if
-2 NH le{62(6.2\240\240)2 C(5.2)WB 31 Sn( Error Handling)62 1 TN()EA()BN}if
-1 NH le{63(7\240\240)1 C(6)WB 32 Sn( Seri)HY(al)HY(iza)HY(tion)YH()63 1 TN()EA()BN}if
-2 NH le{64(7.1\240\240)2 C(6.1)WB 33 Sn( Names)HY(pace)YH( and Schema Infor)HY(ma)HY(tion)YH()64 1 TN()EA()BN}if
-2 NH le{65(7.2\240\240)2 C(6.2)WB 34 Sn( Error Handling)65 1 TN()EA()BN}if
-/OU t D /Cb Db D NP Ep ET
-/Cb Db D /Ct [16#00 16#00 16#00] D /Cl [16#00 16#00 16#00] D /CL -1 D Ct Sc
-
-/Ba f D /BO 0 D Bs
-/UR (/home/boris/work/xsd/xsd/documentation/cxx/tree/guide/index.xhtml) D
-/Ti (C++/Tree Mapping Getting Started Guide) D
-/Au () D
-/Df f D
-/ME [] D
-
-NP RC ZF
-()1 Sl()WB 0 Sn(
-
-)BR()WB 1 Sn( )BR()WB 2 Sn(
-
-
- )0 1 0 H(Preface)WB 35 Sn()WB 3 Sn()EA()EH(
-
- )0 2 1 H(About)WB 36 Sn()WB 4 Sn( This Docu)HY(ment)YH()EA()EH(
-
- )0 P(The goal of this docu)HY(ment)YH( is to provide you with an under)HY(stand)HY(ing)YH( of
- the C++/Tree program)HY(ming)YH( model and allow you to effi)HY(ciently)YH( eval)HY(u)HY(ate)YH(
- XSD against your project's tech)HY(ni)HY(cal)YH( require)HY(ments)YH(. As such, this
- docu)HY(ment)YH( is intended for C++ devel)HY(op)HY(ers)YH( and soft)HY(ware)YH( archi)HY(tects)YH(
- who are looking for an XML process)HY(ing)YH( solu)HY(tion)YH(. For a more in-depth
- descrip)HY(tion)YH( of the C++/Tree mapping refer to the
- )R1 2 A(C++/Tree
- Mapping User Manual)EA(.)EP(
-
- )0 P(Prior expe)HY(ri)HY(ence)YH( with XML and C++ is required to under)HY(stand)YH( this
- docu)HY(ment)YH(. Basic under)HY(stand)HY(ing)YH( of XML Schema is advan)HY(ta)HY(geous)YH( but
- not expected or required.
- )EP(
-
-
- )0 2 2 H(More)WB 37 Sn()WB 5 Sn( Infor)HY(ma)HY(tion)YH()EA()EH(
-
- )0 P(Beyond this guide, you may also find the follow)HY(ing)YH( sources of
- infor)HY(ma)HY(tion)YH( useful:)EP(
-
- )UL( )-1 LI()R1 2 A(C++/Tree
- Mapping User Manual)EA(
-
- )-1 LI()R2 2 A(C++/Tree
- Mapping Customiza)HY(tion)YH( Guide)EA(
-
- )-1 LI()R3 2 A(C++/Tree
- Mapping and Berke)HY(ley)YH( DB XML Inte)HY(gra)HY(tion)YH( Guide)EA(
-
- )-1 LI()R4 2 A(C++/Tree
- Mapping Frequently Asked Ques)HY(tions)YH( \201FAQ\202)EA(
-
- )-1 LI()R5 2 A(XSD
- Compiler Command Line Manual)EA(
-
- )-1 LI(The )SM(exam)HY(ples)YH(/cxx/tree/)ES( direc)HY(tory)YH( in the XSD
- distri)HY(bu)HY(tion)YH( contains a collec)HY(tion)YH( of exam)HY(ples)YH( and a README
- file with an overview of each example.
-
- )-1 LI(The )SM(README)ES( file in the XSD distri)HY(bu)HY(tion)YH( explains
- how to compile the exam)HY(ples)YH( on various plat)HY(forms)YH(.
-
- )-1 LI(The )R6 2 A(xsd-users)EA(
- mailing list is the place to ask tech)HY(ni)HY(cal)YH( ques)HY(tions)YH( about XSD and the C++/Parser mapping.
- Further)HY(more)YH(, the )R7 2 A(archives)EA(
- may already have answers to some of your ques)HY(tions)YH(.
-
- )LU(
-
-
-
- )0 1 3 H(1)WB 38 Sn()WB 6 Sn( Intro)HY(duc)HY(tion)YH()EA()EH(
-
- )0 P(Welcome to CodeSyn)HY(the)HY(sis)YH( XSD and the C++/Tree mapping. XSD is a
- cross-plat)HY(form)YH( W3C XML Schema to C++ data binding compiler. C++/Tree
- is a W3C XML Schema to C++ mapping that repre)HY(sents)YH( the data stored
- in XML as a stat)HY(i)HY(cally)YH(-typed, vocab)HY(u)HY(lary)YH(-specific object model.
- )EP(
-
- )0 2 4 H(1.1)WB 39 Sn()WB 7 Sn( Mapping Overview)EA()EH(
-
- )0 P(Based on a formal descrip)HY(tion)YH( of an XML vocab)HY(u)HY(lary)YH( \201schema\202, the
- C++/Tree mapping produces a tree-like data struc)HY(ture)YH( suit)HY(able)YH( for
- in-memory process)HY(ing)YH(. The core of the mapping consists of C++
- classes that consti)HY(tute)YH( the object model and are derived from
- types defined in XML Schema as well as XML parsing and
- seri)HY(al)HY(iza)HY(tion)YH( code.)EP(
-
- )0 P(Besides the core features, C++/Tree provide a number of addi)HY(tional)YH(
- mapping elements that can be useful in some appli)HY(ca)HY(tions)YH(. These
- include seri)HY(al)HY(iza)HY(tion)YH( and extrac)HY(tion)YH( to/from formats others than
- XML, such as unstruc)HY(tured)YH( text \201useful for debug)HY(ging)YH(\202 and binary
- repre)HY(sen)HY(ta)HY(tions)YH( such as XDR and CDR for high-speed data process)HY(ing)YH(,
- inte)HY(gra)HY(tion)YH( with XML databases such as Berke)HY(ley)YH( DB XML, and auto)HY(matic)YH(
- docu)HY(men)HY(ta)HY(tion)YH( gener)HY(a)HY(tion)YH(. The C++/Tree mapping also provides a wide
- range of mech)HY(a)HY(nisms)YH( for control)HY(ling)YH( and customiz)HY(ing)YH( the gener)HY(ated)YH(
- code.)EP(
-
- )0 P(A typical appli)HY(ca)HY(tion)YH( that uses C++/Tree for XML process)HY(ing)YH( usually
- performs the follow)HY(ing)YH( three steps: it first reads \201parses\202 an XML
- docu)HY(ment)YH( to an in-memory object model, it then performs some useful
- compu)HY(ta)HY(tions)YH( on that object model which may involve modi)HY(fi)HY(ca)HY(tion)YH(
- of the model, and finally it may write \201seri)HY(al)HY(ize)YH(\202 the modi)HY(fied)YH(
- object model back to XML.)EP(
-
- )0 P(The next chapter presents a simple appli)HY(ca)HY(tion)YH( that performs these
- three steps. The follow)HY(ing)YH( chap)HY(ters)YH( show how to use the C++/Tree
- mapping in more detail.)EP(
-
- )0 2 5 H(1.2)WB 40 Sn()WB 8 Sn( Bene)HY(fits)YH()EA()EH(
-
- )0 P(Tradi)HY(tional)YH( XML access APIs such as Docu)HY(ment)YH( Object Model \201DOM\202
- or Simple API for XML \201SAX\202 have a number of draw)HY(backs)YH( that
- make them less suit)HY(able)YH( for creat)HY(ing)YH( robust and main)HY(tain)HY(able)YH(
- XML process)HY(ing)YH( appli)HY(ca)HY(tions)YH(. These draw)HY(backs)YH( include:
- )EP(
-
- )UL( )-1 LI(Generic repre)HY(sen)HY(ta)HY(tion)YH( of XML in terms of elements, attributes,
- and text forces an appli)HY(ca)HY(tion)YH( devel)HY(oper)YH( to write a substan)HY(tial)YH(
- amount of bridg)HY(ing)YH( code that iden)HY(ti)HY(fies)YH( and trans)HY(forms)YH( pieces
- of infor)HY(ma)HY(tion)YH( encoded in XML to a repre)HY(sen)HY(ta)HY(tion)YH( more suit)HY(able)YH(
- for consump)HY(tion)YH( by the appli)HY(ca)HY(tion)YH( logic.
-
- )-1 LI(String-based flow control defers error detec)HY(tion)YH( to runtime.
- It also reduces code read)HY(abil)HY(ity)YH( and main)HY(tain)HY(abil)HY(ity)YH(.
-
- )-1 LI(Lack of type safety because the data is repre)HY(sented)YH( as text.
-
- )-1 LI(Result)HY(ing)YH( appli)HY(ca)HY(tions)YH( are hard to debug, change, and
- main)HY(tain)YH(.
- )LU(
-
- )0 P(In contrast, stat)HY(i)HY(cally)YH(-typed, vocab)HY(u)HY(lary)YH(-specific object model
- produced by the C++/Tree mapping allows you to operate in your
- domain terms instead of the generic elements, attributes, and
- text. Static typing helps catch errors at compile-time rather
- than at run-time. Auto)HY(matic)YH( code gener)HY(a)HY(tion)YH( frees you for more
- inter)HY(est)HY(ing)YH( tasks \201such as doing some)HY(thing)YH( useful with the
- infor)HY(ma)HY(tion)YH( stored in the XML docu)HY(ments)YH(\202 and mini)HY(mizes)YH( the
- effort needed to adapt your appli)HY(ca)HY(tions)YH( to changes in the
- docu)HY(ment)YH( struc)HY(ture)YH(. To summa)HY(rize)YH(, the C++/Tree object model has
- the follow)HY(ing)YH( key advan)HY(tages)YH( over generic XML access APIs:)EP(
-
- )UL( )-1 LI()BD(Ease of use.)ES( The gener)HY(ated)YH( code hides all the complex)HY(ity)YH(
- asso)HY(ci)HY(ated)YH( with parsing and seri)HY(al)HY(iz)HY(ing)YH( XML. This includes navi)HY(gat)HY(ing)YH(
- the struc)HY(ture)YH( and convert)HY(ing)YH( between the text repre)HY(sen)HY(ta)HY(tion)YH( and
- data types suit)HY(able)YH( for manip)HY(u)HY(la)HY(tion)YH( by the appli)HY(ca)HY(tion)YH(
- logic.
-
- )-1 LI()BD(Natural repre)HY(sen)HY(ta)HY(tion)YH(.)ES( The object repre)HY(sen)HY(ta)HY(tion)YH( allows
- you to access the XML data using your domain vocab)HY(u)HY(lary)YH( instead
- of generic elements, attributes, and text.
-
- )-1 LI()BD(Concise code.)ES( With the object repre)HY(sen)HY(ta)HY(tion)YH( the
- appli)HY(ca)HY(tion)YH( imple)HY(men)HY(ta)HY(tion)YH( is simpler and thus easier
- to read and under)HY(stand)YH(.
-
- )-1 LI()BD(Safety.)ES( The gener)HY(ated)YH( object model is stat)HY(i)HY(cally)YH(
- typed and uses func)HY(tions)YH( instead of strings to access the
- infor)HY(ma)HY(tion)YH(. This helps catch program)HY(ming)YH( errors at compile-time
- rather than at runtime.
-
- )-1 LI()BD(Main)HY(tain)HY(abil)HY(ity)YH(.)ES( Auto)HY(matic)YH( code gener)HY(a)HY(tion)YH( mini)HY(mizes)YH( the
- effort needed to adapt the appli)HY(ca)HY(tion)YH( to changes in the
- docu)HY(ment)YH( struc)HY(ture)YH(. With static typing, the C++ compiler
- can pin-point the places in the client code that need to be
- changed.
-
- )-1 LI()BD(Compat)HY(i)HY(bil)HY(ity)YH(.)ES( Sequences of elements are repre)HY(sented)YH( in
- the object model as contain)HY(ers)YH( conform)HY(ing)YH( to the stan)HY(dard)YH( C++
- sequence require)HY(ments)YH(. This makes it possi)HY(ble)YH( to use stan)HY(dard)YH(
- C++ algo)HY(rithms)YH( on the object repre)HY(sen)HY(ta)HY(tion)YH( and frees you from
- learn)HY(ing)YH( yet another container inter)HY(face)YH(, as is the case with
- DOM.
-
- )-1 LI()BD(Effi)HY(ciency)YH(.)ES( If the appli)HY(ca)HY(tion)YH( makes repet)HY(i)HY(tive)YH( use
- of the data extracted from XML, then the C++/Tree object model
- is more effi)HY(cient)YH( because the navi)HY(ga)HY(tion)YH( is performed using
- func)HY(tion)YH( calls rather than string compar)HY(isons)YH( and the XML
- data is extracted only once. Further)HY(more)YH(, the runtime memory
- usage is reduced due to more effi)HY(cient)YH( data storage
- \201for instance, storing numeric data as inte)HY(gers)YH( instead of
- strings\202 as well as the static knowl)HY(edge)YH( of cardi)HY(nal)HY(ity)YH(
- constraints.
- )LU(
-
-
-
-
-
- )0 1 6 H(2)WB 41 Sn()WB 9 Sn( Hello World Example)EA()EH(
-
- )0 P(In this chapter we will examine how to parse, access, modify, and
- seri)HY(al)HY(ize)YH( a very simple XML docu)HY(ment)YH( using the XSD-gener)HY(ated)YH(
- C++/Tree object model. The code presented in this chapter is
- based on the )SM(hello)ES( example which can be found in
- the )SM(exam)HY(ples)YH(/cxx/tree/)ES( direc)HY(tory)YH( of the XSD
- distri)HY(bu)HY(tion)YH(.)EP(
-
- )0 2 7 H(2.1)WB 42 Sn()WB 10 Sn( Writing XML Docu)HY(ment)YH( and Schema)EA()EH(
-
- )0 P(First, we need to get an idea about the struc)HY(ture)YH(
- of the XML docu)HY(ments)YH( we are going to process. Our
- )SM(hello.xml)ES(, for example, could look like this:)EP(
-
- ) 10 28 PR(<?xml version="1.0"?>
-<hello>
-
- <greeting>Hello</greeting>
-
- <name>sun</name>
- <name>moon</name>
- <name>world</name>
-
-</hello>)RP(
-
- )0 P(Then we can write a descrip)HY(tion)YH( of the above XML in the
- XML Schema language and save it into )SM(hello.xsd)ES(:)EP(
-
- ) 13 70 PR(<?xml version="1.0"?>
-<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
-
- <xs:complexType name="hello_t">
- <xs:sequence>
- <xs:element name="greeting" type="xs:string"/>
- <xs:element name="name" type="xs:string" maxOccurs="unbounded"/>
- </xs:sequence>
- </xs:complexType>
-
- <xs:element name="hello" type="hello_t"/>
-
-</xs:schema>)RP(
-
- )0 P(Even if you are not famil)HY(iar)YH( with XML Schema, it
- should be easy to connect decla)HY(ra)HY(tions)YH( in )SM(hello.xsd)ES(
- to elements in )SM(hello.xml)ES(. The )SM(hello_t)ES( type
- is defined as a sequence of the nested )SM(greet)HY(ing)YH()ES( and
- )SM(name)ES( elements. Note that the term sequence in XML
- Schema means that elements should appear in a partic)HY(u)HY(lar)YH( order
- as opposed to appear)HY(ing)YH( multi)HY(ple)YH( times. The )SM(name)ES(
- element has its )SM(maxOc)HY(curs)YH()ES( prop)HY(erty)YH( set to
- )SM(unbounded)ES( which means it can appear multi)HY(ple)YH( times
- in an XML docu)HY(ment)YH(. Finally, the glob)HY(ally)YH(-defined )SM(hello)ES(
- element prescribes the root element for our vocab)HY(u)HY(lary)YH(. For an
- easily-approach)HY(able)YH( intro)HY(duc)HY(tion)YH( to XML Schema refer to
- )R8 2 A(XML Schema Part 0:
- Primer)EA(.)EP(
-
- )0 P(The above schema is a spec)HY(i)HY(fi)HY(ca)HY(tion)YH( of our XML vocab)HY(u)HY(lary)YH(; it tells
- every)HY(body)YH( what valid docu)HY(ments)YH( of our XML-based language should look
- like. We can also update our )SM(hello.xml)ES( to include the
- infor)HY(ma)HY(tion)YH( about the schema so that XML parsers can vali)HY(date)YH(
- our docu)HY(ment)YH(:)EP(
-
- ) 11 60 PR(<?xml version="1.0"?>
-<hello xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
- xsi:noNamespaceSchemaLocation="hello.xsd">
-
- <greeting>Hello</greeting>
-
- <name>sun</name>
- <name>moon</name>
- <name>world</name>
-
-</hello>)RP(
-
-
- )0 P(The next step is to compile the schema to gener)HY(ate)YH( the object
- model and parsing func)HY(tions)YH(.)EP(
-
- )0 2 8 H(2.2)WB 43 Sn()WB 11 Sn( Trans)HY(lat)HY(ing)YH( Schema to C++)EA()EH(
-
- )0 P(Now we are ready to trans)HY(late)YH( our )SM(hello.xsd)ES( to C++.
- To do this we invoke the XSD compiler from a termi)HY(nal)YH( \201UNIX\202 or
- a command prompt \201Windows\202:
- )EP(
-
- ) 1 24 PR($ xsd cxx-tree hello.xsd)RP(
-
- )0 P(The XSD compiler produces two C++ files: )SM(hello.hxx)ES( and
- )SM(hello.cxx)ES(. The follow)HY(ing)YH( code frag)HY(ment)YH( is taken from
- )SM(hello.hxx)ES(; it should give you an idea about what gets
- gener)HY(ated)YH(:
- )EP(
-
- ) 45 60 PR(class hello_t
-{
-public:
- // greeting
- //
- typedef xml_schema::string greeting_type;
-
- const greeting_type&
- greeting \201\202 const;
-
- greeting_type&
- greeting \201\202;
-
- void
- greeting \201const greeting_type& x\202;
-
- // name
- //
- typedef xml_schema::string name_type;
- typedef xsd::sequence<name_type> name_sequence;
- typedef name_sequence::iterator name_iterator;
- typedef name_sequence::const_iterator name_const_iterator;
-
- const name_sequence&
- name \201\202 const;
-
- name_sequence&
- name \201\202;
-
- void
- name \201const name_sequence& s\202;)WR(
-
- // Constructor.
- //
- hello_t \201const greeting_type&\202;
-
- ...
-
-};
-
-std::auto_ptr<hello_t>
-hello \201const std::string& uri\202;
-
-std::auto_ptr<hello_t>
-hello \201std::istream&\202;)RP(
-
- )0 P(The )SM(hello_t)ES( C++ class corre)HY(sponds)YH( to the
- )SM(hello_t)ES( XML Schema type. For each element
- in this type a set of C++ type defi)HY(ni)HY(tions)YH( as well as
- acces)HY(sor)YH( and modi)HY(fier)YH( func)HY(tions)YH( are gener)HY(ated)YH( inside the
- )SM(hello_t)ES( class. Note that the type defi)HY(ni)HY(tions)YH(
- and member func)HY(tions)YH( for the )SM(greet)HY(ing)YH()ES( and
- )SM(name)ES( elements are differ)HY(ent)YH( because of the
- cardi)HY(nal)HY(ity)YH( differ)HY(ences)YH( between these two elements
- \201)SM(greet)HY(ing)YH()ES( is a required single element and
- )SM(name)ES( is a sequence of elements\202.)EP(
-
- )0 P(The )SM(xml_schema::string)ES( type used in the type
- defi)HY(ni)HY(tions)YH( is a C++ class provided by the XSD runtime
- that corre)HY(sponds)YH( to built-in XML Schema type
- )SM(string)ES(. The )SM(xml_schema::string)ES(
- is based on )SM(std::string)ES( and can be used as
- such. Simi)HY(larly)YH(, the )SM(sequence)ES( class template
- that is used in the )SM(name_sequence)ES( type
- defi)HY(ni)HY(tion)YH( is based on and has the same inter)HY(face)YH( as
- )SM(std::vector)ES(. The mapping between the built-in
- XML Schema types and C++ types is described in more detail in
- )0 27 1 A(Section 4.5, "Mapping for the Built-in XML Schema
- Types")27 0 TN TL()Ec /AF f D(. The )SM(hello_t)ES( class also includes a
- construc)HY(tor)YH( with an initial)HY(izer)YH( for the required
- )SM(greet)HY(ing)YH()ES( element as its argu)HY(ment)YH(.)EP(
-
- )0 P(The )SM(hello)ES( over)HY(loaded)YH( global func)HY(tions)YH( corre)HY(spond)YH(
- to the )SM(hello)ES( global element in XML Schema. A
- global element in XML Schema is a valid docu)HY(ment)YH( root.
- By default XSD gener)HY(ated)YH( a set of parsing func)HY(tions)YH( for each
- global element defined in XML Schema \201this can be over)HY(rid)HY(den)YH(
- with the )SM(--root-element-*)ES( options\202. For more
- infor)HY(ma)HY(tion)YH( on parsing func)HY(tions)YH( see )0 29 1 A(Chapter 5,
- "Parsing")29 0 TN TL()Ec /AF f D(.)EP(
-
- )0 2 9 H(2.3)WB 44 Sn()WB 12 Sn( Imple)HY(ment)HY(ing)YH( Appli)HY(ca)HY(tion)YH( Logic)EA()EH(
-
- )0 P(At this point we have all the parts we need to do some)HY(thing)YH( useful
- with the infor)HY(ma)HY(tion)YH( stored in our XML docu)HY(ment)YH(:
- )EP(
-
- ) 25 62 PR(#include <iostream>
-#include "hello.hxx"
-
-using namespace std;
-
-int
-main \201int argc, char* argv[]\202
-{
- try
- {
- auto_ptr<hello_t> h \201hello \201argv[1]\202\202;
-
- for \201hello_t::name_const_iterator i \201h->name \201\202.begin \201\202\202;
- i != h->name \201\202.end \201\202;
- ++i\202
- {
- cerr << h->greeting \201\202 << ", " << *i << "!" << endl;
- }
- }
- catch \201const xml_schema::exception& e\202
- {
- cerr << e << endl;
- return 1;
- }
-})RP(
-
- )0 P(The first part of our appli)HY(ca)HY(tion)YH( calls one of the parsing
- func)HY(tions)YH( to parser an XML file spec)HY(i)HY(fied)YH( in the command line.
- We then use the returned object model to iterate over names
- and print a greet)HY(ing)YH( line for each of them. Finally, we
- catch and print the )SM(xml_schema::excep)HY(tion)YH()ES(
- excep)HY(tion)YH( in case some)HY(thing)YH( goes wrong. This excep)HY(tion)YH(
- is the root of the excep)HY(tion)YH( hier)HY(ar)HY(chy)YH( used by the
- XSD-gener)HY(ated)YH( code.
- )EP(
-
-
- )0 2 10 H(2.4)WB 45 Sn()WB 13 Sn( Compil)HY(ing)YH( and Running)EA()EH(
-
- )0 P(After saving our appli)HY(ca)HY(tion)YH( from the previ)HY(ous)YH( section in
- )SM(driver.cxx)ES(, we are ready to compile our first
- program and run it on the test XML docu)HY(ment)YH(. On a UNIX
- system this can be done with the follow)HY(ing)YH( commands:
- )EP(
-
- ) 6 43 PR($ c++ -I.../libxsd -c driver.cxx hello.cxx
-$ c++ -o driver driver.o hello.o -lxerces-c
-$ ./driver hello.xml
-Hello, sun!
-Hello, moon!
-Hello, world!)RP(
-
- )0 P(Here )SM(.../libxsd)ES( repre)HY(sents)YH( the path to the
- )SM(libxsd)ES( direc)HY(tory)YH( in the XSD distri)HY(bu)HY(tion)YH(.
- Note also that we are required to link our appli)HY(ca)HY(tion)YH(
- with the Xerces-C++ library because the gener)HY(ated)YH( code
- uses it as the under)HY(ly)HY(ing)YH( XML parser.)EP(
-
- )0 2 11 H(2.5)WB 46 Sn()WB 14 Sn( Adding Seri)HY(al)HY(iza)HY(tion)YH()EA()EH(
-
- )0 P(While parsing and access)HY(ing)YH( the XML data may be every)HY(thing)YH(
- you need, there are appli)HY(ca)HY(tions)YH( that require creat)HY(ing)YH( new
- or modi)HY(fy)HY(ing)YH( exist)HY(ing)YH( XML docu)HY(ments)YH(. By default XSD does
- not produce seri)HY(al)HY(iza)HY(tion)YH( code. We will need to request
- it with the )SM(--gener)HY(ate)YH(-seri)HY(al)HY(iza)HY(tion)YH()ES( options:)EP(
-
- ) 1 49 PR($ xsd cxx-tree --generate-serialization hello.xsd)RP(
-
- )0 P(If we now examine the gener)HY(ated)YH( )SM(hello.hxx)ES( file,
- we will find a set of over)HY(loaded)YH( seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH(,
- includ)HY(ing)YH( the follow)HY(ing)YH( version:)EP(
-
- ) 5 45 PR(void
-hello \201std::ostream&,
- const hello_t&,
- const xml_schema::namespace_infomap& =
- xml_schema::namespace_infomap \201\202\202;
-)RP(
-
- )0 P(Just like with parsing func)HY(tions)YH(, XSD gener)HY(ates)YH( seri)HY(al)HY(iza)HY(tion)YH(
- func)HY(tions)YH( for each global element unless instructed other)HY(wise)YH(
- with one of the )SM(--root-element-*)ES( options. For more
- infor)HY(ma)HY(tion)YH( on seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH( see )0 32 1 A(Chapter 6,
- "Seri)HY(al)HY(iza)HY(tion)YH(")32 0 TN TL()Ec /AF f D(.)EP(
-
- )0 P(We first examine an appli)HY(ca)HY(tion)YH( that modi)HY(fies)YH( an exist)HY(ing)YH(
- object model and seri)HY(al)HY(izes)YH( it back to XML:)EP(
-
- ) 34 50 PR(#include <iostream>
-#include "hello.hxx"
-
-using namespace std;
-
-int
-main \201int argc, char* argv[]\202
-{
- try
- {
- auto_ptr<hello_t> h \201hello \201argv[1]\202\202;
-
- // Change the greeting phrase.
- //
- h->greeting \201"Hi"\202;
-
- // Add another entry to the name sequence.
- //
- h->name \201\202.push_back \201"mars"\202;
-
- // Serialize the modified object model to XML.
- //
- xml_schema::namespace_infomap map;
- map[""].name = "";
- map[""].schema = "hello.xsd";
-
- hello \201cout, *h, map\202;
- }
- catch \201const xml_schema::exception& e\202
- {
- cerr << e << endl;)WR(
- return 1;
- }
-})RP(
-
- )0 P(First, our appli)HY(ca)HY(tion)YH( parses an XML docu)HY(ment)YH( and obtains its
- object model as in the previ)HY(ous)YH( example. Then it changes the
- greet)HY(ing)YH( string and adds another entry to the list of names.
- Finally, it seri)HY(al)HY(izes)YH( the object model back to XML by calling
- the seri)HY(al)HY(iza)HY(tion)YH( func)HY(tion)YH(.)EP(
-
- )0 P(The first argu)HY(ment)YH( we pass to the seri)HY(al)HY(iza)HY(tion)YH( func)HY(tion)YH( is
- )SM(cout)ES( which results in the XML being written to
- the stan)HY(dard)YH( output for us to inspect. We could have also
- written the result to a file or memory buffer by creat)HY(ing)YH( an
- instance of )SM(std::ofstream)ES( or )SM(std::ostringstream)ES(
- and passing it instead of )SM(cout)ES(. The second argu)HY(ment)YH( is the
- object model we want to seri)HY(al)HY(ize)YH(. The final argu)HY(ment)YH( is an optional
- names)HY(pace)YH( infor)HY(ma)HY(tion)YH( map for our vocab)HY(u)HY(lary)YH(. It captures infor)HY(ma)HY(tion)YH(
- such as names)HY(paces)YH(, names)HY(pace)YH( prefixes to which they should be mapped,
- and schemas asso)HY(ci)HY(ated)YH( with these names)HY(paces)YH(. If we don't provide
- this argu)HY(ment)YH( then generic names)HY(pace)YH( prefixes \201)SM(p1)ES(,
- )SM(p2)ES(, etc.\202 will be auto)HY(mat)HY(i)HY(cally)YH( assigned to XML names)HY(paces)YH(
- and no schema infor)HY(ma)HY(tion)YH( will be added to the result)HY(ing)YH( docu)HY(ment)YH(
- \201see )0 32 1 A(Chapter 6, "Seri)HY(al)HY(iza)HY(tion)YH(")32 0 TN TL()Ec /AF f D( for details\202.
- In our case, the prefix \201map key\202 and names)HY(pace)YH( name are empty
- because our vocab)HY(u)HY(lary)YH( does not use XML names)HY(paces)YH(.)EP(
-
- )0 P(If we now compile and run this appli)HY(ca)HY(tion)YH( we will see the
- output as shown in the follow)HY(ing)YH( listing:)EP(
-
- ) 12 60 PR(<?xml version="1.0"?>
-<hello xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
- xsi:noNamespaceSchemaLocation="hello.xsd">
-
- <greeting>Hi</greeting>
-
- <name>sun</name>
- <name>moon</name>
- <name>world</name>
- <name>mars</name>
-
-</hello>)RP(
-
- )0 P(We can also create and seri)HY(al)HY(ize)YH( an object model from scratch
- as shown in the follow)HY(ing)YH( example:)EP(
-
- ) 33 43 PR(#include <iostream>
-#include <fstream>
-#include "hello.hxx"
-
-using namespace std;
-
-int
-main \201int argc, char* argv[]\202
-{
- try
- {
- hello_t h \201"Hi"\202;
-
- hello_t::name_sequence& ns \201h.name \201\202\202;
-
- ns.push_back \201"Jane"\202;
- ns.push_back \201"John"\202;
-
- // Serialize the object model to XML.
- //
- xml_schema::namespace_infomap map;
- map[""].name = "";
- map[""].schema = "hello.xsd";
-
- std::ofstream ofs \201argv[1]\202;
- hello \201ofs, h, map\202;
- }
- catch \201const xml_schema::exception& e\202
- {
- cerr << e << endl;
- return 1;)WR(
- }
-})RP(
-
- )0 P(In this example we used the gener)HY(ated)YH( construc)HY(tor)YH( to create
- an instance of type )SM(hello_t)ES(. To reduce typing,
- we obtained a refer)HY(ence)YH( to the name sequence which we then
- used to add a few names. The seri)HY(al)HY(iza)HY(tion)YH( part is iden)HY(ti)HY(cal)YH(
- to the previ)HY(ous)YH( example except this time we are writing to
- a file. If we compile and run this program, it produces the
- follow)HY(ing)YH( XML file:)EP(
-
- ) 10 60 PR(<?xml version="1.0"?>
-<hello xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
- xsi:noNamespaceSchemaLocation="hello.xsd">
-
- <greeting>Hi</greeting>
-
- <name>Jane</name>
- <name>John</name>
-
-</hello>)RP(
-
- )0 2 12 H(2.6)WB 47 Sn()WB 15 Sn( Select)HY(ing)YH( Naming Conven)HY(tion)YH()EA()EH(
-
- )0 P(By default XSD uses the so-called K&R \201Kernighan and Ritchie\202
- iden)HY(ti)HY(fier)YH( naming conven)HY(tion)YH( in the gener)HY(ated)YH( code. In this
- conven)HY(tion)YH( both type and func)HY(tion)YH( names are in lower case and
- words are sepa)HY(rated)YH( by under)HY(scores)YH(. If your appli)HY(ca)HY(tion)YH( code or
- schemas use a differ)HY(ent)YH( nota)HY(tion)YH(, you may want to change the
- naming conven)HY(tion)YH( used in the gener)HY(ated)YH( code for consis)HY(tency)YH(.
- XSD supports a set of widely-used naming conven)HY(tions)YH(
- that you can select with the )SM(--type-naming)ES( and
- )SM(--func)HY(tion)YH(-naming)ES( options. You can also further
- refine one of the prede)HY(fined)YH( conven)HY(tions)YH( or create a completely
- custom naming scheme by using the )SM(--*-regex)ES( options.)EP(
-
- )0 P(As an example, let's assume that our "Hello World" appli)HY(ca)HY(tion)YH(
- uses the so-called upper-camel-case naming conven)HY(tion)YH( for types
- \201that is, each word in a type name is capi)HY(tal)HY(ized)YH(\202 and the K&R
- conven)HY(tion)YH( for func)HY(tion)YH( names. Since K&R is the default
- conven)HY(tion)YH( for both type and func)HY(tion)YH( names, we only need to
- change the type naming scheme:)EP(
-
- ) 1 42 PR($ xsd cxx-tree --type-naming ucc hello.xsd)RP(
-
- )0 P(The )SM(ucc)ES( argu)HY(ment)YH( to the )SM(--type-naming)ES(
- options stands for upper-camel-case. If we now examine the
- gener)HY(ated)YH( )SM(hello.hxx)ES(, we will see the follow)HY(ing)YH(
- changes compared to the decla)HY(ra)HY(tions)YH( shown in the previ)HY(ous)YH(
- sections:)EP(
-
- ) 45 57 PR(class Hello_t
-{
-public:
- // greeting
- //
- typedef xml_schema::String GreetingType;
-
- const GreetingType&
- greeting \201\202 const;
-
- GreetingType&
- greeting \201\202;
-
- void
- greeting \201const GreetingType& x\202;
-
- // name
- //
- typedef xml_schema::String NameType;
- typedef xsd::sequence<NameType> NameSequence;
- typedef NameSequence::iterator NameIterator;
- typedef NameSequence::const_iterator NameConstIterator;
-
- const NameSequence&
- name \201\202 const;
-
- NameSequence&
- name \201\202;
-
- void
- name \201const NameSequence& s\202;)WR(
-
- // Constructor.
- //
- Hello_t \201const GreetingType&\202;
-
- ...
-
-};
-
-std::auto_ptr<Hello_t>
-hello \201const std::string& uri\202;
-
-std::auto_ptr<Hello_t>
-hello \201std::istream&\202;)RP(
-
- )0 P(Notice that the type names in the )SM(xml_schema)ES( names)HY(pace)YH(,
- for example )SM(xml_schema::String)ES(, now also use the
- upper-camel-case naming conven)HY(tion)YH(. The only thing that we may
- be unhappy about in the above code is the )SM(_t)ES(
- suffix in )SM(Hello_t)ES(. If we are not in a posi)HY(tion)YH(
- to change the schema, we can )EM(touch-up)ES( the )SM(ucc)ES(
- conven)HY(tion)YH( with a custom trans)HY(la)HY(tion)YH( rule using the
- )SM(--type-regex)ES( option:)EP(
-
- ) 1 72 PR($ xsd cxx-tree --type-naming ucc --type-regex '/ \201.+\202_t/\200u$1/' hello.xsd)RP(
-
- )0 P(This results in the follow)HY(ing)YH( changes to the gener)HY(ated)YH( code:)EP(
-
- ) 45 57 PR(class Hello
-{
-public:
- // greeting
- //
- typedef xml_schema::String GreetingType;
-
- const GreetingType&
- greeting \201\202 const;
-
- GreetingType&
- greeting \201\202;
-
- void
- greeting \201const GreetingType& x\202;
-
- // name
- //
- typedef xml_schema::String NameType;
- typedef xsd::sequence<NameType> NameSequence;
- typedef NameSequence::iterator NameIterator;
- typedef NameSequence::const_iterator NameConstIterator;
-
- const NameSequence&
- name \201\202 const;
-
- NameSequence&
- name \201\202;
-
- void
- name \201const NameSequence& s\202;)WR(
-
- // Constructor.
- //
- Hello \201const GreetingType&\202;
-
- ...
-
-};
-
-std::auto_ptr<Hello>
-hello \201const std::string& uri\202;
-
-std::auto_ptr<Hello>
-hello \201std::istream&\202;)RP(
-
- )0 P(For more detailed infor)HY(ma)HY(tion)YH( on the )SM(--type-naming)ES(,
- )SM(--func)HY(tion)YH(-naming)ES(, )SM(--type-regex)ES(, and
- other )SM(--*-regex)ES( options refer to the NAMING
- CONVEN)HY(TION)YH( section in the )R5 2 A(XSD
- Compiler Command Line Manual)EA(.)EP(
-
- )0 2 13 H(2.7)WB 48 Sn()WB 16 Sn( Gener)HY(at)HY(ing)YH( Docu)HY(men)HY(ta)HY(tion)YH()EA()EH(
-
- )0 P(While our object model is quite simple, real-world vocab)HY(u)HY(lar)HY(ies)YH(
- can be quite complex with hundreds of types, elements, and
- attributes. For such vocab)HY(u)HY(lar)HY(ies)YH( figur)HY(ing)YH( out which types
- provide which member func)HY(tions)YH( by study)HY(ing)YH( the gener)HY(ated)YH(
- source code or schemas can be a daunt)HY(ing)YH( task. To provide
- appli)HY(ca)HY(tion)YH( devel)HY(op)HY(ers)YH( with a more acces)HY(si)HY(ble)YH( way of
- under)HY(stand)HY(ing)YH( the gener)HY(ated)YH( object models, the XSD compiler
- can be instructed to produce source code with docu)HY(men)HY(ta)HY(tion)YH(
- comments in the Doxygen format. Then the source code can be
- processed with the )R9 2 A(Doxygen)EA(
- docu)HY(men)HY(ta)HY(tion)YH( system to extract this infor)HY(ma)HY(tion)YH( and produce
- docu)HY(men)HY(ta)HY(tion)YH( in various formats.
- )EP(
-
- )0 P(In this section we will see how to gener)HY(ate)YH( docu)HY(men)HY(ta)HY(tion)YH(
- for our "Hello World" vocab)HY(u)HY(lary)YH(. To show)HY(case)YH( the full power
- of the XSD docu)HY(men)HY(ta)HY(tion)YH( facil)HY(i)HY(ties)YH(, we will first docu)HY(ment)YH(
- our schema. The XSD compiler will then trans)HY(fer)YH(
- this infor)HY(ma)HY(tion)YH( from the schema to the gener)HY(ated)YH( code and
- then to the object model docu)HY(men)HY(ta)HY(tion)YH(. Note that the
- docu)HY(men)HY(ta)HY(tion)YH( in the schema is not required for XSD to
- gener)HY(ate)YH( useful docu)HY(men)HY(ta)HY(tion)YH(. Below you will find
- our )SM(hello.xsd)ES( with added docu)HY(men)HY(ta)HY(tion)YH(:)EP(
-
- ) 43 69 PR(<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
-
- <xs:complexType name="hello_t">
-
- <xs:annotation>
- <xs:documentation>
- The hello_t type consists of a greeting phrase and a
- collection of names to which this greeting applies.
- </xs:documentation>
- </xs:annotation>
-
- <xs:sequence>
-
- <xs:element name="greeting" type="xs:string">
- <xs:annotation>
- <xs:documentation>
- The greeting element contains the greeting phrase
- for this hello object.
- </xs:documentation>
- </xs:annotation>
- </xs:element>
-
- <xs:element name="name" type="xs:string" maxOccurs="unbounded">
- <xs:annotation>
- <xs:documentation>
- The name elements contains names to be greeted.
- </xs:documentation>
- </xs:annotation>
- </xs:element>
-
- </xs:sequence>)WR(
- </xs:complexType>
-
- <xs:element name="hello" type="hello_t">
- <xs:annotation>
- <xs:documentation>
- The hello element is a root of the Hello XML vocabulary.
- Every conforming document should start with this element.
- </xs:documentation>
- </xs:annotation>
- </xs:element>
-
-</xs:schema>)RP(
-
- )0 P(The first step in obtain)HY(ing)YH( the docu)HY(men)HY(ta)HY(tion)YH( is to recom)HY(pile)YH(
- our schema with the )SM(--gener)HY(ate)YH(-doxygen)ES( option:)EP(
-
- ) 1 68 PR($ xsd cxx-tree --generate-serialization --generate-doxygen hello.xsd)RP(
-
- )0 P(Now the gener)HY(ated)YH( )SM(hello.hxx)ES( file contains comments
- in the Doxygen format. The next step is to process this file
- with the Doxygen docu)HY(men)HY(ta)HY(tion)YH( system. If your project does
- not use Doxygen then you first need to create a config)HY(u)HY(ra)HY(tion)YH(
- file for your project:)EP(
-
- ) 1 26 PR($ doxygen -g hello.doxygen)RP(
-
- )0 P(You only need to perform this step once. Now we can gener)HY(ate)YH(
- the docu)HY(men)HY(ta)HY(tion)YH( by execut)HY(ing)YH( the follow)HY(ing)YH( command in the
- direc)HY(tory)YH( with the gener)HY(ated)YH( source code:)EP(
-
- ) 1 23 PR($ doxygen hello.doxygen)RP(
-
- )0 P(While the gener)HY(ated)YH( docu)HY(men)HY(ta)HY(tion)YH( can be useful as is, we can
- go one step further and link \201using the Doxygen tags mech)HY(a)HY(nism)YH(\202
- the docu)HY(men)HY(ta)HY(tion)YH( for our object model with the docu)HY(men)HY(ta)HY(tion)YH(
- for the XSD runtime library which defines C++ classes for the
- built-in XML Schema types. This way we can seam)HY(lessly)YH( browse
- between docu)HY(men)HY(ta)HY(tion)YH( for the )SM(hello_t)ES( class which
- is gener)HY(ated)YH( by the XSD compiler and the )SM(xml_schema::string)ES(
- class which is defined in the XSD runtime library. The Doxygen
- config)HY(u)HY(ra)HY(tion)YH( file for the XSD runtime is provided with the XSD
- distri)HY(bu)HY(tion)YH(.)EP(
-
- )0 P(You can view the result of the steps described in this section
- on the )R10 2 A(Hello
- Example Docu)HY(men)HY(ta)HY(tion)YH()EA( page.)EP(
-
-
-
-
- )0 1 14 H(3)WB 49 Sn()WB 17 Sn( Overall Mapping Config)HY(u)HY(ra)HY(tion)YH()EA()EH(
-
- )0 P(The C++/Tree mapping has a number of config)HY(u)HY(ra)HY(tion)YH( param)HY(e)HY(ters)YH( that
- deter)HY(mine)YH( the overall prop)HY(er)HY(ties)YH( and behav)HY(ior)YH( of the gener)HY(ated)YH( code.
- Config)HY(u)HY(ra)HY(tion)YH( param)HY(e)HY(ters)YH( are spec)HY(i)HY(fied)YH( with the XSD command line
- options. This chapter describes config)HY(u)HY(ra)HY(tion)YH( aspects that are most
- commonly encoun)HY(tered)YH( by appli)HY(ca)HY(tion)YH( devel)HY(op)HY(ers)YH(. These include:
- the char)HY(ac)HY(ter)YH( type that is used by the gener)HY(ated)YH( code, handling of
- vocab)HY(u)HY(lar)HY(ies)YH( that use XML Schema poly)HY(mor)HY(phism)YH(, XML Schema to C++
- names)HY(pace)YH( mapping, and thread safety. For more ways to config)HY(ure)YH(
- the gener)HY(ated)YH( code refer to the
- )R5 2 A(XSD
- Compiler Command Line Manual)EA(.
- )EP(
-
- )0 2 15 H(3.1)WB 50 Sn()WB 18 Sn( Char)HY(ac)HY(ter)YH( Type and Encod)HY(ing)YH()EA()EH(
-
- )0 P(The C++/Tree mapping has built-in support for two char)HY(ac)HY(ter)YH( types:
- )SM(char)ES( and )SM(wchar_t)ES(. You can select the
- char)HY(ac)HY(ter)YH( type with the )SM(--char-type)ES( command line
- option. The default char)HY(ac)HY(ter)YH( type is )SM(char)ES(. The
- char)HY(ac)HY(ter)YH( type affects all string and string-based types that
- are used in the mapping. These include the string-based built-in
- XML Schema types, excep)HY(tion)YH( types, stream types, etc.)EP(
-
- )0 P(Another aspect of the mapping that depends on the char)HY(ac)HY(ter)YH( type
- is char)HY(ac)HY(ter)YH( encod)HY(ing)YH(. For the )SM(char)ES( char)HY(ac)HY(ter)YH( type
- the default encod)HY(ing)YH( is UTF-8. Other supported encod)HY(ings)YH( are
- ISO-8859-1, Xerces-C++ Local Code Page \201LPC\202, as well as
- custom encod)HY(ings)YH(. You can select which encod)HY(ing)YH( should be used
- in the object model with the )SM(--char-encod)HY(ing)YH()ES( command
- line option.)EP(
-
- )0 P(For the )SM(wchar_t)ES( char)HY(ac)HY(ter)YH( type the encod)HY(ing)YH( is
- auto)HY(mat)HY(i)HY(cally)YH( selected between UTF-16 and UTF-32/UCS-4 depend)HY(ing)YH(
- on the size of the )SM(wchar_t)ES( type. On some plat)HY(forms)YH(
- \201for example, Windows with Visual C++ and AIX with IBM XL C++\202
- )SM(wchar_t)ES( is 2 bytes long. For these plat)HY(forms)YH( the
- encod)HY(ing)YH( is UTF-16. On other plat)HY(forms)YH( )SM(wchar_t)ES( is 4 bytes
- long and UTF-32/UCS-4 is used.)EP(
-
- )0 P(Note also that the char)HY(ac)HY(ter)YH( encod)HY(ing)YH( that is used in the object model
- is inde)HY(pen)HY(dent)YH( of the encod)HY(ings)YH( used in input and output XML. In fact,
- all three \201object mode, input XML, and output XML\202 can have differ)HY(ent)YH(
- encod)HY(ings)YH(.)EP(
-
- )0 2 16 H(3.2)WB 51 Sn()WB 19 Sn( Support for Poly)HY(mor)HY(phism)YH()EA()EH(
-
- )0 P(By default XSD gener)HY(ates)YH( non-poly)HY(mor)HY(phic)YH( code. If your vocab)HY(u)HY(lary)YH(
- uses XML Schema poly)HY(mor)HY(phism)YH( in the form of )SM(xsi:type)ES(
- and/or substi)HY(tu)HY(tion)YH( groups, then you will need to compile
- your schemas with the )SM(--gener)HY(ate)YH(-poly)HY(mor)HY(phic)YH()ES( option
- to produce poly)HY(mor)HY(phism)YH(-aware code. For more infor)HY(ma)HY(tion)YH( on
- working with poly)HY(mor)HY(phic)YH( object models, refer to
- )R11 2 A(Section 2.11,
- "Mapping for )SM(xsi:type)ES( and Substi)HY(tu)HY(tion)YH( Groups")EA( in
- the C++/Tree Mapping User Manual.)EP(
-
- )0 2 17 H(3.3)WB 52 Sn()WB 20 Sn( Names)HY(pace)YH( Mapping)EA()EH(
-
- )0 P(XSD maps XML names)HY(paces)YH( spec)HY(i)HY(fied)YH( in the )SM(target)HY(Names)HY(pace)YH()ES(
- attribute in XML Schema to one or more nested C++ names)HY(paces)YH(. By
- default, a names)HY(pace)YH( URI is mapped to a sequence of C++ names)HY(pace)YH(
- names by remov)HY(ing)YH( the proto)HY(col)YH( and host parts and split)HY(ting)YH( the
- rest into a sequence of names with )SM('/')ES( as the name
- sepa)HY(ra)HY(tor)YH(.)EP(
-
- )0 P(The default mapping of names)HY(pace)YH( URIs to C++ names)HY(paces)YH(
- can be altered using the )SM(--names)HY(pace)YH(-map)ES( and
- )SM(--names)HY(pace)YH(-regex)ES( compiler options. For example,
- to map names)HY(pace)YH( URI )SM(http://www.codesyn)HY(the)HY(sis)YH(.com/my)ES( to
- C++ names)HY(pace)YH( )SM(cs::my)ES(, we can use the follow)HY(ing)YH( option:)EP(
-
- ) 1 54 PR(--namespace-map http://www.codesynthesis.com/my=cs::my)RP(
-
- )0 P(A vocab)HY(u)HY(lary)YH( without a names)HY(pace)YH( is mapped to the global scope. This
- also can be altered with the above options by using an empty name
- for the XML names)HY(pace)YH(:)EP(
-
- ) 1 19 PR(--namespace-map =cs)RP(
-
- )0 2 18 H(3.4)WB 53 Sn()WB 21 Sn( Thread Safety)EA()EH(
-
- )0 P(XSD-gener)HY(ated)YH( code is thread-safe in the sense that you can
- use differ)HY(ent)YH( instan)HY(ti)HY(a)HY(tions)YH( of the object model in several
- threads concur)HY(rently)YH(. This is possi)HY(ble)YH( due to the gener)HY(ated)YH(
- code not relying on any writable global vari)HY(ables)YH(. If you need
- to share the same object between several threads then you will
- need to provide some form of synchro)HY(niza)HY(tion)YH(. One approach would
- be to use the gener)HY(ated)YH( code customiza)HY(tion)YH( mech)HY(a)HY(nisms)YH( to embed
- synchro)HY(niza)HY(tion)YH( prim)HY(i)HY(tives)YH( into the gener)HY(ated)YH( C++ classes. For more
- infor)HY(ma)HY(tion)YH( on gener)HY(ated)YH( code customiza)HY(tion)YH( refer to the
- )R2 2 A(C++/Tree
- Mapping Customiza)HY(tion)YH( Guide)EA(.)EP(
-
- )0 P(If you also would like to call parsing and/or seri)HY(al)HY(iza)HY(tion)YH(
- func)HY(tions)YH( from several threads poten)HY(tially)YH( concur)HY(rently)YH(, then
- you will need to make sure the Xerces-C++ runtime is initial)HY(ized)YH(
- and termi)HY(nated)YH( only once. The easiest way to do this is to
- initial)HY(ize)YH(/termi)HY(nate)YH( Xerces-C++ from )SM(main\201\202)ES( when
- there are no threads yet/anymore:)EP(
-
- ) 13 56 PR(#include <xercesc/util/PlatformUtils.hpp>
-
-int
-main \201\202
-{
- xercesc::XMLPlatformUtils::Initialize \201\202;
-
- {
- // Start/terminate threads and parse/serialize here.
- }
-
- xercesc::XMLPlatformUtils::Terminate \201\202;
-})RP(
-
- )0 P(Because you initial)HY(ize)YH( the Xerces-C++ runtime your)HY(self)YH( you should
- also pass the )SM(xml_schema::flags::dont_initial)HY(ize)YH()ES( flag
- to parsing and seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH(. See )0 29 1 A(Chapter 5,
- "Parsing")29 0 TN TL()Ec /AF f D( and )0 32 1 A(Chapter 6, "Seri)HY(al)HY(iza)HY(tion)YH(")32 0 TN TL()Ec /AF f D( for
- more infor)HY(ma)HY(tion)YH(.)EP(
-
-
-
-
-
- )0 1 19 H(4)WB 54 Sn()WB 22 Sn( Working with Object Models)EA()EH(
-
- )0 P(As we have seen in the previ)HY(ous)YH( chap)HY(ters)YH(, the XSD compiler gener)HY(ates)YH(
- a C++ class for each type defined in XML Schema. Together these classes
- consti)HY(tute)YH( an object model for an XML vocab)HY(u)HY(lary)YH(. In this chapter we
- will take a closer look at differ)HY(ent)YH( elements that comprise an
- object model class as well as how to create, access, and modify
- object models.)EP(
-
- )0 P(In this and subse)HY(quent)YH( chap)HY(ters)YH( we will use the follow)HY(ing)YH( schema
- that describes a collec)HY(tion)YH( of person records. We save it in
- )SM(people.xsd)ES(:)EP(
-
- ) 30 71 PR(<?xml version="1.0"?>
-<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
-
- <xs:simpleType name="gender_t">
- <xs:restriction base="xs:string">
- <xs:enumeration value="male"/>
- <xs:enumeration value="female"/>
- </xs:restriction>
- </xs:simpleType>
-
- <xs:complexType name="person_t">
- <xs:sequence>
- <xs:element name="first-name" type="xs:string"/>
- <xs:element name="middle-name" type="xs:string" minOccurs="0"/>
- <xs:element name="last-name" type="xs:string"/>
- <xs:element name="gender" type="gender_t"/>
- <xs:element name="age" type="xs:short"/>
- </xs:sequence>
- <xs:attribute name="id" type="xs:unsignedInt" use="required"/>
- </xs:complexType>
-
- <xs:complexType name="people_t">
- <xs:sequence>
- <xs:element name="person" type="person_t" maxOccurs="unbounded"/>
- </xs:sequence>
- </xs:complexType>
-
- <xs:element name="people" type="people_t"/>
-
-</xs:schema>)RP(
-
- )0 P(A sample XML instance to go along with this schema is saved
- in )SM(people.xml)ES(:)EP(
-
- ) 20 61 PR(<?xml version="1.0"?>
-<people xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
- xsi:noNamespaceSchemaLocation="people.xsd">
-
- <person id="1">
- <first-name>John</first-name>
- <last-name>Doe</last-name>
- <gender>male</gender>
- <age>32</age>
- </person>
-
- <person id="2">
- <first-name>Jane</first-name>
- <middle-name>Mary</middle-name>
- <last-name>Doe</last-name>
- <gender>female</gender>
- <age>28</age>
- </person>
-
-</people>)RP(
-
- )0 P(Compil)HY(ing)YH( )SM(people.xsd)ES( with the XSD compiler results
- in three gener)HY(ated)YH( C++ classes: )SM(gender_t)ES(,
- )SM(person_t)ES(, and )SM(people_t)ES(.
- The )SM(gender_t)ES( class is modelled after the C++
- )SM(enum)ES( type. Its defi)HY(ni)HY(tion)YH( is presented below:)EP(
-
- ) 17 41 PR(class gender_t: public xml_schema::string
-{
-public:
- enum value
- {
- male,
- female
- };
-
- gender_t \201value\202;
- gender_t \201const xml_schema::string&\202;
-
- gender_t&
- operator= \201value\202;
-
- operator value \201\202 const;
-};)RP(
-
- )0 P(The follow)HY(ing)YH( listing shows how we can use this type:)EP(
-
- ) 19 41 PR(gender_t m \201gender_t::male\202;
-gender_t f \201"female"\202;
-
-if \201m == "female" || f == gender_t::male\202
-{
- ...
-}
-
-switch \201m\202
-{
-case gender_t::male:
- {
- ...
- }
-case gender_t::female:
- {
- ...
- }
-})RP(
-
- )0 P(The other two classes will be exam)HY(ined)YH( in detail in the subse)HY(quent)YH(
- sections.)EP(
-
- )0 2 20 H(4.1)WB 55 Sn()WB 23 Sn( Attribute and Element Cardi)HY(nal)HY(i)HY(ties)YH()EA()EH(
-
- )0 P(As we have seen in the previ)HY(ous)YH( chap)HY(ters)YH(, XSD gener)HY(ates)YH( a differ)HY(ent)YH(
- set of type defi)HY(ni)HY(tions)YH( and member func)HY(tions)YH( for elements with
- differ)HY(ent)YH( cardi)HY(nal)HY(i)HY(ties)YH(. The C++/Tree mapping divides all the possi)HY(ble)YH(
- element and attribute cardi)HY(nal)HY(i)HY(ties)YH( into three cardi)HY(nal)HY(ity)YH( classes:
- )EM(one)ES(, )EM(optional)ES(, and )EM(sequence)ES(.)EP(
-
- )0 P(The )EM(one)ES( cardi)HY(nal)HY(ity)YH( class covers all elements that should
- occur exactly once as well as required attributes. In our
- example, the )SM(first-name)ES(, )SM(last-name)ES(,
- )SM(gender)ES(, and )SM(age)ES( elements as well as
- the )SM(id)ES( attribute belong to this cardi)HY(nal)HY(ity)YH( class.
- The follow)HY(ing)YH( code frag)HY(ment)YH( shows type defi)HY(ni)HY(tions)YH( as well as the
- acces)HY(sor)YH( and modi)HY(fier)YH( func)HY(tions)YH( that are gener)HY(ated)YH( for the
- )SM(gender)ES( element in the )SM(person_t)ES( class:)EP(
-
- ) 15 31 PR(class person_t
-{
- // gender
- //
- typedef gender_t gender_type;
-
- const gender_type&
- gender \201\202 const;
-
- gender_type&
- gender \201\202;
-
- void
- gender \201const gender_type&\202;
-};)RP(
-
- )0 P(The )SM(gender_type)ES( type is an alias for the element's type.
- The first two acces)HY(sor)YH( func)HY(tions)YH( return read-only \201constant\202 and
- read-write refer)HY(ences)YH( to the element's value, respec)HY(tively)YH(. The
- modi)HY(fier)YH( func)HY(tion)YH( sets the new value for the element.)EP(
-
- )0 P(The )EM(optional)ES( cardi)HY(nal)HY(ity)YH( class covers all elements that
- can occur zero or one time as well as optional attributes. In our
- example, the )SM(middle-name)ES( element belongs to this
- cardi)HY(nal)HY(ity)YH( class. The follow)HY(ing)YH( code frag)HY(ment)YH( shows the type
- defi)HY(ni)HY(tions)YH( as well as the acces)HY(sor)YH( and modi)HY(fier)YH( func)HY(tions)YH( that
- are gener)HY(ated)YH( for this element in the )SM(person_t)ES( class:)EP(
-
- ) 19 63 PR(class person_t
-{
- // middle-name
- //
- typedef xml_schema::string middle_name_type;
- typedef xsd::optional<middle_name_type> middle_name_optional;
-
- const middle_name_optional&
- middle_name \201\202 const;
-
- middle_name_optional&
- middle_name \201\202;
-
- void
- middle_name \201const middle_name_type&\202;
-
- void
- middle_name \201const middle_name_optional&\202;
-};)RP(
-
- )0 P(As with the )SM(gender)ES( element, )SM(middle_name_type)ES(
- is an alias for the element's type. The )SM(middle_name_optional)ES(
- type is a container for the element's optional value. It can be queried
- for the pres)HY(ence)YH( of the value using the )SM(present\201\202)ES( func)HY(tion)YH(.
- The value itself can be retrieved using the )SM(get\201\202)ES(
- acces)HY(sor)YH( and set using the )SM(set\201\202)ES( modi)HY(fier)YH(. The container
- can be reverted to the value not present state with the call to the
- )SM(reset\201\202)ES( func)HY(tion)YH(. The follow)HY(ing)YH( example shows how we
- can use this container:)EP(
-
- ) 9 42 PR(person_t::middle_name_optional n \201"John"\202;
-
-if \201n.preset \201\202\202
-{
- cout << n.get \201\202 << endl;
-}
-
-n.set \201"Jane"\202;
-n.reset \201\202;)RP(
-
-
- )0 P(Unlike the )EM(one)ES( cardi)HY(nal)HY(ity)YH( class, the acces)HY(sor)YH( func)HY(tions)YH(
- for the )EM(optional)ES( class return read-only \201constant\202 and
- read-write refer)HY(ences)YH( to the container instead of the element's
- value directly. The modi)HY(fier)YH( func)HY(tions)YH( set the new value for the
- element.)EP(
-
- )0 P(Finally, the )EM(sequence)ES( cardi)HY(nal)HY(ity)YH( class covers all elements
- that can occur more than once. In our example, the
- )SM(person)ES( element in the )SM(people_t)ES( type
- belongs to this cardi)HY(nal)HY(ity)YH( class. The follow)HY(ing)YH( code frag)HY(ment)YH( shows
- the type defi)HY(ni)HY(tions)YH( as well as the acces)HY(sor)YH( and modi)HY(fier)YH( func)HY(tions)YH(
- that are gener)HY(ated)YH( for this element in the )SM(people_t)ES(
- class:)EP(
-
- ) 18 64 PR(class people_t
-{
- // person
- //
- typedef person_t person_type;
- typedef xsd::sequence<person_type> person_sequence;
- typedef person_sequence::iterator person_iterator;
- typedef person_sequence::const_iterator person_const_iterator;
-
- const person_sequence&
- person \201\202 const;
-
- person_sequence&
- person \201\202;
-
- void
- person \201const person_sequence&\202;
-};)RP(
-
- )0 P(Iden)HY(ti)HY(cal)YH( to the other cardi)HY(nal)HY(ity)YH( classes, )SM(person_type)ES(
- is an alias for the element's type. The )SM(person_sequence)ES(
- type is a sequence container for the element's values. It is based
- on and has the same inter)HY(face)YH( as )SM(std::vector)ES( and
- there)HY(fore)YH( can be used in similar ways. The )SM(person_iter)HY(a)HY(tor)YH()ES(
- and )SM(person_const_iter)HY(a)HY(tor)YH()ES( types are read-only
- \201constant\202 and read-write iter)HY(a)HY(tors)YH( for the )SM(person_sequence)ES(
- container.)EP(
-
- )0 P(Similar to the )EM(optional)ES( cardi)HY(nal)HY(ity)YH( class, the
- acces)HY(sor)YH( func)HY(tions)YH( for the )EM(sequence)ES( class return
- read-only \201constant\202 and read-write refer)HY(ences)YH( to the sequence
- container. The modi)HY(fier)YH( func)HY(tions)YH( copies the entries from
- the passed sequence.)EP(
-
- )0 P(For complex schemas with many levels of nested compos)HY(i)HY(tors)YH(
- \201)SM(xs:choice)ES( and )SM(xs:sequence)ES(\202 it can
- be hard to deduce the cardi)HY(nal)HY(ity)YH( class of a partic)HY(u)HY(lar)YH( element.
- The gener)HY(ated)YH( Doxygen docu)HY(men)HY(ta)HY(tion)YH( can greatly help with
- this task. For each element and attribute the docu)HY(men)HY(ta)HY(tion)YH(
- clearly iden)HY(ti)HY(fies)YH( its cardi)HY(nal)HY(ity)YH( class. Alter)HY(na)HY(tively)YH(, you
- can study the gener)HY(ated)YH( header files to find out the cardi)HY(nal)HY(ity)YH(
- class of a partic)HY(u)HY(lar)YH( attribute or element. In the next sections
- we will examine how to access and modify infor)HY(ma)HY(tion)YH( stored in
- an object model using acces)HY(sor)YH( and modi)HY(fier)YH( func)HY(tions)YH( described
- in this section.)EP(
-
-
- )0 2 21 H(4.2)WB 56 Sn()WB 24 Sn( Access)HY(ing)YH( the Object Model)EA()EH(
-
- )0 P(In this section we will learn how to get to the infor)HY(ma)HY(tion)YH(
- stored in the object model for our person records vocab)HY(u)HY(lary)YH(.
- The follow)HY(ing)YH( appli)HY(ca)HY(tion)YH( accesses and prints the contents
- of the )SM(people.xml)ES( file:)EP(
-
- ) 36 70 PR(#include <iostream>
-#include "people.hxx"
-
-using namespace std;
-
-int
-main \201\202
-{
- auto_ptr<people_t> ppl \201people \201"people.xml"\202\202;
-
- // Iterate over individual person records.
- //
- people_t::person_sequence& ps \201ppl->person \201\202\202;
-
- for \201people_t::person_iterator i \201ps.begin \201\202\202; i != ps.end \201\202; ++i\202
- {
- person_t& p \201*i\202;
-
- // Print names: first-name and last-name are required elements,
- // middle-name is optional.
- //
- cout << "name: " << p.first_name \201\202 << " ";
-
- if \201p.middle_name \201\202.present \201\202\202
- cout << p.middle_name \201\202.get \201\202 << " ";
-
- cout << p.last_name \201\202 << endl;
-
- // Print gender, age, and id which are all required.
- //
- cout << "gender: " << p.gender \201\202 << endl)WR(
- << "age: " << p.age \201\202 << endl
- << "id: " << p.id \201\202 << endl
- << endl;
- }
-})RP(
-
- )0 P(This code shows common patterns of access)HY(ing)YH( elements and attributes
- with differ)HY(ent)YH( cardi)HY(nal)HY(ity)YH( classes. For the sequence element
- \201)SM(person)ES( in )SM(people_t)ES(\202 we first obtain a
- refer)HY(ence)YH( to the container and then iterate over indi)HY(vid)HY(ual)YH(
- records. The values of elements and attributes with the
- )EM(one)ES( cardi)HY(nal)HY(ity)YH( class \201)SM(first-name)ES(,
- )SM(last-name)ES(, )SM(gender)ES(, )SM(age)ES(,
- and )SM(id)ES(\202 can be obtained directly by calling the
- corre)HY(spond)HY(ing)YH( acces)HY(sor)YH( func)HY(tions)YH(. For the optional element
- )SM(middle-name)ES( we first check if the value is present
- and only then call )SM(get\201\202)ES( to retrieve it.)EP(
-
- )0 P(Note that when we want to reduce typing by creat)HY(ing)YH( a vari)HY(able)YH(
- repre)HY(sent)HY(ing)YH( a frag)HY(ment)YH( of the object model that we are currently
- working with \201)SM(ps)ES( and )SM(p)ES( above\202, we obtain
- a refer)HY(ence)YH( to that frag)HY(ment)YH( instead of making a poten)HY(tially)YH(
- expen)HY(sive)YH( copy. This is gener)HY(ally)YH( a good rule to follow when
- creat)HY(ing)YH( high-perfor)HY(mance)YH( appli)HY(ca)HY(tions)YH(.)EP(
-
- )0 P(If we run the above appli)HY(ca)HY(tion)YH( on our sample
- )SM(people.xml)ES(, the output looks as follows:)EP(
-
- ) 9 21 PR(name: John Doe
-gender: male
-age: 32
-id: 1
-
-name: Jane Mary Doe
-gender: female
-age: 28
-id: 2)RP(
-
-
- )0 2 22 H(4.3)WB 57 Sn()WB 25 Sn( Modi)HY(fy)HY(ing)YH( the Object Model)EA()EH(
-
- )0 P(In this section we will learn how to modify the infor)HY(ma)HY(tion)YH(
- stored in the object model for our person records vocab)HY(u)HY(lary)YH(.
- The follow)HY(ing)YH( appli)HY(ca)HY(tion)YH( changes the contents of the
- )SM(people.xml)ES( file:)EP(
-
- ) 43 70 PR(#include <iostream>
-#include "people.hxx"
-
-using namespace std;
-
-int
-main \201\202
-{
- auto_ptr<people_t> ppl \201people \201"people.xml"\202\202;
-
- // Iterate over individual person records and increment
- // the age.
- //
- people_t::person_sequence& ps \201ppl->person \201\202\202;
-
- for \201people_t::person_iterator i \201ps.begin \201\202\202; i != ps.end \201\202; ++i\202
- {
- // Alternative way: i->age \201\202++;
- //
- i->age \201i->age \201\202 + 1\202;
- }
-
- // Add middle-name to the first record and remove it from
- // the second.
- //
- person_t& john \201ps[0]\202;
- person_t& jane \201ps[1]\202;
-
- john.middle_name \201"Mary"\202;
- jane.middle_name \201\202.reset \201\202;
-)WR(
- // Add another John record.
- //
- ps.push_back \201john\202;
-
- // Serialize the modified object model to XML.
- //
- xml_schema::namespace_infomap map;
- map[""].name = "";
- map[""].schema = "people.xsd";
-
- people \201cout, *ppl, map\202;
-})RP(
-
- )0 P(The first modi)HY(fi)HY(ca)HY(tion)YH( the above appli)HY(ca)HY(tion)YH( performs is iter)HY(at)HY(ing)YH(
- over person records and incre)HY(ment)HY(ing)YH( the age value. This code
- frag)HY(ment)YH( shows how to modify the value of a required attribute
- or element. The next modi)HY(fi)HY(ca)HY(tion)YH( shows how to set a new value
- for the optional )SM(middle-name)ES( element as well
- as clear its value. Finally the example adds a copy of the
- John Doe record to the )SM(person)ES( element sequence.)EP(
-
- )0 P(Note that in this case using refer)HY(ences)YH( for the )SM(ps)ES(,
- )SM(john)ES(, and )SM(jane)ES( vari)HY(ables)YH( is no longer
- a perfor)HY(mance)YH( improve)HY(ment)YH( but a require)HY(ment)YH( for the appli)HY(ca)HY(tion)YH(
- to func)HY(tion)YH( correctly. If we hadn't used refer)HY(ences)YH(, all our changes
- would have been made on copies without affect)HY(ing)YH( the object model.)EP(
-
- )0 P(If we run the above appli)HY(ca)HY(tion)YH( on our sample )SM(people.xml)ES(,
- the output looks as follows:)EP(
-
- ) 28 61 PR(<?xml version="1.0"?>
-<people xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
- xsi:noNamespaceSchemaLocation="people.xsd">
-
- <person id="1">
- <first-name>John</first-name>
- <middle-name>Mary</middle-name>
- <last-name>Doe</last-name>
- <gender>male</gender>
- <age>33</age>
- </person>
-
- <person id="2">
- <first-name>Jane</first-name>
- <last-name>Doe</last-name>
- <gender>female</gender>
- <age>29</age>
- </person>
-
- <person id="1">
- <first-name>John</first-name>
- <middle-name>Mary</middle-name>
- <last-name>Doe</last-name>
- <gender>male</gender>
- <age>33</age>
- </person>
-
-</people>)RP(
-
-
- )0 2 23 H(4.4)WB 58 Sn()WB 26 Sn( Creat)HY(ing)YH( the Object Model from Scratch)EA()EH(
-
- )0 P(In this section we will learn how to create a new object model
- for our person records vocab)HY(u)HY(lary)YH(. The follow)HY(ing)YH( appli)HY(ca)HY(tion)YH(
- recre)HY(ates)YH( the content of the orig)HY(i)HY(nal)YH( )SM(people.xml)ES(
- file:)EP(
-
- ) 42 48 PR(#include <iostream>
-#include "people.hxx"
-
-using namespace std;
-
-int
-main \201\202
-{
- people_t ppl;
- people_t::person_sequence& ps \201ppl.person \201\202\202;
-
- // Add the John Doe record.
- //
- ps.push_back \201
- person_t \201"John", // first-name
- "Doe", // last-name
- gender_t::male, // gender
- 32, // age
- 1\202\202;
-
- // Add the Jane Doe record.
- //
- ps.push_back \201
- person_t \201"Jane", // first-name
- "Doe", // last-name
- gender_t::female, // gender
- 28, // age
- 2\202\202; // id
-
- // Add middle name to the Jane Doe record.
- //)WR(
- person_t& jane \201ps.back \201\202\202;
- jane.middle_name \201"Mary"\202;
-
- // Serialize the object model to XML.
- //
- xml_schema::namespace_infomap map;
- map[""].name = "";
- map[""].schema = "people.xsd";
-
- people \201cout, ppl, map\202;
-})RP(
-
- )0 P(The only new part in the above appli)HY(ca)HY(tion)YH( is the calls
- to the )SM(people_t)ES( and )SM(person_t)ES(
- construc)HY(tors)YH(. As a general rule, for each C++ class
- XSD gener)HY(ates)YH( a construc)HY(tor)YH( with initial)HY(iz)HY(ers)YH(
- for each element and attribute belong)HY(ing)YH( to the )EM(one)ES(
- cardi)HY(nal)HY(ity)YH( class. For our vocab)HY(u)HY(lary)YH(, the follow)HY(ing)YH(
- construc)HY(tors)YH( are gener)HY(ated)YH(:)EP(
-
- ) 13 35 PR(class person_t
-{
- person_t \201const first_name_type&,
- const last_name_type&,
- const gender_type&,
- const age_type&,
- const id_type&\202;
-};
-
-class people_t
-{
- people_t \201\202;
-};)RP(
-
- )0 P(Note also that we set the )SM(middle-name)ES( element
- on the Jane Doe record by obtain)HY(ing)YH( a refer)HY(ence)YH( to that record
- in the object model and setting the )SM(middle-name)ES(
- value on it. This is a general rule that should be followed
- in order to obtain the best perfor)HY(mance)YH(: if possi)HY(ble)YH(,
- direct modi)HY(fi)HY(ca)HY(tions)YH( to the object model should be preferred
- to modi)HY(fi)HY(ca)HY(tions)YH( on tempo)HY(raries)YH( with subse)HY(quent)YH( copying. The
- follow)HY(ing)YH( code frag)HY(ment)YH( shows a seman)HY(ti)HY(cally)YH( equiv)HY(a)HY(lent)YH( but
- slightly slower version:)EP(
-
- ) 11 46 PR(// Add the Jane Doe record.
-//
-person_t jane \201"Jane", // first-name
- "Doe", // last-name
- gender_t::female, // gender
- 28, // age
- 2\202; // id
-
-jane.middle_name \201"Mary"\202;
-
-ps.push_back \201jane\202;)RP(
-
- )0 P(We can also go one step further to reduce copying and improve
- the perfor)HY(mance)YH( of our appli)HY(ca)HY(tion)YH( by using the non-copying
- )SM(push_back\201\202)ES( func)HY(tion)YH( which assumes owner)HY(ship)YH(
- of the passed objects:)EP(
-
- ) 19 47 PR(// Add the John Doe record.
-//
-auto_ptr<person_t> john_p \201
- new person_t \201"John", // first-name
- "Doe", // last-name
- gender_t::male, // gender
- 32, // age
- 1\202\202;
-ps.push_back \201john_p\202; // assumes ownership
-
-// Add the Jane Doe record.
-//
-auto_ptr<person_t> jane_p \201
- new person_t \201"Jane", // first-name
- "Doe", // last-name
- gender_t::female, // gender
- 28, // age
- 2\202\202; // id
-ps.push_back \201jane_p\202; // assumes ownership)RP(
-
- )0 P(For more infor)HY(ma)HY(tion)YH( on the non-copying modi)HY(fier)YH( func)HY(tions)YH( refer to
- )R12 2 A(Section
- 2.8, "Mapping for Local Elements and Attributes")EA( in the C++/Tree Mapping
- User Manual. The above appli)HY(ca)HY(tion)YH( produces the follow)HY(ing)YH( output:)EP(
-
- ) 20 61 PR(<?xml version="1.0" ?>
-<people xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
- xsi:noNamespaceSchemaLocation="people.xsd">
-
- <person id="1">
- <first-name>John</first-name>
- <last-name>Doe</last-name>
- <gender>male</gender>
- <age>32</age>
- </person>
-
- <person id="2">
- <first-name>Jane</first-name>
- <middle-name>Mary</middle-name>
- <last-name>Doe</last-name>
- <gender>female</gender>
- <age>28</age>
- </person>
-
-</people>)RP(
-
- )0 2 24 H(4.5)WB 59 Sn()WB 27 Sn( Mapping for the Built-in XML Schema Types)EA()EH(
-
- )0 P(Our person record vocab)HY(u)HY(lary)YH( uses several built-in XML Schema
- types: )SM(string)ES(, )SM(short)ES(, and
- )SM(unsignedInt)ES(. Until now we haven't talked about
- the mapping of built-in XML Schema types to C++ types and how
- to work with them. This section provides an overview
- of the built-in types. For more detailed infor)HY(ma)HY(tion)YH( refer
- to )R13 2 A(Section
- 2.5, "Mapping for Built-in Data Types")EA( in the C++/Tree Mapping
- User Manual.)EP(
-
- )0 P(In XML Schema, built-in types are defined in the XML Schema names)HY(pace)YH(.
- By default, the C++/Tree mapping maps this names)HY(pace)YH( to C++
- names)HY(pace)YH( )SM(xml_schema)ES( \201this mapping can be altered
- with the )SM(--names)HY(pace)YH(-map)ES( option\202. The follow)HY(ing)YH( table
- summa)HY(rizes)YH( the mapping of XML Schema built-in types to C++ types:)EP(
-
-
- )0 PT(
-
- )0 P(As you can see from the table above a number of built-in
- XML Schema types are mapped to funda)HY(men)HY(tal)YH( C++ types such
- as )SM(int)ES( or )SM(bool)ES(. All string-based
- XML Schema types are mapped to C++ types that are derived
- from either )SM(std::string)ES( or
- )SM(std::wstring)ES(, depend)HY(ing)YH( on the char)HY(ac)HY(ter)YH(
- type selected. For access and modi)HY(fi)HY(ca)HY(tion)YH( purposes these
- types can be treated as )SM(std::string)ES(. A number
- of built-in types, such as )SM(qname)ES(, the binary
- types, and the date/time types do not have suit)HY(able)YH(
- funda)HY(men)HY(tal)YH( or stan)HY(dard)YH( C++ types to map to. As a result,
- these types are imple)HY(mented)YH( from scratch in the XSD runtime.
- For more infor)HY(ma)HY(tion)YH( on their inter)HY(faces)YH( refer to
- )R13 2 A(Section
- 2.5, "Mapping for Built-in Data Types")EA( in the C++/Tree Mapping
- User Manual.)EP(
-
-
-
-
-
- )0 1 25 H(5)WB 60 Sn()WB 29 Sn( Parsing)EA()EH(
-
- )0 P(We have already seen how to parse XML to an object model in this guide
- before. In this chapter we will discuss the parsing topic in more
- detail.)EP(
-
- )0 P(By default, the C++/Tree mapping provides a total of 14 over)HY(loaded)YH(
- parsing func)HY(tions)YH(. They differ in the input methods used to
- read XML as well as the error report)HY(ing)YH( mech)HY(a)HY(nisms)YH(. It is also possi)HY(ble)YH(
- to gener)HY(ate)YH( types for root elements instead of parsing and seri)HY(al)HY(iza)HY(tion)YH(
- func)HY(tions)YH(. This may be useful if your XML vocab)HY(u)HY(lary)YH( has multi)HY(ple)YH(
- root elements. For more infor)HY(ma)HY(tion)YH( on element types refer to
- )R14 2 A(Section
- 2.9, "Mapping for Global Elements")EA( in the C++/Tree Mapping User
- Manual.)EP(
-
-
- )0 P(In this section we will discuss the most commonly used versions of
- the parsing func)HY(tions)YH(. For a compre)HY(hen)HY(sive)YH( descrip)HY(tion)YH( of parsing
- refer to )R15 2 A(Chapter
- 3, "Parsing")EA( in the C++/Tree Mapping User Manual. For the )SM(people)ES(
- global element from our person record vocab)HY(u)HY(lary)YH(, we will concen)HY(trate)YH(
- on the follow)HY(ing)YH( three parsing func)HY(tions)YH(:)EP(
-
- ) 15 71 PR(std::auto_ptr<people_t>
-people \201const std::string& uri,
- xml_schema::flags f = 0,
- const xml_schema::properties& p = xml_schema::properties \201\202\202;
-
-std::auto_ptr<people_t>
-people \201std::istream& is,
- xml_schema::flags f = 0,
- const xml_schema::properties& p = xml_schema::properties \201\202\202;
-
-std::auto_ptr<people_t>
-people \201std::istream& is,
- const std::string& resource_id,
- xml_schema::flags f = 0,
- const xml_schema::properties& p = ::xml_schema::properties \201\202\202;)RP(
-
- )0 P(The first func)HY(tion)YH( parses a local file or a URI. We have already
- used this parsing func)HY(tion)YH( in the previ)HY(ous)YH( chap)HY(ters)YH(. The second
- and third func)HY(tions)YH( read XML from a stan)HY(dard)YH( input stream. The
- last func)HY(tion)YH( also requires a resource id. This id is used to
- iden)HY(tify)YH( the XML docu)HY(ment)YH( being parser in diag)HY(nos)HY(tics)YH( messages
- as well as to resolve rela)HY(tive)YH( paths to other docu)HY(ments)YH( \201for example,
- schemas\202 that might be refer)HY(enced)YH( from the XML docu)HY(ment)YH(.)EP(
-
- )0 P(The last two argu)HY(ments)YH( to all three parsing func)HY(tions)YH( are parsing
- flags and prop)HY(er)HY(ties)YH(. The flags argu)HY(ment)YH( provides a number of ways
- to fine-tune the parsing process. The prop)HY(er)HY(ties)YH( argu)HY(ment)YH( allows
- to pass addi)HY(tional)YH( infor)HY(ma)HY(tion)YH( to the parsing func)HY(tions)YH(. We will
- use these two argu)HY(ments)YH( in )0 30 1 A(Section 5.1, "XML Schema
- Vali)HY(da)HY(tion)YH( and Search)HY(ing)YH(")30 0 TN TL()Ec /AF f D( below. The follow)HY(ing)YH( example shows
- how we can use the above parsing func)HY(tions)YH(:)EP(
-
- ) 17 65 PR(using std::auto_ptr;
-
-// Parse a local file or URI.
-//
-auto_ptr<people_t> p1 \201people \201"people.xml"\202\202;
-auto_ptr<people_t> p2 \201people \201"http://example.com/people.xml"\202\202;
-
-// Parse a local file via ifstream.
-//
-std::ifstream ifs \201"people.xml"\202;
-auto_ptr<people_t> p3 \201people \201ifs, "people.xml"\202\202;
-
-// Parse an XML string.
-//
-std::string str \201"..."\202; // XML in a string.
-std::istringstream iss \201str\202;
-auto_ptr<people_t> p4 \201people \201iss\202\202;)RP(
-
-
- )0 2 26 H(5.1)WB 61 Sn()WB 30 Sn( XML Schema Vali)HY(da)HY(tion)YH( and Search)HY(ing)YH()EA()EH(
-
- )0 P(The C++/Tree mapping relies on the under)HY(ly)HY(ing)YH( Xerces-C++ XML
- parser for full XML docu)HY(ment)YH( vali)HY(da)HY(tion)YH(. The XML Schema
- vali)HY(da)HY(tion)YH( is enabled by default and can be disabled by
- passing the )SM(xml_schema::flags::dont_vali)HY(date)YH()ES(
- flag to the parsing func)HY(tions)YH(, for example:)EP(
-
- ) 2 59 PR(auto_ptr<people_t> p \201
- people \201"people.xml", xml_schema::flags::dont_validate\202\202;)RP(
-
- )0 P(Even when XML Schema vali)HY(da)HY(tion)YH( is disabled, the gener)HY(ated)YH(
- code still performs a number of checks to prevent
- construc)HY(tion)YH( of an incon)HY(sis)HY(tent)YH( object model \201for example, an
- object model with missing required attributes or elements\202.)EP(
-
- )0 P(When XML Schema vali)HY(da)HY(tion)YH( is enabled, the XML parser needs
- to locate a schema to vali)HY(date)YH( against. There are several
- methods to provide the schema loca)HY(tion)YH( infor)HY(ma)HY(tion)YH( to the
- parser. The easiest and most commonly used method is to
- specify schema loca)HY(tions)YH( in the XML docu)HY(ment)YH( itself
- with the )SM(schemaLo)HY(ca)HY(tion)YH()ES( or
- )SM(noNames)HY(paceSchemaLo)HY(ca)HY(tion)YH()ES( attributes, for example:)EP(
-
- ) 4 74 PR(<?xml version="1.0" ?>
-<people xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
- xsi:noNamespaceSchemaLocation="people.xsd"
- xsi:schemaLocation="http://www.w3.org/XML/1998/namespace xml.xsd">)RP(
-
- )0 P(As you might have noticed, we used this method in all the sample XML
- docu)HY(ments)YH( presented in this guide up until now. Note that the
- schema loca)HY(tions)YH( spec)HY(i)HY(fied)YH( with these two attributes are rela)HY(tive)YH(
- to the docu)HY(ment)YH('s path unless they are abso)HY(lute)YH( URIs \201that is
- start with )SM(http://)ES(, )SM(file://)ES(, etc.\202.
- In partic)HY(u)HY(lar)YH(, if you specify just file names as your schema
- loca)HY(tions)YH(, as we did above, then the schemas should reside in
- the same direc)HY(tory)YH( as the XML docu)HY(ment)YH( itself.)EP(
-
- )0 P(Another method of provid)HY(ing)YH( the schema loca)HY(tion)YH( infor)HY(ma)HY(tion)YH(
- is via the )SM(xml_schema::prop)HY(er)HY(ties)YH()ES( argu)HY(ment)YH(, as
- shown in the follow)HY(ing)YH( example:)EP(
-
- ) 5 74 PR(xml_schema::properties props;
-props.no_namespace_schema_location \201"people.xsd"\202;
-props.schema_location \201"http://www.w3.org/XML/1998/namespace", "xml.xsd"\202;
-
-auto_ptr<people_t> p \201people \201"people.xml", 0, props\202\202;)RP(
-
- )0 P(The schema loca)HY(tions)YH( provided with this method over)HY(rides)YH(
- those spec)HY(i)HY(fied)YH( in the XML docu)HY(ment)YH(. As with the previ)HY(ous)YH(
- method, the schema loca)HY(tions)YH( spec)HY(i)HY(fied)YH( this way are
- rela)HY(tive)YH( to the docu)HY(ment)YH('s path unless they are abso)HY(lute)YH( URIs.
- In partic)HY(u)HY(lar)YH(, if you want to use local schemas that are
- not related to the docu)HY(ment)YH( being parsed, then you will
- need to use the )SM(file://)ES( URI. The follow)HY(ing)YH(
- example shows how to use schemas that reside in the current
- working direc)HY(tory)YH(:)EP(
-
- ) 19 55 PR(#include <unistd.h> // getcwd
-#include <limits.h> // PATH_MAX
-
-char cwd[PATH_MAX];
-if \201getcwd \201cwd, PATH_MAX\202 == 0\202
-{
- // Buffer too small?
-}
-
-xml_schema::properties props;
-
-props.no_namespace_schema_location \201
- "file:///" + std::string \201cwd\202 + "people.xsd"\202;
-
-props.schema_location \201
- "http://www.w3.org/XML/1998/namespace",
- "file:///" + std::string \201cwd\202 + "xml.xsd"\202;
-
-auto_ptr<people_t> p \201people \201"people.xml", 0, props\202\202;)RP(
-
- )0 P(A third method is the most useful if you are plan)HY(ning)YH( to parse
- several XML docu)HY(ments)YH( of the same vocab)HY(u)HY(lary)YH(. In that case
- it may be bene)HY(fi)HY(cial)YH( to pre-parse and cache the schemas in
- the XML parser which can then be used to parse all docu)HY(ments)YH(
- without re-parsing the schemas. For more infor)HY(ma)HY(tion)YH( on
- this method refer to the )SM(caching)ES( example in the
- )SM(exam)HY(ples)YH(/cxx/tree/)ES( direc)HY(tory)YH( of the XSD
- distri)HY(bu)HY(tion)YH(. It is also possi)HY(ble)YH( to convert the schemas into
- a pre-compiled binary repre)HY(sen)HY(ta)HY(tion)YH( and embed this repre)HY(sen)HY(ta)HY(tion)YH(
- directly into the appli)HY(ca)HY(tion)YH( executable. With this approach your
- appli)HY(ca)HY(tion)YH( can perform XML Schema vali)HY(da)HY(tion)YH( without depend)HY(ing)YH( on
- any exter)HY(nal)YH( schema files. For more infor)HY(ma)HY(tion)YH( on how to achieve
- this refer to the )SM(embed)HY(ded)YH()ES( example in the
- )SM(exam)HY(ples)YH(/cxx/tree/)ES( direc)HY(tory)YH( of the XSD distri)HY(bu)HY(tion)YH(.)EP(
-
- )0 P(When the XML parser cannot locate a schema for the
- XML docu)HY(ment)YH(, the vali)HY(da)HY(tion)YH( fails and XML docu)HY(ment)YH(
- elements and attributes for which schema defi)HY(ni)HY(tions)YH( could
- not be located are reported in the diag)HY(nos)HY(tics)YH(. For
- example, if we remove the )SM(noNames)HY(paceSchemaLo)HY(ca)HY(tion)YH()ES(
- attribute in )SM(people.xml)ES( from the previ)HY(ous)YH( chapter,
- then we will get the follow)HY(ing)YH( diag)HY(nos)HY(tics)YH( if we try to parse
- this file with vali)HY(da)HY(tion)YH( enabled:)EP(
-
- ) 8 74 PR(people.xml:2:63 error: no declaration found for element 'people'
-people.xml:4:18 error: no declaration found for element 'person'
-people.xml:4:18 error: attribute 'id' is not declared for element 'person'
-people.xml:5:17 error: no declaration found for element 'first-name'
-people.xml:6:18 error: no declaration found for element 'middle-name'
-people.xml:7:16 error: no declaration found for element 'last-name'
-people.xml:8:13 error: no declaration found for element 'gender'
-people.xml:9:10 error: no declaration found for element 'age')RP(
-
- )0 2 27 H(5.2)WB 62 Sn()WB 31 Sn( Error Handling)EA()EH(
-
- )0 P(The parsing func)HY(tions)YH( offer a number of ways to handle error condi)HY(tions)YH(
- with the C++ excep)HY(tions)YH( being the most commonly used mech)HY(a)HY(nism)YH(. All
- C++/Tree excep)HY(tions)YH( derive from common base )SM(xml_schema::excep)HY(tion)YH()ES(
- which in turn derives from )SM(std::excep)HY(tion)YH()ES(. The easiest
- way to uniformly handle all possi)HY(ble)YH( C++/Tree excep)HY(tions)YH( and print
- detailed infor)HY(ma)HY(tion)YH( about the error is to catch and print
- )SM(xml_schema::excep)HY(tion)YH()ES(, as shown in the follow)HY(ing)YH(
- example:)EP(
-
- ) 8 47 PR(try
-{
- auto_ptr<people_t> p \201people \201"people.xml"\202\202;
-}
-catch \201const xml_schema::exception& e\202
-{
- cerr << e << endl;
-})RP(
-
- )0 P(Each indi)HY(vid)HY(ual)YH( C++/Tree excep)HY(tion)YH( also allows you to obtain
- error details program)HY(mat)HY(i)HY(cally)YH(. For example, the
- )SM(xml_schema::parsing)ES( excep)HY(tion)YH( is thrown when
- the XML parsing and vali)HY(da)HY(tion)YH( in the under)HY(ly)HY(ing)YH( XML parser
- fails. It encap)HY(su)HY(lates)YH( various diag)HY(nos)HY(tics)YH( infor)HY(ma)HY(tion)YH(
- such as the file name, line and column numbers, as well as the
- error or warning message for each entry. For more infor)HY(ma)HY(tion)YH(
- about this and other excep)HY(tions)YH( that can be thrown during
- parsing, refer to
- )R16 2 A(Section
- 3.3, "Error Handling")EA( in the C++/Tree Mapping
- User Manual.)EP(
-
- )0 P(Note that if you are parsing )SM(std::istream)ES( on which
- excep)HY(tions)YH( are not enabled, then you will need to check the
- stream state after the call to the parsing func)HY(tion)YH( in order
- to detect any possi)HY(ble)YH( stream fail)HY(ures)YH(, for example:)EP(
-
- ) 15 50 PR(std::ifstream ifs \201"people.xml"\202;
-
-if \201ifs.fail \201\202\202
-{
- cerr << "people.xml: unable to open" << endl;
- return 1;
-}
-
-auto_ptr<people_t> p \201people \201ifs, "people.xml"\202\202;
-
-if \201ifs.fail \201\202\202
-{
- cerr << "people.xml: read error" << endl;
- return 1;
-})RP(
-
- )0 P(The above example can be rewrit)HY(ten)YH( to use excep)HY(tions)YH( as
- shown below:)EP(
-
- ) 13 66 PR(try
-{
- std::ifstream ifs;
- ifs.exceptions \201std::ifstream::badbit | std::ifstream::failbit\202;
- ifs.open \201"people.xml"\202;
-
- auto_ptr<people_t> p \201people \201ifs, "people.xml"\202\202;
-}
-catch \201const std::ifstream::failure&\202
-{
- cerr << "people.xml: unable to open or read error" << endl;
- return 1;
-})RP(
-
-
-
-
-
- )0 1 28 H(6)WB 63 Sn()WB 32 Sn( Seri)HY(al)HY(iza)HY(tion)YH()EA()EH(
-
- )0 P(We have already seen how to seri)HY(al)HY(ize)YH( an object model back to XML
- in this guide before. In this chapter we will discuss the
- seri)HY(al)HY(iza)HY(tion)YH( topic in more detail.)EP(
-
- )0 P(By default, the C++/Tree mapping provides a total of 8 over)HY(loaded)YH(
- seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH(. They differ in the output methods used to write
- XML as well as the error report)HY(ing)YH( mech)HY(a)HY(nisms)YH(. It is also possi)HY(ble)YH( to
- gener)HY(ate)YH( types for root elements instead of parsing and seri)HY(al)HY(iza)HY(tion)YH(
- func)HY(tions)YH(. This may be useful if your XML vocab)HY(u)HY(lary)YH( has multi)HY(ple)YH(
- root elements. For more infor)HY(ma)HY(tion)YH( on element types refer to
- )R14 2 A(Section
- 2.9, "Mapping for Global Elements")EA( in the C++/Tree Mapping User
- Manual.)EP(
-
-
- )0 P(In this section we will discuss the most commonly
- used version of seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH(. For a compre)HY(hen)HY(sive)YH( descrip)HY(tion)YH(
- of seri)HY(al)HY(iza)HY(tion)YH( refer to
- )R17 2 A(Chapter
- 4, "Seri)HY(al)HY(iza)HY(tion)YH(")EA( in the C++/Tree Mapping User Manual. For the
- )SM(people)ES( global element from our person record vocab)HY(u)HY(lary)YH(,
- we will concen)HY(trate)YH( on the follow)HY(ing)YH( seri)HY(al)HY(iza)HY(tion)YH( func)HY(tion)YH(:)EP(
-
- ) 7 50 PR(void
-people \201std::ostream& os,
- const people_t& x,
- const xml_schema::namespace_infomap& map =
- xml_schema::namespace_infomap \201\202,
- const std::string& encoding = "UTF-8",
- xml_schema::flags f = 0\202;)RP(
-
- )0 P(This func)HY(tion)YH( seri)HY(al)HY(izes)YH( the object model passed as the second
- argu)HY(ment)YH( to the stan)HY(dard)YH( output stream passed as the first
- argu)HY(ment)YH(. The third argu)HY(ment)YH( is a names)HY(pace)YH( infor)HY(ma)HY(tion)YH( map
- which we will discuss in more detail in the next section.
- The fourth argu)HY(ment)YH( is a char)HY(ac)HY(ter)YH( encod)HY(ing)YH( that the result)HY(ing)YH(
- XML docu)HY(ment)YH( should be in. Possi)HY(ble)YH( valid values for this
- argu)HY(ment)YH( are "US-ASCII", "ISO8859-1", "UTF-8", "UTF-16BE",
- "UTF-16LE", "UCS-4BE", and "UCS-4LE". Finally, the flags
- argu)HY(ment)YH( allows fine-tuning of the seri)HY(al)HY(iza)HY(tion)YH( process.
- The follow)HY(ing)YH( example shows how we can use the above seri)HY(al)HY(iza)HY(tion)YH(
- func)HY(tion)YH(:)EP(
-
- ) 19 34 PR(people_t& p = ...
-
-xml_schema::namespace_infomap map;
-map[""].schema = "people.xsd";
-
-// Serialize to stdout.
-//
-people \201std::cout, p, map\202;
-
-// Serialize to a file.
-//
-std::ofstream ofs \201"people.xml"\202;
-people \201ofs, p, map\202;
-
-// Serialize to a string.
-//
-std::ostringstream oss;
-people \201oss, p, map\202;
-std::string xml \201oss.str \201\202\202;)RP(
-
-
- )0 2 29 H(6.1)WB 64 Sn()WB 33 Sn( Names)HY(pace)YH( and Schema Infor)HY(ma)HY(tion)YH()EA()EH(
-
- )0 P(While XML seri)HY(al)HY(iza)HY(tion)YH( can be done just from the object
- model alone, it is often desir)HY(able)YH( to assign mean)HY(ing)HY(ful)YH(
- prefixes to XML names)HY(paces)YH( used in the vocab)HY(u)HY(lary)YH( as
- well as to provide the schema loca)HY(tion)YH( infor)HY(ma)HY(tion)YH(.
- This is accom)HY(plished)YH( by passing the names)HY(pace)YH( infor)HY(ma)HY(tion)YH(
- map to the seri)HY(al)HY(iza)HY(tion)YH( func)HY(tion)YH(. The key in this map is
- a names)HY(pace)YH( prefix that should be assigned to an XML names)HY(pace)YH(
- spec)HY(i)HY(fied)YH( in the )SM(name)ES( vari)HY(able)YH( of the
- map value. You can also assign an optional schema loca)HY(tion)YH( for
- this names)HY(pace)YH( in the )SM(schema)ES( vari)HY(able)YH(. Based
- on each key-value entry in this map, the seri)HY(al)HY(iza)HY(tion)YH(
- func)HY(tion)YH( adds two attributes to the result)HY(ing)YH( XML docu)HY(ment)YH(:
- the names)HY(pace)YH(-prefix mapping attribute and schema loca)HY(tion)YH(
- attribute. The empty prefix indi)HY(cates)YH( that the names)HY(pace)YH(
- should be mapped without a prefix. For example, the follow)HY(ing)YH(
- map:)EP(
-
- ) 7 55 PR(xml_schema::namespace_infomap map;
-
-map[""].name = "http://www.example.com/example";
-map[""].schema = "example.xsd";
-
-map["x"].name = "http://www.w3.org/XML/1998/namespace";
-map["x"].schema = "xml.xsd";)RP(
-
- )0 P(Results in the follow)HY(ing)YH( XML docu)HY(ment)YH(:)EP(
-
- ) 7 68 PR(<?xml version="1.0" ?>
-<example
- xmlns="http://www.example.com/example"
- xmlns:x="http://www.w3.org/XML/1998/namespace"
- xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
- xsi:schemaLocation="http://www.example.com/example example.xsd
- http://www.w3.org/XML/1998/namespace xml.xsd">)RP(
-
- )0 P(The empty names)HY(pace)YH( indi)HY(cates)YH( that the vocab)HY(u)HY(lary)YH( has no target
- names)HY(pace)YH(. For example, the follow)HY(ing)YH( map results in only the
- )SM(noNames)HY(paceSchemaLo)HY(ca)HY(tion)YH()ES( attribute being added:)EP(
-
- ) 4 34 PR(xml_schema::namespace_infomap map;
-
-map[""].name = "";
-map[""].schema = "example.xsd";)RP(
-
- )0 2 30 H(6.2)WB 65 Sn()WB 34 Sn( Error Handling)EA()EH(
-
- )0 P(Similar to the parsing func)HY(tions)YH(, the seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH( offer a
- number of ways to handle error condi)HY(tions)YH( with the C++ excep)HY(tions)YH( being
- the most commonly used mech)HY(a)HY(nisms)YH(. As with parsing, the easiest way to
- uniformly handle all possi)HY(ble)YH( seri)HY(al)HY(iza)HY(tion)YH( excep)HY(tions)YH( and print
- detailed infor)HY(ma)HY(tion)YH( about the error is to catch and print
- )SM(xml_schema::excep)HY(tion)YH()ES(:)EP(
-
- ) 13 38 PR(try
-{
- people_t& p = ...
-
- xml_schema::namespace_infomap map;
- map[""].schema = "people.xsd";
-
- people \201std::cout, p, map\202\202;
-}
-catch \201const xml_schema::exception& e\202
-{
- cerr << e << endl;
-})RP(
-
- )0 P(The most commonly encoun)HY(tered)YH( seri)HY(al)HY(iza)HY(tion)YH( excep)HY(tion)YH( is
- )SM(xml_schema::seri)HY(al)HY(iza)HY(tion)YH()ES(. It is thrown
- when the XML seri)HY(al)HY(iza)HY(tion)YH( in the under)HY(ly)HY(ing)YH( XML writer
- fails. It encap)HY(su)HY(lates)YH( various diag)HY(nos)HY(tics)YH( infor)HY(ma)HY(tion)YH(
- such as the file name, line and column numbers, as well as the
- error or warning message for each entry. For more infor)HY(ma)HY(tion)YH(
- about this and other excep)HY(tions)YH( that can be thrown during
- seri)HY(al)HY(iza)HY(tion)YH(, refer to
- )R18 2 A(Section
- 4.4, "Error Handling")EA( in the C++/Tree Mapping
- User Manual.)EP(
-
- )0 P(Note that if you are seri)HY(al)HY(iz)HY(ing)YH( to )SM(std::ostream)ES( on
- which excep)HY(tions)YH( are not enabled, then you will need to check the
- stream state after the call to the seri)HY(al)HY(iza)HY(tion)YH( func)HY(tion)YH( in order
- to detect any possi)HY(ble)YH( stream fail)HY(ures)YH(, for example:)EP(
-
- ) 15 47 PR(std::ofstream ofs \201"people.xml"\202;
-
-if \201ofs.fail \201\202\202
-{
- cerr << "people.xml: unable to open" << endl;
- return 1;
-}
-
-people \201ofs, p, map\202\202;
-
-if \201ofs.fail \201\202\202
-{
- cerr << "people.xml: write error" << endl;
- return 1;
-})RP(
-
- )0 P(The above example can be rewrit)HY(ten)YH( to use excep)HY(tions)YH( as
- shown below:)EP(
-
- ) 13 66 PR(try
-{
- std::ofstream ofs;
- ofs.exceptions \201std::ofstream::badbit | std::ofstream::failbit\202;
- ofs.open \201"people.xml"\202;
-
- people \201ofs, p, map\202\202;
-}
-catch \201const std::ofstream::failure&\202
-{
- cerr << "people.xml: unable to open or write error" << endl;
- return 1;
-})RP(
-
- )BR(
-)BR(
-
-)WB NL
-/TE t D NP TU PM 0 eq and{/Pn () D showpage}if end restore
diff --git a/xsd/documentation/cxx/tree/guide/guide.html2ps b/xsd/documentation/cxx/tree/guide/guide.html2ps
deleted file mode 100644
index 30a4e3d..0000000
--- a/xsd/documentation/cxx/tree/guide/guide.html2ps
+++ /dev/null
@@ -1,65 +0,0 @@
-@html2ps {
- option {
- toc: hb;
- colour: 1;
- hyphenate: 1;
- titlepage: 1;
- }
-
- datefmt: "%B %Y";
-
- titlepage {
- content: "
-<div align=center>
- <h1><big>C++/Tree Mapping</big></h1>
- <h1><big>Getting Started Guide</big></h1>
- <h1>&nbsp;</h1>
- <h1>&nbsp;</h1>
- <h1>&nbsp;</h1>
- <h1>&nbsp;</h1>
- <h1>&nbsp;</h1>
- <h1>&nbsp;</h1>
-</div>
- <p>Copyright &copy; 2005-2010 CODE SYNTHESIS TOOLS CC</p>
-
- <p>Permission is granted to copy, distribute and/or modify this
- document under the terms of the
- <a href='http://www.codesynthesis.com/licenses/fdl-1.2.txt'>GNU Free
- Documentation License, version 1.2</a>; with no Invariant Sections,
- no Front-Cover Texts and no Back-Cover Texts.
- </p>
-
- <p>This document is available in the following formats:
- <a href='http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/index.xhtml'>XHTML</a>,
- <a href='http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/cxx-parser-guide.pdf'>PDF</a>, and
- <a href='http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/cxx-parser-guide.ps'>PostScript</a>.</p>";
- }
-
- toc {
- indent: 2em;
- }
-
- header {
- odd-right: $H;
- even-left: $H;
- }
-
- footer {
- odd-left: $D;
- odd-center: $T;
- odd-right: $N;
-
- even-left: $N;
- even-center: $T;
- even-right: $D;
- }
-}
-
-body {
- font-size: 12pt;
- text-align: justify;
-}
-
-pre {
- font-size: 10pt;
-}
diff --git a/xsd/documentation/cxx/tree/guide/index.xhtml b/xsd/documentation/cxx/tree/guide/index.xhtml
deleted file mode 100644
index 476e7ea..0000000
--- a/xsd/documentation/cxx/tree/guide/index.xhtml
+++ /dev/null
@@ -1,2690 +0,0 @@
-<?xml version="1.0" encoding="iso-8859-1"?>
-<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
-<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
-
-<head>
- <title>C++/Tree Mapping Getting Started Guide</title>
-
- <meta name="copyright" content="&copy; 2005-2010 Code Synthesis Tools CC"/>
- <meta name="keywords" content="xsd,xml,schema,c++,mapping,data,binding,parsing,serialization,validation"/>
- <meta name="description" content="C++/Tree Mapping Getting Started Guide"/>
-
- <link rel="stylesheet" type="text/css" href="../../../default.css" />
-
-<style type="text/css">
- pre {
- padding : 0 0 0 0em;
- margin : 0em 0em 0em 0;
-
- font-size : 102%
- }
-
- body {
- min-width: 48em;
- }
-
- h1 {
- font-weight: bold;
- font-size: 200%;
- line-height: 1.2em;
- }
-
- h2 {
- font-weight : bold;
- font-size : 150%;
-
- padding-top : 0.8em;
- }
-
- h3 {
- font-size : 140%;
- padding-top : 0.8em;
- }
-
- /* Adjust indentation for three levels. */
- #container {
- max-width: 48em;
- }
-
- #content {
- padding: 0 0.1em 0 4em;
- /*background-color: red;*/
- }
-
- #content h1 {
- margin-left: -2.06em;
- }
-
- #content h2 {
- margin-left: -1.33em;
- }
-
- /* Title page */
-
- #titlepage {
- padding: 2em 0 1em 0;
- border-bottom: 1px solid black;
- }
-
- #titlepage .title {
- font-weight: bold;
- font-size: 200%;
- text-align: center;
- }
-
- #titlepage #first-title {
- padding: 1em 0 0.4em 0;
- }
-
- #titlepage #second-title {
- padding: 0.4em 0 2em 0;
- }
-
- /* Lists */
- ul.list li {
- padding-top : 0.3em;
- padding-bottom : 0.3em;
- }
-
- div.img {
- text-align: center;
- padding: 2em 0 2em 0;
- }
-
- /* */
- dl dt {
- padding : 0.8em 0 0 0;
- }
-
- /* Built-in table */
- #builtin {
- margin: 2em 0 2em 0;
-
- border-collapse : collapse;
- border : 1px solid;
- border-color : #000000;
-
- font-size : 11px;
- line-height : 14px;
- }
-
- #builtin th, #builtin td {
- border: 1px solid;
- padding : 0.9em 0.9em 0.7em 0.9em;
- }
-
- #builtin th {
- background : #cde8f6;
- }
-
- #builtin td {
- text-align: left;
- }
-
- /* TOC */
- table.toc {
- border-style : none;
- border-collapse : separate;
- border-spacing : 0;
-
- margin : 0.2em 0 0.2em 0;
- padding : 0 0 0 0;
- }
-
- table.toc tr {
- padding : 0 0 0 0;
- margin : 0 0 0 0;
- }
-
- table.toc * td, table.toc * th {
- border-style : none;
- margin : 0 0 0 0;
- vertical-align : top;
- }
-
- table.toc * th {
- font-weight : normal;
- padding : 0em 0.1em 0em 0;
- text-align : left;
- white-space : nowrap;
- }
-
- table.toc * table.toc th {
- padding-left : 1em;
- }
-
- table.toc * td {
- padding : 0em 0 0em 0.7em;
- text-align : left;
- }
-</style>
-
-
-</head>
-
-<body>
-<div id="container">
- <div id="content">
-
- <div class="noprint">
-
- <div id="titlepage">
- <div class="title" id="first-title">C++/Tree Mapping</div>
- <div class="title" id="second-title">Getting Started Guide</div>
-
- <p>Copyright &copy; 2005-2010 CODE SYNTHESIS TOOLS CC</p>
-
- <p>Permission is granted to copy, distribute and/or modify this
- document under the terms of the
- <a href="http://www.codesynthesis.com/licenses/fdl-1.2.txt">GNU Free
- Documentation License, version 1.2</a>; with no Invariant Sections,
- no Front-Cover Texts and no Back-Cover Texts.
- </p>
-
- <p>This document is available in the following formats:
- <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/index.xhtml">XHTML</a>,
- <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/cxx-tree-guide.pdf">PDF</a>, and
- <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/cxx-tree-guide.ps">PostScript</a>.</p>
-
- </div>
-
- <h1>Table of Contents</h1>
-
- <table class="toc">
- <tr>
- <th></th><td><a href="#0">Preface</a>
- <table class="toc">
- <tr><th></th><td><a href="#0.1">About This Document</a></td></tr>
- <tr><th></th><td><a href="#0.2">More Information</a></td></tr>
- </table>
- </td>
- </tr>
-
- <tr>
- <th>1</th><td><a href="#1">Introduction</a>
- <table class="toc">
- <tr><th>1.1</th><td><a href="#1.1">Mapping Overview</a></td></tr>
- <tr><th>1.2</th><td><a href="#1.2">Benefits</a></td></tr>
- </table>
- </td>
- </tr>
-
- <tr>
- <th>2</th><td><a href="#2">Hello World Example</a>
- <table class="toc">
- <tr><th>2.1</th><td><a href="#2.1">Writing XML Document and Schema</a></td></tr>
- <tr><th>2.2</th><td><a href="#2.2">Translating Schema to C++</a></td></tr>
- <tr><th>2.3</th><td><a href="#2.3">Implementing Application Logic</a></td></tr>
- <tr><th>2.4</th><td><a href="#2.4">Compiling and Running</a></td></tr>
- <tr><th>2.5</th><td><a href="#2.5">Adding Serialization</a></td></tr>
- <tr><th>2.6</th><td><a href="#2.6">Selecting Naming Convention</a></td></tr>
- <tr><th>2.7</th><td><a href="#2.7">Generating Documentation</a></td></tr>
- </table>
- </td>
- </tr>
-
- <tr>
- <th>3</th><td><a href="#3">Overall Mapping Configuration</a>
- <table class="toc">
- <tr><th>3.1</th><td><a href="#3.1">Character Type and Encoding</a></td></tr>
- <tr><th>3.2</th><td><a href="#3.2">Support for Polymorphism </a></td></tr>
- <tr><th>3.3</th><td><a href="#3.3">Namespace Mapping</a></td></tr>
- <tr><th>3.4</th><td><a href="#3.4">Thread Safety</a></td></tr>
- </table>
- </td>
- </tr>
-
- <tr>
- <th>4</th><td><a href="#4">Working with Object Models</a>
- <table class="toc">
- <tr><th>4.1</th><td><a href="#4.1">Attribute and Element Cardinalities</a></td></tr>
- <tr><th>4.2</th><td><a href="#4.2">Accessing the Object Model</a></td></tr>
- <tr><th>4.3</th><td><a href="#4.3">Modifying the Object Model</a></td></tr>
- <tr><th>4.4</th><td><a href="#4.4">Creating the Object Model from Scratch</a></td></tr>
- <tr><th>4.5</th><td><a href="#4.5">Mapping for the Built-in XML Schema Types</a></td></tr>
- </table>
- </td>
- </tr>
-
- <tr>
- <th>5</th><td><a href="#5">Parsing</a>
- <table class="toc">
- <tr><th>5.1</th><td><a href="#5.1">XML Schema Validation and Searching</a></td></tr>
- <tr><th>5.2</th><td><a href="#5.2">Error Handling</a></td></tr>
- </table>
- </td>
- </tr>
-
- <tr>
- <th>6</th><td><a href="#6">Serialization</a>
- <table class="toc">
- <tr><th>6.1</th><td><a href="#6.1">Namespace and Schema Information</a></td></tr>
- <tr><th>6.2</th><td><a href="#6.2">Error Handling</a></td></tr>
- </table>
- </td>
- </tr>
-
- </table>
- </div>
-
- <h1><a name="0">Preface</a></h1>
-
- <h2><a name="0.1">About This Document</a></h2>
-
- <p>The goal of this document is to provide you with an understanding of
- the C++/Tree programming model and allow you to efficiently evaluate
- XSD against your project's technical requirements. As such, this
- document is intended for C++ developers and software architects
- who are looking for an XML processing solution. For a more in-depth
- description of the C++/Tree mapping refer to the
- <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/">C++/Tree
- Mapping User Manual</a>.</p>
-
- <p>Prior experience with XML and C++ is required to understand this
- document. Basic understanding of XML Schema is advantageous but
- not expected or required.
- </p>
-
-
- <h2><a name="0.2">More Information</a></h2>
-
- <p>Beyond this guide, you may also find the following sources of
- information useful:</p>
-
- <ul class="list">
- <li><a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/">C++/Tree
- Mapping User Manual</a></li>
-
- <li><a href="http://wiki.codesynthesis.com/Tree/Customization_guide">C++/Tree
- Mapping Customization Guide</a></li>
-
- <li><a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/dbxml/">C++/Tree
- Mapping and Berkeley DB XML Integration Guide</a></li>
-
- <li><a href="http://wiki.codesynthesis.com/Tree/FAQ">C++/Tree
- Mapping Frequently Asked Questions (FAQ)</a></li>
-
- <li><a href="http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml">XSD
- Compiler Command Line Manual</a></li>
-
- <li>The <code>examples/cxx/tree/</code> directory in the XSD
- distribution contains a collection of examples and a README
- file with an overview of each example.</li>
-
- <li>The <code>README</code> file in the XSD distribution explains
- how to compile the examples on various platforms.</li>
-
- <li>The <a href="http://www.codesynthesis.com/mailman/listinfo/xsd-users">xsd-users</a>
- mailing list is the place to ask technical questions about XSD and the C++/Parser mapping.
- Furthermore, the <a href="http://www.codesynthesis.com/pipermail/xsd-users/">archives</a>
- may already have answers to some of your questions.</li>
-
- </ul>
-
- <!-- Introduction -->
-
- <h1><a name="1">1 Introduction</a></h1>
-
- <p>Welcome to CodeSynthesis XSD and the C++/Tree mapping. XSD is a
- cross-platform W3C XML Schema to C++ data binding compiler. C++/Tree
- is a W3C XML Schema to C++ mapping that represents the data stored
- in XML as a statically-typed, vocabulary-specific object model.
- </p>
-
- <h2><a name="1.1">1.1 Mapping Overview</a></h2>
-
- <p>Based on a formal description of an XML vocabulary (schema), the
- C++/Tree mapping produces a tree-like data structure suitable for
- in-memory processing. The core of the mapping consists of C++
- classes that constitute the object model and are derived from
- types defined in XML Schema as well as XML parsing and
- serialization code.</p>
-
- <p>Besides the core features, C++/Tree provide a number of additional
- mapping elements that can be useful in some applications. These
- include serialization and extraction to/from formats others than
- XML, such as unstructured text (useful for debugging) and binary
- representations such as XDR and CDR for high-speed data processing,
- integration with XML databases such as Berkeley DB XML, and automatic
- documentation generation. The C++/Tree mapping also provides a wide
- range of mechanisms for controlling and customizing the generated
- code.</p>
-
- <p>A typical application that uses C++/Tree for XML processing usually
- performs the following three steps: it first reads (parses) an XML
- document to an in-memory object model, it then performs some useful
- computations on that object model which may involve modification
- of the model, and finally it may write (serialize) the modified
- object model back to XML.</p>
-
- <p>The next chapter presents a simple application that performs these
- three steps. The following chapters show how to use the C++/Tree
- mapping in more detail.</p>
-
- <h2><a name="1.2">1.2 Benefits</a></h2>
-
- <p>Traditional XML access APIs such as Document Object Model (DOM)
- or Simple API for XML (SAX) have a number of drawbacks that
- make them less suitable for creating robust and maintainable
- XML processing applications. These drawbacks include:
- </p>
-
- <ul class="list">
- <li>Generic representation of XML in terms of elements, attributes,
- and text forces an application developer to write a substantial
- amount of bridging code that identifies and transforms pieces
- of information encoded in XML to a representation more suitable
- for consumption by the application logic.</li>
-
- <li>String-based flow control defers error detection to runtime.
- It also reduces code readability and maintainability.</li>
-
- <li>Lack of type safety because the data is represented as text.</li>
-
- <li>Resulting applications are hard to debug, change, and
- maintain.</li>
- </ul>
-
- <p>In contrast, statically-typed, vocabulary-specific object model
- produced by the C++/Tree mapping allows you to operate in your
- domain terms instead of the generic elements, attributes, and
- text. Static typing helps catch errors at compile-time rather
- than at run-time. Automatic code generation frees you for more
- interesting tasks (such as doing something useful with the
- information stored in the XML documents) and minimizes the
- effort needed to adapt your applications to changes in the
- document structure. To summarize, the C++/Tree object model has
- the following key advantages over generic XML access APIs:</p>
-
- <ul class="list">
- <li><b>Ease of use.</b> The generated code hides all the complexity
- associated with parsing and serializing XML. This includes navigating
- the structure and converting between the text representation and
- data types suitable for manipulation by the application
- logic.</li>
-
- <li><b>Natural representation.</b> The object representation allows
- you to access the XML data using your domain vocabulary instead
- of generic elements, attributes, and text.</li>
-
- <li><b>Concise code.</b> With the object representation the
- application implementation is simpler and thus easier
- to read and understand.</li>
-
- <li><b>Safety.</b> The generated object model is statically
- typed and uses functions instead of strings to access the
- information. This helps catch programming errors at compile-time
- rather than at runtime.</li>
-
- <li><b>Maintainability.</b> Automatic code generation minimizes the
- effort needed to adapt the application to changes in the
- document structure. With static typing, the C++ compiler
- can pin-point the places in the client code that need to be
- changed.</li>
-
- <li><b>Compatibility.</b> Sequences of elements are represented in
- the object model as containers conforming to the standard C++
- sequence requirements. This makes it possible to use standard
- C++ algorithms on the object representation and frees you from
- learning yet another container interface, as is the case with
- DOM.</li>
-
- <li><b>Efficiency.</b> If the application makes repetitive use
- of the data extracted from XML, then the C++/Tree object model
- is more efficient because the navigation is performed using
- function calls rather than string comparisons and the XML
- data is extracted only once. Furthermore, the runtime memory
- usage is reduced due to more efficient data storage
- (for instance, storing numeric data as integers instead of
- strings) as well as the static knowledge of cardinality
- constraints.</li>
- </ul>
-
-
- <!-- Hello World Parser -->
-
-
- <h1><a name="2">2 Hello World Example</a></h1>
-
- <p>In this chapter we will examine how to parse, access, modify, and
- serialize a very simple XML document using the XSD-generated
- C++/Tree object model. The code presented in this chapter is
- based on the <code>hello</code> example which can be found in
- the <code>examples/cxx/tree/</code> directory of the XSD
- distribution.</p>
-
- <h2><a name="2.1">2.1 Writing XML Document and Schema</a></h2>
-
- <p>First, we need to get an idea about the structure
- of the XML documents we are going to process. Our
- <code>hello.xml</code>, for example, could look like this:</p>
-
- <pre class="xml">
-&lt;?xml version="1.0"?>
-&lt;hello>
-
- &lt;greeting>Hello&lt;/greeting>
-
- &lt;name>sun&lt;/name>
- &lt;name>moon&lt;/name>
- &lt;name>world&lt;/name>
-
-&lt;/hello>
- </pre>
-
- <p>Then we can write a description of the above XML in the
- XML Schema language and save it into <code>hello.xsd</code>:</p>
-
- <pre class="xml">
-&lt;?xml version="1.0"?>
-&lt;xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
-
- &lt;xs:complexType name="hello_t">
- &lt;xs:sequence>
- &lt;xs:element name="greeting" type="xs:string"/>
- &lt;xs:element name="name" type="xs:string" maxOccurs="unbounded"/>
- &lt;/xs:sequence>
- &lt;/xs:complexType>
-
- &lt;xs:element name="hello" type="hello_t"/>
-
-&lt;/xs:schema>
- </pre>
-
- <p>Even if you are not familiar with XML Schema, it
- should be easy to connect declarations in <code>hello.xsd</code>
- to elements in <code>hello.xml</code>. The <code>hello_t</code> type
- is defined as a sequence of the nested <code>greeting</code> and
- <code>name</code> elements. Note that the term sequence in XML
- Schema means that elements should appear in a particular order
- as opposed to appearing multiple times. The <code>name</code>
- element has its <code>maxOccurs</code> property set to
- <code>unbounded</code> which means it can appear multiple times
- in an XML document. Finally, the globally-defined <code>hello</code>
- element prescribes the root element for our vocabulary. For an
- easily-approachable introduction to XML Schema refer to
- <a href="http://www.w3.org/TR/xmlschema-0/">XML Schema Part 0:
- Primer</a>.</p>
-
- <p>The above schema is a specification of our XML vocabulary; it tells
- everybody what valid documents of our XML-based language should look
- like. We can also update our <code>hello.xml</code> to include the
- information about the schema so that XML parsers can validate
- our document:</p>
-
- <pre class="xml">
-&lt;?xml version="1.0"?>
-&lt;hello xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
- xsi:noNamespaceSchemaLocation="hello.xsd">
-
- &lt;greeting>Hello&lt;/greeting>
-
- &lt;name>sun&lt;/name>
- &lt;name>moon&lt;/name>
- &lt;name>world&lt;/name>
-
-&lt;/hello>
- </pre>
-
-
- <p>The next step is to compile the schema to generate the object
- model and parsing functions.</p>
-
- <h2><a name="2.2">2.2 Translating Schema to C++</a></h2>
-
- <p>Now we are ready to translate our <code>hello.xsd</code> to C++.
- To do this we invoke the XSD compiler from a terminal (UNIX) or
- a command prompt (Windows):
- </p>
-
- <pre class="terminal">
-$ xsd cxx-tree hello.xsd
- </pre>
-
- <p>The XSD compiler produces two C++ files: <code>hello.hxx</code> and
- <code>hello.cxx</code>. The following code fragment is taken from
- <code>hello.hxx</code>; it should give you an idea about what gets
- generated:
- </p>
-
- <pre class="c++">
-class hello_t
-{
-public:
- // greeting
- //
- typedef xml_schema::string greeting_type;
-
- const greeting_type&amp;
- greeting () const;
-
- greeting_type&amp;
- greeting ();
-
- void
- greeting (const greeting_type&amp; x);
-
- // name
- //
- typedef xml_schema::string name_type;
- typedef xsd::sequence&lt;name_type> name_sequence;
- typedef name_sequence::iterator name_iterator;
- typedef name_sequence::const_iterator name_const_iterator;
-
- const name_sequence&amp;
- name () const;
-
- name_sequence&amp;
- name ();
-
- void
- name (const name_sequence&amp; s);
-
- // Constructor.
- //
- hello_t (const greeting_type&amp;);
-
- ...
-
-};
-
-std::auto_ptr&lt;hello_t>
-hello (const std::string&amp; uri);
-
-std::auto_ptr&lt;hello_t>
-hello (std::istream&amp;);
- </pre>
-
- <p>The <code>hello_t</code> C++ class corresponds to the
- <code>hello_t</code> XML Schema type. For each element
- in this type a set of C++ type definitions as well as
- accessor and modifier functions are generated inside the
- <code>hello_t</code> class. Note that the type definitions
- and member functions for the <code>greeting</code> and
- <code>name</code> elements are different because of the
- cardinality differences between these two elements
- (<code>greeting</code> is a required single element and
- <code>name</code> is a sequence of elements).</p>
-
- <p>The <code>xml_schema::string</code> type used in the type
- definitions is a C++ class provided by the XSD runtime
- that corresponds to built-in XML Schema type
- <code>string</code>. The <code>xml_schema::string</code>
- is based on <code>std::string</code> and can be used as
- such. Similarly, the <code>sequence</code> class template
- that is used in the <code>name_sequence</code> type
- definition is based on and has the same interface as
- <code>std::vector</code>. The mapping between the built-in
- XML Schema types and C++ types is described in more detail in
- <a href="#4.5">Section 4.5, "Mapping for the Built-in XML Schema
- Types"</a>. The <code>hello_t</code> class also includes a
- constructor with an initializer for the required
- <code>greeting</code> element as its argument.</p>
-
- <p>The <code>hello</code> overloaded global functions correspond
- to the <code>hello</code> global element in XML Schema. A
- global element in XML Schema is a valid document root.
- By default XSD generated a set of parsing functions for each
- global element defined in XML Schema (this can be overridden
- with the <code>--root-element-*</code> options). For more
- information on parsing functions see <a href="#5">Chapter 5,
- "Parsing"</a>.</p>
-
- <h2><a name="2.3">2.3 Implementing Application Logic</a></h2>
-
- <p>At this point we have all the parts we need to do something useful
- with the information stored in our XML document:
- </p>
-
- <pre class="c++">
-#include &lt;iostream>
-#include "hello.hxx"
-
-using namespace std;
-
-int
-main (int argc, char* argv[])
-{
- try
- {
- auto_ptr&lt;hello_t> h (hello (argv[1]));
-
- for (hello_t::name_const_iterator i (h->name ().begin ());
- i != h->name ().end ();
- ++i)
- {
- cerr &lt;&lt; h->greeting () &lt;&lt; ", " &lt;&lt; *i &lt;&lt; "!" &lt;&lt; endl;
- }
- }
- catch (const xml_schema::exception&amp; e)
- {
- cerr &lt;&lt; e &lt;&lt; endl;
- return 1;
- }
-}
- </pre>
-
- <p>The first part of our application calls one of the parsing
- functions to parser an XML file specified in the command line.
- We then use the returned object model to iterate over names
- and print a greeting line for each of them. Finally, we
- catch and print the <code>xml_schema::exception</code>
- exception in case something goes wrong. This exception
- is the root of the exception hierarchy used by the
- XSD-generated code.
- </p>
-
-
- <h2><a name="2.4">2.4 Compiling and Running</a></h2>
-
- <p>After saving our application from the previous section in
- <code>driver.cxx</code>, we are ready to compile our first
- program and run it on the test XML document. On a UNIX
- system this can be done with the following commands:
- </p>
-
- <pre class="terminal">
-$ c++ -I.../libxsd -c driver.cxx hello.cxx
-$ c++ -o driver driver.o hello.o -lxerces-c
-$ ./driver hello.xml
-Hello, sun!
-Hello, moon!
-Hello, world!
- </pre>
-
- <p>Here <code>.../libxsd</code> represents the path to the
- <code>libxsd</code> directory in the XSD distribution.
- Note also that we are required to link our application
- with the Xerces-C++ library because the generated code
- uses it as the underlying XML parser.</p>
-
- <h2><a name="2.5">2.5 Adding Serialization</a></h2>
-
- <p>While parsing and accessing the XML data may be everything
- you need, there are applications that require creating new
- or modifying existing XML documents. By default XSD does
- not produce serialization code. We will need to request
- it with the <code>--generate-serialization</code> options:</p>
-
- <pre class="terminal">
-$ xsd cxx-tree --generate-serialization hello.xsd
- </pre>
-
- <p>If we now examine the generated <code>hello.hxx</code> file,
- we will find a set of overloaded serialization functions,
- including the following version:</p>
-
- <pre class="c++">
-void
-hello (std::ostream&amp;,
- const hello_t&amp;,
- const xml_schema::namespace_infomap&amp; =
- xml_schema::namespace_infomap ());
-
- </pre>
-
- <p>Just like with parsing functions, XSD generates serialization
- functions for each global element unless instructed otherwise
- with one of the <code>--root-element-*</code> options. For more
- information on serialization functions see <a href="#6">Chapter 6,
- "Serialization"</a>.</p>
-
- <p>We first examine an application that modifies an existing
- object model and serializes it back to XML:</p>
-
- <pre class="c++">
-#include &lt;iostream>
-#include "hello.hxx"
-
-using namespace std;
-
-int
-main (int argc, char* argv[])
-{
- try
- {
- auto_ptr&lt;hello_t> h (hello (argv[1]));
-
- // Change the greeting phrase.
- //
- h->greeting ("Hi");
-
- // Add another entry to the name sequence.
- //
- h->name ().push_back ("mars");
-
- // Serialize the modified object model to XML.
- //
- xml_schema::namespace_infomap map;
- map[""].name = "";
- map[""].schema = "hello.xsd";
-
- hello (cout, *h, map);
- }
- catch (const xml_schema::exception&amp; e)
- {
- cerr &lt;&lt; e &lt;&lt; endl;
- return 1;
- }
-}
- </pre>
-
- <p>First, our application parses an XML document and obtains its
- object model as in the previous example. Then it changes the
- greeting string and adds another entry to the list of names.
- Finally, it serializes the object model back to XML by calling
- the serialization function.</p>
-
- <p>The first argument we pass to the serialization function is
- <code>cout</code> which results in the XML being written to
- the standard output for us to inspect. We could have also
- written the result to a file or memory buffer by creating an
- instance of <code>std::ofstream</code> or <code>std::ostringstream</code>
- and passing it instead of <code>cout</code>. The second argument is the
- object model we want to serialize. The final argument is an optional
- namespace information map for our vocabulary. It captures information
- such as namespaces, namespace prefixes to which they should be mapped,
- and schemas associated with these namespaces. If we don't provide
- this argument then generic namespace prefixes (<code>p1</code>,
- <code>p2</code>, etc.) will be automatically assigned to XML namespaces
- and no schema information will be added to the resulting document
- (see <a href="#6">Chapter 6, "Serialization"</a> for details).
- In our case, the prefix (map key) and namespace name are empty
- because our vocabulary does not use XML namespaces.</p>
-
- <p>If we now compile and run this application we will see the
- output as shown in the following listing:</p>
-
- <pre class="xml">
-&lt;?xml version="1.0"?>
-&lt;hello xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
- xsi:noNamespaceSchemaLocation="hello.xsd">
-
- &lt;greeting>Hi&lt;/greeting>
-
- &lt;name>sun&lt;/name>
- &lt;name>moon&lt;/name>
- &lt;name>world&lt;/name>
- &lt;name>mars&lt;/name>
-
-&lt;/hello>
- </pre>
-
- <p>We can also create and serialize an object model from scratch
- as shown in the following example:</p>
-
- <pre class="c++">
-#include &lt;iostream>
-#include &lt;fstream>
-#include "hello.hxx"
-
-using namespace std;
-
-int
-main (int argc, char* argv[])
-{
- try
- {
- hello_t h ("Hi");
-
- hello_t::name_sequence&amp; ns (h.name ());
-
- ns.push_back ("Jane");
- ns.push_back ("John");
-
- // Serialize the object model to XML.
- //
- xml_schema::namespace_infomap map;
- map[""].name = "";
- map[""].schema = "hello.xsd";
-
- std::ofstream ofs (argv[1]);
- hello (ofs, h, map);
- }
- catch (const xml_schema::exception&amp; e)
- {
- cerr &lt;&lt; e &lt;&lt; endl;
- return 1;
- }
-}
- </pre>
-
- <p>In this example we used the generated constructor to create
- an instance of type <code>hello_t</code>. To reduce typing,
- we obtained a reference to the name sequence which we then
- used to add a few names. The serialization part is identical
- to the previous example except this time we are writing to
- a file. If we compile and run this program, it produces the
- following XML file:</p>
-
- <pre class="xml">
-&lt;?xml version="1.0"?>
-&lt;hello xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
- xsi:noNamespaceSchemaLocation="hello.xsd">
-
- &lt;greeting>Hi&lt;/greeting>
-
- &lt;name>Jane&lt;/name>
- &lt;name>John&lt;/name>
-
-&lt;/hello>
- </pre>
-
- <h2><a name="2.6">2.6 Selecting Naming Convention</a></h2>
-
- <p>By default XSD uses the so-called K&amp;R (Kernighan and Ritchie)
- identifier naming convention in the generated code. In this
- convention both type and function names are in lower case and
- words are separated by underscores. If your application code or
- schemas use a different notation, you may want to change the
- naming convention used in the generated code for consistency.
- XSD supports a set of widely-used naming conventions
- that you can select with the <code>--type-naming</code> and
- <code>--function-naming</code> options. You can also further
- refine one of the predefined conventions or create a completely
- custom naming scheme by using the <code>--*-regex</code> options.</p>
-
- <p>As an example, let's assume that our "Hello World" application
- uses the so-called upper-camel-case naming convention for types
- (that is, each word in a type name is capitalized) and the K&amp;R
- convention for function names. Since K&amp;R is the default
- convention for both type and function names, we only need to
- change the type naming scheme:</p>
-
- <pre class="terminal">
-$ xsd cxx-tree --type-naming ucc hello.xsd
- </pre>
-
- <p>The <code>ucc</code> argument to the <code>--type-naming</code>
- options stands for upper-camel-case. If we now examine the
- generated <code>hello.hxx</code>, we will see the following
- changes compared to the declarations shown in the previous
- sections:</p>
-
- <pre class="c++">
-class Hello_t
-{
-public:
- // greeting
- //
- typedef xml_schema::String GreetingType;
-
- const GreetingType&amp;
- greeting () const;
-
- GreetingType&amp;
- greeting ();
-
- void
- greeting (const GreetingType&amp; x);
-
- // name
- //
- typedef xml_schema::String NameType;
- typedef xsd::sequence&lt;NameType> NameSequence;
- typedef NameSequence::iterator NameIterator;
- typedef NameSequence::const_iterator NameConstIterator;
-
- const NameSequence&amp;
- name () const;
-
- NameSequence&amp;
- name ();
-
- void
- name (const NameSequence&amp; s);
-
- // Constructor.
- //
- Hello_t (const GreetingType&amp;);
-
- ...
-
-};
-
-std::auto_ptr&lt;Hello_t>
-hello (const std::string&amp; uri);
-
-std::auto_ptr&lt;Hello_t>
-hello (std::istream&amp;);
- </pre>
-
- <p>Notice that the type names in the <code>xml_schema</code> namespace,
- for example <code>xml_schema::String</code>, now also use the
- upper-camel-case naming convention. The only thing that we may
- be unhappy about in the above code is the <code>_t</code>
- suffix in <code>Hello_t</code>. If we are not in a position
- to change the schema, we can <em>touch-up</em> the <code>ucc</code>
- convention with a custom translation rule using the
- <code>--type-regex</code> option:</p>
-
- <pre class="terminal">
-$ xsd cxx-tree --type-naming ucc --type-regex '/ (.+)_t/\u$1/' hello.xsd
- </pre>
-
- <p>This results in the following changes to the generated code:</p>
-
- <pre class="c++">
-class Hello
-{
-public:
- // greeting
- //
- typedef xml_schema::String GreetingType;
-
- const GreetingType&amp;
- greeting () const;
-
- GreetingType&amp;
- greeting ();
-
- void
- greeting (const GreetingType&amp; x);
-
- // name
- //
- typedef xml_schema::String NameType;
- typedef xsd::sequence&lt;NameType> NameSequence;
- typedef NameSequence::iterator NameIterator;
- typedef NameSequence::const_iterator NameConstIterator;
-
- const NameSequence&amp;
- name () const;
-
- NameSequence&amp;
- name ();
-
- void
- name (const NameSequence&amp; s);
-
- // Constructor.
- //
- Hello (const GreetingType&amp;);
-
- ...
-
-};
-
-std::auto_ptr&lt;Hello>
-hello (const std::string&amp; uri);
-
-std::auto_ptr&lt;Hello>
-hello (std::istream&amp;);
- </pre>
-
- <p>For more detailed information on the <code>--type-naming</code>,
- <code>--function-naming</code>, <code>--type-regex</code>, and
- other <code>--*-regex</code> options refer to the NAMING
- CONVENTION section in the <a href="http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml">XSD
- Compiler Command Line Manual</a>.</p>
-
- <h2><a name="2.7">2.7 Generating Documentation</a></h2>
-
- <p>While our object model is quite simple, real-world vocabularies
- can be quite complex with hundreds of types, elements, and
- attributes. For such vocabularies figuring out which types
- provide which member functions by studying the generated
- source code or schemas can be a daunting task. To provide
- application developers with a more accessible way of
- understanding the generated object models, the XSD compiler
- can be instructed to produce source code with documentation
- comments in the Doxygen format. Then the source code can be
- processed with the <a href="http://www.doxygen.org">Doxygen</a>
- documentation system to extract this information and produce
- documentation in various formats.
- </p>
-
- <p>In this section we will see how to generate documentation
- for our "Hello World" vocabulary. To showcase the full power
- of the XSD documentation facilities, we will first document
- our schema. The XSD compiler will then transfer
- this information from the schema to the generated code and
- then to the object model documentation. Note that the
- documentation in the schema is not required for XSD to
- generate useful documentation. Below you will find
- our <code>hello.xsd</code> with added documentation:</p>
-
- <pre class="xml">
-&lt;xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
-
- &lt;xs:complexType name="hello_t">
-
- &lt;xs:annotation>
- &lt;xs:documentation>
- The hello_t type consists of a greeting phrase and a
- collection of names to which this greeting applies.
- &lt;/xs:documentation>
- &lt;/xs:annotation>
-
- &lt;xs:sequence>
-
- &lt;xs:element name="greeting" type="xs:string">
- &lt;xs:annotation>
- &lt;xs:documentation>
- The greeting element contains the greeting phrase
- for this hello object.
- &lt;/xs:documentation>
- &lt;/xs:annotation>
- &lt;/xs:element>
-
- &lt;xs:element name="name" type="xs:string" maxOccurs="unbounded">
- &lt;xs:annotation>
- &lt;xs:documentation>
- The name elements contains names to be greeted.
- &lt;/xs:documentation>
- &lt;/xs:annotation>
- &lt;/xs:element>
-
- &lt;/xs:sequence>
- &lt;/xs:complexType>
-
- &lt;xs:element name="hello" type="hello_t">
- &lt;xs:annotation>
- &lt;xs:documentation>
- The hello element is a root of the Hello XML vocabulary.
- Every conforming document should start with this element.
- &lt;/xs:documentation>
- &lt;/xs:annotation>
- &lt;/xs:element>
-
-&lt;/xs:schema>
- </pre>
-
- <p>The first step in obtaining the documentation is to recompile
- our schema with the <code>--generate-doxygen</code> option:</p>
-
- <pre class="terminal">
-$ xsd cxx-tree --generate-serialization --generate-doxygen hello.xsd
- </pre>
-
- <p>Now the generated <code>hello.hxx</code> file contains comments
- in the Doxygen format. The next step is to process this file
- with the Doxygen documentation system. If your project does
- not use Doxygen then you first need to create a configuration
- file for your project:</p>
-
- <pre class="terminal">
-$ doxygen -g hello.doxygen
- </pre>
-
- <p>You only need to perform this step once. Now we can generate
- the documentation by executing the following command in the
- directory with the generated source code:</p>
-
- <pre class="terminal">
-$ doxygen hello.doxygen
- </pre>
-
- <p>While the generated documentation can be useful as is, we can
- go one step further and link (using the Doxygen tags mechanism)
- the documentation for our object model with the documentation
- for the XSD runtime library which defines C++ classes for the
- built-in XML Schema types. This way we can seamlessly browse
- between documentation for the <code>hello_t</code> class which
- is generated by the XSD compiler and the <code>xml_schema::string</code>
- class which is defined in the XSD runtime library. The Doxygen
- configuration file for the XSD runtime is provided with the XSD
- distribution.</p>
-
- <p>You can view the result of the steps described in this section
- on the <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/hello/html/annotated.html">Hello
- Example Documentation</a> page.</p>
-
- <!-- Chapater 3 -->
-
-
- <h1><a name="3">3 Overall Mapping Configuration</a></h1>
-
- <p>The C++/Tree mapping has a number of configuration parameters that
- determine the overall properties and behavior of the generated code.
- Configuration parameters are specified with the XSD command line
- options. This chapter describes configuration aspects that are most
- commonly encountered by application developers. These include:
- the character type that is used by the generated code, handling of
- vocabularies that use XML Schema polymorphism, XML Schema to C++
- namespace mapping, and thread safety. For more ways to configure
- the generated code refer to the
- <a href="http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml">XSD
- Compiler Command Line Manual</a>.
- </p>
-
- <h2><a name="3.1">3.1 Character Type and Encoding</a></h2>
-
- <p>The C++/Tree mapping has built-in support for two character types:
- <code>char</code> and <code>wchar_t</code>. You can select the
- character type with the <code>--char-type</code> command line
- option. The default character type is <code>char</code>. The
- character type affects all string and string-based types that
- are used in the mapping. These include the string-based built-in
- XML Schema types, exception types, stream types, etc.</p>
-
- <p>Another aspect of the mapping that depends on the character type
- is character encoding. For the <code>char</code> character type
- the default encoding is UTF-8. Other supported encodings are
- ISO-8859-1, Xerces-C++ Local Code Page (LPC), as well as
- custom encodings. You can select which encoding should be used
- in the object model with the <code>--char-encoding</code> command
- line option.</p>
-
- <p>For the <code>wchar_t</code> character type the encoding is
- automatically selected between UTF-16 and UTF-32/UCS-4 depending
- on the size of the <code>wchar_t</code> type. On some platforms
- (for example, Windows with Visual C++ and AIX with IBM XL C++)
- <code>wchar_t</code> is 2 bytes long. For these platforms the
- encoding is UTF-16. On other platforms <code>wchar_t</code> is 4 bytes
- long and UTF-32/UCS-4 is used.</p>
-
- <p>Note also that the character encoding that is used in the object model
- is independent of the encodings used in input and output XML. In fact,
- all three (object mode, input XML, and output XML) can have different
- encodings.</p>
-
- <h2><a name="3.2">3.2 Support for Polymorphism</a></h2>
-
- <p>By default XSD generates non-polymorphic code. If your vocabulary
- uses XML Schema polymorphism in the form of <code>xsi:type</code>
- and/or substitution groups, then you will need to compile
- your schemas with the <code>--generate-polymorphic</code> option
- to produce polymorphism-aware code. For more information on
- working with polymorphic object models, refer to
- <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.11">Section 2.11,
- "Mapping for <code>xsi:type</code> and Substitution Groups"</a> in
- the C++/Tree Mapping User Manual.</p>
-
- <h2><a name="3.3">3.3 Namespace Mapping</a></h2>
-
- <p>XSD maps XML namespaces specified in the <code>targetNamespace</code>
- attribute in XML Schema to one or more nested C++ namespaces. By
- default, a namespace URI is mapped to a sequence of C++ namespace
- names by removing the protocol and host parts and splitting the
- rest into a sequence of names with <code>'/'</code> as the name
- separator.</p>
-
- <p>The default mapping of namespace URIs to C++ namespaces
- can be altered using the <code>--namespace-map</code> and
- <code>--namespace-regex</code> compiler options. For example,
- to map namespace URI <code>http://www.codesynthesis.com/my</code> to
- C++ namespace <code>cs::my</code>, we can use the following option:</p>
-
- <pre class="terminal">
---namespace-map http://www.codesynthesis.com/my=cs::my
- </pre>
-
- <p>A vocabulary without a namespace is mapped to the global scope. This
- also can be altered with the above options by using an empty name
- for the XML namespace:</p>
-
- <pre class="terminal">
---namespace-map =cs
- </pre>
-
- <h2><a name="3.4">3.4 Thread Safety</a></h2>
-
- <p>XSD-generated code is thread-safe in the sense that you can
- use different instantiations of the object model in several
- threads concurrently. This is possible due to the generated
- code not relying on any writable global variables. If you need
- to share the same object between several threads then you will
- need to provide some form of synchronization. One approach would
- be to use the generated code customization mechanisms to embed
- synchronization primitives into the generated C++ classes. For more
- information on generated code customization refer to the
- <a href="http://wiki.codesynthesis.com/Tree/Customization_guide">C++/Tree
- Mapping Customization Guide</a>.</p>
-
- <p>If you also would like to call parsing and/or serialization
- functions from several threads potentially concurrently, then
- you will need to make sure the Xerces-C++ runtime is initialized
- and terminated only once. The easiest way to do this is to
- initialize/terminate Xerces-C++ from <code>main()</code> when
- there are no threads yet/anymore:</p>
-
- <pre class="c++">
-#include &lt;xercesc/util/PlatformUtils.hpp>
-
-int
-main ()
-{
- xercesc::XMLPlatformUtils::Initialize ();
-
- {
- // Start/terminate threads and parse/serialize here.
- }
-
- xercesc::XMLPlatformUtils::Terminate ();
-}
- </pre>
-
- <p>Because you initialize the Xerces-C++ runtime yourself you should
- also pass the <code>xml_schema::flags::dont_initialize</code> flag
- to parsing and serialization functions. See <a href="#5">Chapter 5,
- "Parsing"</a> and <a href="#6">Chapter 6, "Serialization"</a> for
- more information.</p>
-
-
- <!-- Chapater 4 -->
-
-
- <h1><a name="4">4 Working with Object Models</a></h1>
-
- <p>As we have seen in the previous chapters, the XSD compiler generates
- a C++ class for each type defined in XML Schema. Together these classes
- constitute an object model for an XML vocabulary. In this chapter we
- will take a closer look at different elements that comprise an
- object model class as well as how to create, access, and modify
- object models.</p>
-
- <p>In this and subsequent chapters we will use the following schema
- that describes a collection of person records. We save it in
- <code>people.xsd</code>:</p>
-
- <pre class="xml">
-&lt;?xml version="1.0"?>
-&lt;xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
-
- &lt;xs:simpleType name="gender_t">
- &lt;xs:restriction base="xs:string">
- &lt;xs:enumeration value="male"/>
- &lt;xs:enumeration value="female"/>
- &lt;/xs:restriction>
- &lt;/xs:simpleType>
-
- &lt;xs:complexType name="person_t">
- &lt;xs:sequence>
- &lt;xs:element name="first-name" type="xs:string"/>
- &lt;xs:element name="middle-name" type="xs:string" minOccurs="0"/>
- &lt;xs:element name="last-name" type="xs:string"/>
- &lt;xs:element name="gender" type="gender_t"/>
- &lt;xs:element name="age" type="xs:short"/>
- &lt;/xs:sequence>
- &lt;xs:attribute name="id" type="xs:unsignedInt" use="required"/>
- &lt;/xs:complexType>
-
- &lt;xs:complexType name="people_t">
- &lt;xs:sequence>
- &lt;xs:element name="person" type="person_t" maxOccurs="unbounded"/>
- &lt;/xs:sequence>
- &lt;/xs:complexType>
-
- &lt;xs:element name="people" type="people_t"/>
-
-&lt;/xs:schema>
- </pre>
-
- <p>A sample XML instance to go along with this schema is saved
- in <code>people.xml</code>:</p>
-
- <pre class="xml">
-&lt;?xml version="1.0"?>
-&lt;people xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
- xsi:noNamespaceSchemaLocation="people.xsd">
-
- &lt;person id="1">
- &lt;first-name>John&lt;/first-name>
- &lt;last-name>Doe&lt;/last-name>
- &lt;gender>male&lt;/gender>
- &lt;age>32&lt;/age>
- &lt;/person>
-
- &lt;person id="2">
- &lt;first-name>Jane&lt;/first-name>
- &lt;middle-name>Mary&lt;/middle-name>
- &lt;last-name>Doe&lt;/last-name>
- &lt;gender>female&lt;/gender>
- &lt;age>28&lt;/age>
- &lt;/person>
-
-&lt;/people>
- </pre>
-
- <p>Compiling <code>people.xsd</code> with the XSD compiler results
- in three generated C++ classes: <code>gender_t</code>,
- <code>person_t</code>, and <code>people_t</code>.
- The <code>gender_t</code> class is modelled after the C++
- <code>enum</code> type. Its definition is presented below:</p>
-
- <pre class="c++">
-class gender_t: public xml_schema::string
-{
-public:
- enum value
- {
- male,
- female
- };
-
- gender_t (value);
- gender_t (const xml_schema::string&amp;);
-
- gender_t&amp;
- operator= (value);
-
- operator value () const;
-};
- </pre>
-
- <p>The following listing shows how we can use this type:</p>
-
- <pre class="c++">
-gender_t m (gender_t::male);
-gender_t f ("female");
-
-if (m == "female" || f == gender_t::male)
-{
- ...
-}
-
-switch (m)
-{
-case gender_t::male:
- {
- ...
- }
-case gender_t::female:
- {
- ...
- }
-}
- </pre>
-
- <p>The other two classes will be examined in detail in the subsequent
- sections.</p>
-
- <h2><a name="4.1">4.1 Attribute and Element Cardinalities</a></h2>
-
- <p>As we have seen in the previous chapters, XSD generates a different
- set of type definitions and member functions for elements with
- different cardinalities. The C++/Tree mapping divides all the possible
- element and attribute cardinalities into three cardinality classes:
- <em>one</em>, <em>optional</em>, and <em>sequence</em>.</p>
-
- <p>The <em>one</em> cardinality class covers all elements that should
- occur exactly once as well as required attributes. In our
- example, the <code>first-name</code>, <code>last-name</code>,
- <code>gender</code>, and <code>age</code> elements as well as
- the <code>id</code> attribute belong to this cardinality class.
- The following code fragment shows type definitions as well as the
- accessor and modifier functions that are generated for the
- <code>gender</code> element in the <code>person_t</code> class:</p>
-
- <pre class="c++">
-class person_t
-{
- // gender
- //
- typedef gender_t gender_type;
-
- const gender_type&amp;
- gender () const;
-
- gender_type&amp;
- gender ();
-
- void
- gender (const gender_type&amp;);
-};
- </pre>
-
- <p>The <code>gender_type</code> type is an alias for the element's type.
- The first two accessor functions return read-only (constant) and
- read-write references to the element's value, respectively. The
- modifier function sets the new value for the element.</p>
-
- <p>The <em>optional</em> cardinality class covers all elements that
- can occur zero or one time as well as optional attributes. In our
- example, the <code>middle-name</code> element belongs to this
- cardinality class. The following code fragment shows the type
- definitions as well as the accessor and modifier functions that
- are generated for this element in the <code>person_t</code> class:</p>
-
- <pre class="c++">
-class person_t
-{
- // middle-name
- //
- typedef xml_schema::string middle_name_type;
- typedef xsd::optional&lt;middle_name_type> middle_name_optional;
-
- const middle_name_optional&amp;
- middle_name () const;
-
- middle_name_optional&amp;
- middle_name ();
-
- void
- middle_name (const middle_name_type&amp;);
-
- void
- middle_name (const middle_name_optional&amp;);
-};
- </pre>
-
- <p>As with the <code>gender</code> element, <code>middle_name_type</code>
- is an alias for the element's type. The <code>middle_name_optional</code>
- type is a container for the element's optional value. It can be queried
- for the presence of the value using the <code>present()</code> function.
- The value itself can be retrieved using the <code>get()</code>
- accessor and set using the <code>set()</code> modifier. The container
- can be reverted to the value not present state with the call to the
- <code>reset()</code> function. The following example shows how we
- can use this container:</p>
-
- <pre class="c++">
-person_t::middle_name_optional n ("John");
-
-if (n.preset ())
-{
- cout &lt;&lt; n.get () &lt;&lt; endl;
-}
-
-n.set ("Jane");
-n.reset ();
- </pre>
-
-
- <p>Unlike the <em>one</em> cardinality class, the accessor functions
- for the <em>optional</em> class return read-only (constant) and
- read-write references to the container instead of the element's
- value directly. The modifier functions set the new value for the
- element.</p>
-
- <p>Finally, the <em>sequence</em> cardinality class covers all elements
- that can occur more than once. In our example, the
- <code>person</code> element in the <code>people_t</code> type
- belongs to this cardinality class. The following code fragment shows
- the type definitions as well as the accessor and modifier functions
- that are generated for this element in the <code>people_t</code>
- class:</p>
-
- <pre class="c++">
-class people_t
-{
- // person
- //
- typedef person_t person_type;
- typedef xsd::sequence&lt;person_type> person_sequence;
- typedef person_sequence::iterator person_iterator;
- typedef person_sequence::const_iterator person_const_iterator;
-
- const person_sequence&amp;
- person () const;
-
- person_sequence&amp;
- person ();
-
- void
- person (const person_sequence&amp;);
-};
- </pre>
-
- <p>Identical to the other cardinality classes, <code>person_type</code>
- is an alias for the element's type. The <code>person_sequence</code>
- type is a sequence container for the element's values. It is based
- on and has the same interface as <code>std::vector</code> and
- therefore can be used in similar ways. The <code>person_iterator</code>
- and <code>person_const_iterator</code> types are read-only
- (constant) and read-write iterators for the <code>person_sequence</code>
- container.</p>
-
- <p>Similar to the <em>optional</em> cardinality class, the
- accessor functions for the <em>sequence</em> class return
- read-only (constant) and read-write references to the sequence
- container. The modifier functions copies the entries from
- the passed sequence.</p>
-
- <p>For complex schemas with many levels of nested compositors
- (<code>xs:choice</code> and <code>xs:sequence</code>) it can
- be hard to deduce the cardinality class of a particular element.
- The generated Doxygen documentation can greatly help with
- this task. For each element and attribute the documentation
- clearly identifies its cardinality class. Alternatively, you
- can study the generated header files to find out the cardinality
- class of a particular attribute or element. In the next sections
- we will examine how to access and modify information stored in
- an object model using accessor and modifier functions described
- in this section.</p>
-
-
- <h2><a name="4.2">4.2 Accessing the Object Model</a></h2>
-
- <p>In this section we will learn how to get to the information
- stored in the object model for our person records vocabulary.
- The following application accesses and prints the contents
- of the <code>people.xml</code> file:</p>
-
- <pre class="c++">
-#include &lt;iostream>
-#include "people.hxx"
-
-using namespace std;
-
-int
-main ()
-{
- auto_ptr&lt;people_t> ppl (people ("people.xml"));
-
- // Iterate over individual person records.
- //
- people_t::person_sequence&amp; ps (ppl->person ());
-
- for (people_t::person_iterator i (ps.begin ()); i != ps.end (); ++i)
- {
- person_t&amp; p (*i);
-
- // Print names: first-name and last-name are required elements,
- // middle-name is optional.
- //
- cout &lt;&lt; "name: " &lt;&lt; p.first_name () &lt;&lt; " ";
-
- if (p.middle_name ().present ())
- cout &lt;&lt; p.middle_name ().get () &lt;&lt; " ";
-
- cout &lt;&lt; p.last_name () &lt;&lt; endl;
-
- // Print gender, age, and id which are all required.
- //
- cout &lt;&lt; "gender: " &lt;&lt; p.gender () &lt;&lt; endl
- &lt;&lt; "age: " &lt;&lt; p.age () &lt;&lt; endl
- &lt;&lt; "id: " &lt;&lt; p.id () &lt;&lt; endl
- &lt;&lt; endl;
- }
-}
- </pre>
-
- <p>This code shows common patterns of accessing elements and attributes
- with different cardinality classes. For the sequence element
- (<code>person</code> in <code>people_t</code>) we first obtain a
- reference to the container and then iterate over individual
- records. The values of elements and attributes with the
- <em>one</em> cardinality class (<code>first-name</code>,
- <code>last-name</code>, <code>gender</code>, <code>age</code>,
- and <code>id</code>) can be obtained directly by calling the
- corresponding accessor functions. For the optional element
- <code>middle-name</code> we first check if the value is present
- and only then call <code>get()</code> to retrieve it.</p>
-
- <p>Note that when we want to reduce typing by creating a variable
- representing a fragment of the object model that we are currently
- working with (<code>ps</code> and <code>p</code> above), we obtain
- a reference to that fragment instead of making a potentially
- expensive copy. This is generally a good rule to follow when
- creating high-performance applications.</p>
-
- <p>If we run the above application on our sample
- <code>people.xml</code>, the output looks as follows:</p>
-
- <pre class="terminal">
-name: John Doe
-gender: male
-age: 32
-id: 1
-
-name: Jane Mary Doe
-gender: female
-age: 28
-id: 2
- </pre>
-
-
- <h2><a name="4.3">4.3 Modifying the Object Model</a></h2>
-
- <p>In this section we will learn how to modify the information
- stored in the object model for our person records vocabulary.
- The following application changes the contents of the
- <code>people.xml</code> file:</p>
-
- <pre class="c++">
-#include &lt;iostream>
-#include "people.hxx"
-
-using namespace std;
-
-int
-main ()
-{
- auto_ptr&lt;people_t> ppl (people ("people.xml"));
-
- // Iterate over individual person records and increment
- // the age.
- //
- people_t::person_sequence&amp; ps (ppl->person ());
-
- for (people_t::person_iterator i (ps.begin ()); i != ps.end (); ++i)
- {
- // Alternative way: i->age ()++;
- //
- i->age (i->age () + 1);
- }
-
- // Add middle-name to the first record and remove it from
- // the second.
- //
- person_t&amp; john (ps[0]);
- person_t&amp; jane (ps[1]);
-
- john.middle_name ("Mary");
- jane.middle_name ().reset ();
-
- // Add another John record.
- //
- ps.push_back (john);
-
- // Serialize the modified object model to XML.
- //
- xml_schema::namespace_infomap map;
- map[""].name = "";
- map[""].schema = "people.xsd";
-
- people (cout, *ppl, map);
-}
- </pre>
-
- <p>The first modification the above application performs is iterating
- over person records and incrementing the age value. This code
- fragment shows how to modify the value of a required attribute
- or element. The next modification shows how to set a new value
- for the optional <code>middle-name</code> element as well
- as clear its value. Finally the example adds a copy of the
- John Doe record to the <code>person</code> element sequence.</p>
-
- <p>Note that in this case using references for the <code>ps</code>,
- <code>john</code>, and <code>jane</code> variables is no longer
- a performance improvement but a requirement for the application
- to function correctly. If we hadn't used references, all our changes
- would have been made on copies without affecting the object model.</p>
-
- <p>If we run the above application on our sample <code>people.xml</code>,
- the output looks as follows:</p>
-
- <pre class="xml">
-&lt;?xml version="1.0"?>
-&lt;people xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
- xsi:noNamespaceSchemaLocation="people.xsd">
-
- &lt;person id="1">
- &lt;first-name>John&lt;/first-name>
- &lt;middle-name>Mary&lt;/middle-name>
- &lt;last-name>Doe&lt;/last-name>
- &lt;gender>male&lt;/gender>
- &lt;age>33&lt;/age>
- &lt;/person>
-
- &lt;person id="2">
- &lt;first-name>Jane&lt;/first-name>
- &lt;last-name>Doe&lt;/last-name>
- &lt;gender>female&lt;/gender>
- &lt;age>29&lt;/age>
- &lt;/person>
-
- &lt;person id="1">
- &lt;first-name>John&lt;/first-name>
- &lt;middle-name>Mary&lt;/middle-name>
- &lt;last-name>Doe&lt;/last-name>
- &lt;gender>male&lt;/gender>
- &lt;age>33&lt;/age>
- &lt;/person>
-
-&lt;/people>
- </pre>
-
-
- <h2><a name="4.4">4.4 Creating the Object Model from Scratch</a></h2>
-
- <p>In this section we will learn how to create a new object model
- for our person records vocabulary. The following application
- recreates the content of the original <code>people.xml</code>
- file:</p>
-
- <pre class="c++">
-#include &lt;iostream>
-#include "people.hxx"
-
-using namespace std;
-
-int
-main ()
-{
- people_t ppl;
- people_t::person_sequence&amp; ps (ppl.person ());
-
- // Add the John Doe record.
- //
- ps.push_back (
- person_t ("John", // first-name
- "Doe", // last-name
- gender_t::male, // gender
- 32, // age
- 1));
-
- // Add the Jane Doe record.
- //
- ps.push_back (
- person_t ("Jane", // first-name
- "Doe", // last-name
- gender_t::female, // gender
- 28, // age
- 2)); // id
-
- // Add middle name to the Jane Doe record.
- //
- person_t&amp; jane (ps.back ());
- jane.middle_name ("Mary");
-
- // Serialize the object model to XML.
- //
- xml_schema::namespace_infomap map;
- map[""].name = "";
- map[""].schema = "people.xsd";
-
- people (cout, ppl, map);
-}
- </pre>
-
- <p>The only new part in the above application is the calls
- to the <code>people_t</code> and <code>person_t</code>
- constructors. As a general rule, for each C++ class
- XSD generates a constructor with initializers
- for each element and attribute belonging to the <em>one</em>
- cardinality class. For our vocabulary, the following
- constructors are generated:</p>
-
- <pre class="c++">
-class person_t
-{
- person_t (const first_name_type&amp;,
- const last_name_type&amp;,
- const gender_type&amp;,
- const age_type&amp;,
- const id_type&amp;);
-};
-
-class people_t
-{
- people_t ();
-};
- </pre>
-
- <p>Note also that we set the <code>middle-name</code> element
- on the Jane Doe record by obtaining a reference to that record
- in the object model and setting the <code>middle-name</code>
- value on it. This is a general rule that should be followed
- in order to obtain the best performance: if possible,
- direct modifications to the object model should be preferred
- to modifications on temporaries with subsequent copying. The
- following code fragment shows a semantically equivalent but
- slightly slower version:</p>
-
- <pre class="c++">
-// Add the Jane Doe record.
-//
-person_t jane ("Jane", // first-name
- "Doe", // last-name
- gender_t::female, // gender
- 28, // age
- 2); // id
-
-jane.middle_name ("Mary");
-
-ps.push_back (jane);
- </pre>
-
- <p>We can also go one step further to reduce copying and improve
- the performance of our application by using the non-copying
- <code>push_back()</code> function which assumes ownership
- of the passed objects:</p>
-
- <pre class="c++">
-// Add the John Doe record.
-//
-auto_ptr&lt;person_t> john_p (
- new person_t ("John", // first-name
- "Doe", // last-name
- gender_t::male, // gender
- 32, // age
- 1));
-ps.push_back (john_p); // assumes ownership
-
-// Add the Jane Doe record.
-//
-auto_ptr&lt;person_t> jane_p (
- new person_t ("Jane", // first-name
- "Doe", // last-name
- gender_t::female, // gender
- 28, // age
- 2)); // id
-ps.push_back (jane_p); // assumes ownership
- </pre>
-
- <p>For more information on the non-copying modifier functions refer to
- <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.8">Section
- 2.8, "Mapping for Local Elements and Attributes"</a> in the C++/Tree Mapping
- User Manual. The above application produces the following output:</p>
-
- <pre class="xml">
-&lt;?xml version="1.0" ?>
-&lt;people xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
- xsi:noNamespaceSchemaLocation="people.xsd">
-
- &lt;person id="1">
- &lt;first-name>John&lt;/first-name>
- &lt;last-name>Doe&lt;/last-name>
- &lt;gender>male&lt;/gender>
- &lt;age>32&lt;/age>
- &lt;/person>
-
- &lt;person id="2">
- &lt;first-name>Jane&lt;/first-name>
- &lt;middle-name>Mary&lt;/middle-name>
- &lt;last-name>Doe&lt;/last-name>
- &lt;gender>female&lt;/gender>
- &lt;age>28&lt;/age>
- &lt;/person>
-
-&lt;/people>
- </pre>
-
- <h2><a name="4.5">4.5 Mapping for the Built-in XML Schema Types</a></h2>
-
- <p>Our person record vocabulary uses several built-in XML Schema
- types: <code>string</code>, <code>short</code>, and
- <code>unsignedInt</code>. Until now we haven't talked about
- the mapping of built-in XML Schema types to C++ types and how
- to work with them. This section provides an overview
- of the built-in types. For more detailed information refer
- to <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.5">Section
- 2.5, "Mapping for Built-in Data Types"</a> in the C++/Tree Mapping
- User Manual.</p>
-
- <p>In XML Schema, built-in types are defined in the XML Schema namespace.
- By default, the C++/Tree mapping maps this namespace to C++
- namespace <code>xml_schema</code> (this mapping can be altered
- with the <code>--namespace-map</code> option). The following table
- summarizes the mapping of XML Schema built-in types to C++ types:</p>
-
- <!-- border="1" is necessary for html2ps -->
- <table id="builtin" border="1">
- <tr>
- <th>XML Schema type</th>
- <th>Alias in the <code>xml_schema</code> namespace</th>
- <th>C++ type</th>
- </tr>
-
- <tr>
- <th colspan="3">fixed-length integral types</th>
- </tr>
- <!-- 8-bit -->
- <tr>
- <td><code>byte</code></td>
- <td><code>byte</code></td>
- <td><code>signed&nbsp;char</code></td>
- </tr>
- <tr>
- <td><code>unsignedByte</code></td>
- <td><code>unsigned_byte</code></td>
- <td><code>unsigned&nbsp;char</code></td>
- </tr>
-
- <!-- 16-bit -->
- <tr>
- <td><code>short</code></td>
- <td><code>short_</code></td>
- <td><code>short</code></td>
- </tr>
- <tr>
- <td><code>unsignedShort</code></td>
- <td><code>unsigned_short</code></td>
- <td><code>unsigned&nbsp;short</code></td>
- </tr>
-
- <!-- 32-bit -->
- <tr>
- <td><code>int</code></td>
- <td><code>int_</code></td>
- <td><code>int</code></td>
- </tr>
- <tr>
- <td><code>unsignedInt</code></td>
- <td><code>unsigned_int</code></td>
- <td><code>unsigned&nbsp;int</code></td>
- </tr>
-
- <!-- 64-bit -->
- <tr>
- <td><code>long</code></td>
- <td><code>long_</code></td>
- <td><code>long&nbsp;long</code></td>
- </tr>
- <tr>
- <td><code>unsignedLong</code></td>
- <td><code>unsigned_long</code></td>
- <td><code>unsigned&nbsp;long&nbsp;long</code></td>
- </tr>
-
- <tr>
- <th colspan="3">arbitrary-length integral types</th>
- </tr>
- <tr>
- <td><code>integer</code></td>
- <td><code>integer</code></td>
- <td><code>long&nbsp;long</code></td>
- </tr>
- <tr>
- <td><code>nonPositiveInteger</code></td>
- <td><code>non_positive_integer</code></td>
- <td><code>long&nbsp;long</code></td>
- </tr>
- <tr>
- <td><code>nonNegativeInteger</code></td>
- <td><code>non_negative_integer</code></td>
- <td><code>unsigned long&nbsp;long</code></td>
- </tr>
- <tr>
- <td><code>positiveInteger</code></td>
- <td><code>positive_integer</code></td>
- <td><code>unsigned long&nbsp;long</code></td>
- </tr>
- <tr>
- <td><code>negativeInteger</code></td>
- <td><code>negative_integer</code></td>
- <td><code>long&nbsp;long</code></td>
- </tr>
-
- <tr>
- <th colspan="3">boolean types</th>
- </tr>
- <tr>
- <td><code>boolean</code></td>
- <td><code>boolean</code></td>
- <td><code>bool</code></td>
- </tr>
-
- <tr>
- <th colspan="3">fixed-precision floating-point types</th>
- </tr>
- <tr>
- <td><code>float</code></td>
- <td><code>float_</code></td>
- <td><code>float</code></td>
- </tr>
- <tr>
- <td><code>double</code></td>
- <td><code>double_</code></td>
- <td><code>double</code></td>
- </tr>
-
- <tr>
- <th colspan="3">arbitrary-precision floating-point types</th>
- </tr>
- <tr>
- <td><code>decimal</code></td>
- <td><code>decimal</code></td>
- <td><code>double</code></td>
- </tr>
-
- <tr>
- <th colspan="3">string types</th>
- </tr>
- <tr>
- <td><code>string</code></td>
- <td><code>string</code></td>
- <td>type derived from <code>std::basic_string</code></td>
- </tr>
- <tr>
- <td><code>normalizedString</code></td>
- <td><code>normalized_string</code></td>
- <td>type derived from <code>string</code></td>
- </tr>
- <tr>
- <td><code>token</code></td>
- <td><code>token</code></td>
- <td>type&nbsp;derived&nbsp;from&nbsp;<code>normalized_string</code></td>
- </tr>
- <tr>
- <td><code>Name</code></td>
- <td><code>name</code></td>
- <td>type derived from <code>token</code></td>
- </tr>
- <tr>
- <td><code>NMTOKEN</code></td>
- <td><code>nmtoken</code></td>
- <td>type derived from <code>token</code></td>
- </tr>
- <tr>
- <td><code>NMTOKENS</code></td>
- <td><code>nmtokens</code></td>
- <td>type derived from <code>sequence&lt;nmtoken></code></td>
- </tr>
- <tr>
- <td><code>NCName</code></td>
- <td><code>ncname</code></td>
- <td>type derived from <code>name</code></td>
- </tr>
- <tr>
- <td><code>language</code></td>
- <td><code>language</code></td>
- <td>type derived from <code>token</code></td>
- </tr>
-
- <tr>
- <th colspan="3">qualified name</th>
- </tr>
- <tr>
- <td><code>QName</code></td>
- <td><code>qname</code></td>
- <td><code>xml_schema::qname</code></td>
- </tr>
-
- <tr>
- <th colspan="3">ID/IDREF types</th>
- </tr>
- <tr>
- <td><code>ID</code></td>
- <td><code>id</code></td>
- <td>type derived from <code>ncname</code></td>
- </tr>
- <tr>
- <td><code>IDREF</code></td>
- <td><code>idref</code></td>
- <td>type derived from <code>ncname</code></td>
- </tr>
- <tr>
- <td><code>IDREFS</code></td>
- <td><code>idrefs</code></td>
- <td>type derived from <code>sequence&lt;idref></code></td>
- </tr>
-
- <tr>
- <th colspan="3">URI types</th>
- </tr>
- <tr>
- <td><code>anyURI</code></td>
- <td><code>uri</code></td>
- <td>type derived from <code>std::basic_string</code></td>
- </tr>
-
- <tr>
- <th colspan="3">binary types</th>
- </tr>
- <tr>
- <td><code>base64Binary</code></td>
- <td><code>base64_binary</code></td>
- <td><code>xml_schema::base64_binary</code></td>
- </tr>
- <tr>
- <td><code>hexBinary</code></td>
- <td><code>hex_binary</code></td>
- <td><code>xml_schema::hex_binary</code></td>
- </tr>
-
- <tr>
- <th colspan="3">date/time types</th>
- </tr>
- <tr>
- <td><code>date</code></td>
- <td><code>date</code></td>
- <td><code>xml_schema::date</code></td>
- </tr>
- <tr>
- <td><code>dateTime</code></td>
- <td><code>date_time</code></td>
- <td><code>xml_schema::date_time</code></td>
- </tr>
- <tr>
- <td><code>duration</code></td>
- <td><code>duration</code></td>
- <td><code>xml_schema::duration</code></td>
- </tr>
- <tr>
- <td><code>gDay</code></td>
- <td><code>gday</code></td>
- <td><code>xml_schema::gday</code></td>
- </tr>
- <tr>
- <td><code>gMonth</code></td>
- <td><code>gmonth</code></td>
- <td><code>xml_schema::gmonth</code></td>
- </tr>
- <tr>
- <td><code>gMonthDay</code></td>
- <td><code>gmonth_day</code></td>
- <td><code>xml_schema::gmonth_day</code></td>
- </tr>
- <tr>
- <td><code>gYear</code></td>
- <td><code>gyear</code></td>
- <td><code>xml_schema::gyear</code></td>
- </tr>
- <tr>
- <td><code>gYearMonth</code></td>
- <td><code>gyear_month</code></td>
- <td><code>xml_schema::gyear_month</code></td>
- </tr>
- <tr>
- <td><code>time</code></td>
- <td><code>time</code></td>
- <td><code>xml_schema::time</code></td>
- </tr>
-
- <tr>
- <th colspan="3">entity types</th>
- </tr>
- <tr>
- <td><code>ENTITY</code></td>
- <td><code>entity</code></td>
- <td>type derived from <code>name</code></td>
- </tr>
- <tr>
- <td><code>ENTITIES</code></td>
- <td><code>entities</code></td>
- <td>type derived from <code>sequence&lt;entity></code></td>
- </tr>
- </table>
-
- <p>As you can see from the table above a number of built-in
- XML Schema types are mapped to fundamental C++ types such
- as <code>int</code> or <code>bool</code>. All string-based
- XML Schema types are mapped to C++ types that are derived
- from either <code>std::string</code> or
- <code>std::wstring</code>, depending on the character
- type selected. For access and modification purposes these
- types can be treated as <code>std::string</code>. A number
- of built-in types, such as <code>qname</code>, the binary
- types, and the date/time types do not have suitable
- fundamental or standard C++ types to map to. As a result,
- these types are implemented from scratch in the XSD runtime.
- For more information on their interfaces refer to
- <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.5">Section
- 2.5, "Mapping for Built-in Data Types"</a> in the C++/Tree Mapping
- User Manual.</p>
-
-
- <!-- Chapater 5 -->
-
-
- <h1><a name="5">5 Parsing</a></h1>
-
- <p>We have already seen how to parse XML to an object model in this guide
- before. In this chapter we will discuss the parsing topic in more
- detail.</p>
-
- <p>By default, the C++/Tree mapping provides a total of 14 overloaded
- parsing functions. They differ in the input methods used to
- read XML as well as the error reporting mechanisms. It is also possible
- to generate types for root elements instead of parsing and serialization
- functions. This may be useful if your XML vocabulary has multiple
- root elements. For more information on element types refer to
- <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.9">Section
- 2.9, "Mapping for Global Elements"</a> in the C++/Tree Mapping User
- Manual.</p>
-
-
- <p>In this section we will discuss the most commonly used versions of
- the parsing functions. For a comprehensive description of parsing
- refer to <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#3">Chapter
- 3, "Parsing"</a> in the C++/Tree Mapping User Manual. For the <code>people</code>
- global element from our person record vocabulary, we will concentrate
- on the following three parsing functions:</p>
-
- <pre class="c++">
-std::auto_ptr&lt;people_t>
-people (const std::string&amp; uri,
- xml_schema::flags f = 0,
- const xml_schema::properties&amp; p = xml_schema::properties ());
-
-std::auto_ptr&lt;people_t>
-people (std::istream&amp; is,
- xml_schema::flags f = 0,
- const xml_schema::properties&amp; p = xml_schema::properties ());
-
-std::auto_ptr&lt;people_t>
-people (std::istream&amp; is,
- const std::string&amp; resource_id,
- xml_schema::flags f = 0,
- const xml_schema::properties&amp; p = ::xml_schema::properties ());
- </pre>
-
- <p>The first function parses a local file or a URI. We have already
- used this parsing function in the previous chapters. The second
- and third functions read XML from a standard input stream. The
- last function also requires a resource id. This id is used to
- identify the XML document being parser in diagnostics messages
- as well as to resolve relative paths to other documents (for example,
- schemas) that might be referenced from the XML document.</p>
-
- <p>The last two arguments to all three parsing functions are parsing
- flags and properties. The flags argument provides a number of ways
- to fine-tune the parsing process. The properties argument allows
- to pass additional information to the parsing functions. We will
- use these two arguments in <a href="#5.1">Section 5.1, "XML Schema
- Validation and Searching"</a> below. The following example shows
- how we can use the above parsing functions:</p>
-
- <pre class="c++">
-using std::auto_ptr;
-
-// Parse a local file or URI.
-//
-auto_ptr&lt;people_t> p1 (people ("people.xml"));
-auto_ptr&lt;people_t> p2 (people ("http://example.com/people.xml"));
-
-// Parse a local file via ifstream.
-//
-std::ifstream ifs ("people.xml");
-auto_ptr&lt;people_t> p3 (people (ifs, "people.xml"));
-
-// Parse an XML string.
-//
-std::string str ("..."); // XML in a string.
-std::istringstream iss (str);
-auto_ptr&lt;people_t> p4 (people (iss));
- </pre>
-
-
- <h2><a name="5.1">5.1 XML Schema Validation and Searching</a></h2>
-
- <p>The C++/Tree mapping relies on the underlying Xerces-C++ XML
- parser for full XML document validation. The XML Schema
- validation is enabled by default and can be disabled by
- passing the <code>xml_schema::flags::dont_validate</code>
- flag to the parsing functions, for example:</p>
-
- <pre class="c++">
-auto_ptr&lt;people_t> p (
- people ("people.xml", xml_schema::flags::dont_validate));
- </pre>
-
- <p>Even when XML Schema validation is disabled, the generated
- code still performs a number of checks to prevent
- construction of an inconsistent object model (for example, an
- object model with missing required attributes or elements).</p>
-
- <p>When XML Schema validation is enabled, the XML parser needs
- to locate a schema to validate against. There are several
- methods to provide the schema location information to the
- parser. The easiest and most commonly used method is to
- specify schema locations in the XML document itself
- with the <code>schemaLocation</code> or
- <code>noNamespaceSchemaLocation</code> attributes, for example:</p>
-
- <pre class="xml">
-&lt;?xml version="1.0" ?>
-&lt;people xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
- xsi:noNamespaceSchemaLocation="people.xsd"
- xsi:schemaLocation="http://www.w3.org/XML/1998/namespace xml.xsd">
- </pre>
-
- <p>As you might have noticed, we used this method in all the sample XML
- documents presented in this guide up until now. Note that the
- schema locations specified with these two attributes are relative
- to the document's path unless they are absolute URIs (that is
- start with <code>http://</code>, <code>file://</code>, etc.).
- In particular, if you specify just file names as your schema
- locations, as we did above, then the schemas should reside in
- the same directory as the XML document itself.</p>
-
- <p>Another method of providing the schema location information
- is via the <code>xml_schema::properties</code> argument, as
- shown in the following example:</p>
-
- <pre class="c++">
-xml_schema::properties props;
-props.no_namespace_schema_location ("people.xsd");
-props.schema_location ("http://www.w3.org/XML/1998/namespace", "xml.xsd");
-
-auto_ptr&lt;people_t> p (people ("people.xml", 0, props));
- </pre>
-
- <p>The schema locations provided with this method overrides
- those specified in the XML document. As with the previous
- method, the schema locations specified this way are
- relative to the document's path unless they are absolute URIs.
- In particular, if you want to use local schemas that are
- not related to the document being parsed, then you will
- need to use the <code>file://</code> URI. The following
- example shows how to use schemas that reside in the current
- working directory:</p>
-
- <pre class="c++">
-#include &lt;unistd.h> // getcwd
-#include &lt;limits.h> // PATH_MAX
-
-char cwd[PATH_MAX];
-if (getcwd (cwd, PATH_MAX) == 0)
-{
- // Buffer too small?
-}
-
-xml_schema::properties props;
-
-props.no_namespace_schema_location (
- "file:///" + std::string (cwd) + "people.xsd");
-
-props.schema_location (
- "http://www.w3.org/XML/1998/namespace",
- "file:///" + std::string (cwd) + "xml.xsd");
-
-auto_ptr&lt;people_t> p (people ("people.xml", 0, props));
- </pre>
-
- <p>A third method is the most useful if you are planning to parse
- several XML documents of the same vocabulary. In that case
- it may be beneficial to pre-parse and cache the schemas in
- the XML parser which can then be used to parse all documents
- without re-parsing the schemas. For more information on
- this method refer to the <code>caching</code> example in the
- <code>examples/cxx/tree/</code> directory of the XSD
- distribution. It is also possible to convert the schemas into
- a pre-compiled binary representation and embed this representation
- directly into the application executable. With this approach your
- application can perform XML Schema validation without depending on
- any external schema files. For more information on how to achieve
- this refer to the <code>embedded</code> example in the
- <code>examples/cxx/tree/</code> directory of the XSD distribution.</p>
-
- <p>When the XML parser cannot locate a schema for the
- XML document, the validation fails and XML document
- elements and attributes for which schema definitions could
- not be located are reported in the diagnostics. For
- example, if we remove the <code>noNamespaceSchemaLocation</code>
- attribute in <code>people.xml</code> from the previous chapter,
- then we will get the following diagnostics if we try to parse
- this file with validation enabled:</p>
-
- <pre class="terminal">
-people.xml:2:63 error: no declaration found for element 'people'
-people.xml:4:18 error: no declaration found for element 'person'
-people.xml:4:18 error: attribute 'id' is not declared for element 'person'
-people.xml:5:17 error: no declaration found for element 'first-name'
-people.xml:6:18 error: no declaration found for element 'middle-name'
-people.xml:7:16 error: no declaration found for element 'last-name'
-people.xml:8:13 error: no declaration found for element 'gender'
-people.xml:9:10 error: no declaration found for element 'age'
- </pre>
-
- <h2><a name="5.2">5.2 Error Handling</a></h2>
-
- <p>The parsing functions offer a number of ways to handle error conditions
- with the C++ exceptions being the most commonly used mechanism. All
- C++/Tree exceptions derive from common base <code>xml_schema::exception</code>
- which in turn derives from <code>std::exception</code>. The easiest
- way to uniformly handle all possible C++/Tree exceptions and print
- detailed information about the error is to catch and print
- <code>xml_schema::exception</code>, as shown in the following
- example:</p>
-
- <pre class="c++">
-try
-{
- auto_ptr&lt;people_t> p (people ("people.xml"));
-}
-catch (const xml_schema::exception&amp; e)
-{
- cerr &lt;&lt; e &lt;&lt; endl;
-}
- </pre>
-
- <p>Each individual C++/Tree exception also allows you to obtain
- error details programmatically. For example, the
- <code>xml_schema::parsing</code> exception is thrown when
- the XML parsing and validation in the underlying XML parser
- fails. It encapsulates various diagnostics information
- such as the file name, line and column numbers, as well as the
- error or warning message for each entry. For more information
- about this and other exceptions that can be thrown during
- parsing, refer to
- <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#3.3">Section
- 3.3, "Error Handling"</a> in the C++/Tree Mapping
- User Manual.</p>
-
- <p>Note that if you are parsing <code>std::istream</code> on which
- exceptions are not enabled, then you will need to check the
- stream state after the call to the parsing function in order
- to detect any possible stream failures, for example:</p>
-
- <pre class="c++">
-std::ifstream ifs ("people.xml");
-
-if (ifs.fail ())
-{
- cerr &lt;&lt; "people.xml: unable to open" &lt;&lt; endl;
- return 1;
-}
-
-auto_ptr&lt;people_t> p (people (ifs, "people.xml"));
-
-if (ifs.fail ())
-{
- cerr &lt;&lt; "people.xml: read error" &lt;&lt; endl;
- return 1;
-}
- </pre>
-
- <p>The above example can be rewritten to use exceptions as
- shown below:</p>
-
- <pre class="c++">
-try
-{
- std::ifstream ifs;
- ifs.exceptions (std::ifstream::badbit | std::ifstream::failbit);
- ifs.open ("people.xml");
-
- auto_ptr&lt;people_t> p (people (ifs, "people.xml"));
-}
-catch (const std::ifstream::failure&amp;)
-{
- cerr &lt;&lt; "people.xml: unable to open or read error" &lt;&lt; endl;
- return 1;
-}
- </pre>
-
-
- <!-- Chapater 6 -->
-
-
- <h1><a name="6">6 Serialization</a></h1>
-
- <p>We have already seen how to serialize an object model back to XML
- in this guide before. In this chapter we will discuss the
- serialization topic in more detail.</p>
-
- <p>By default, the C++/Tree mapping provides a total of 8 overloaded
- serialization functions. They differ in the output methods used to write
- XML as well as the error reporting mechanisms. It is also possible to
- generate types for root elements instead of parsing and serialization
- functions. This may be useful if your XML vocabulary has multiple
- root elements. For more information on element types refer to
- <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.9">Section
- 2.9, "Mapping for Global Elements"</a> in the C++/Tree Mapping User
- Manual.</p>
-
-
- <p>In this section we will discuss the most commonly
- used version of serialization functions. For a comprehensive description
- of serialization refer to
- <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#4">Chapter
- 4, "Serialization"</a> in the C++/Tree Mapping User Manual. For the
- <code>people</code> global element from our person record vocabulary,
- we will concentrate on the following serialization function:</p>
-
- <pre class="c++">
-void
-people (std::ostream&amp; os,
- const people_t&amp; x,
- const xml_schema::namespace_infomap&amp; map =
- xml_schema::namespace_infomap (),
- const std::string&amp; encoding = "UTF-8",
- xml_schema::flags f = 0);
- </pre>
-
- <p>This function serializes the object model passed as the second
- argument to the standard output stream passed as the first
- argument. The third argument is a namespace information map
- which we will discuss in more detail in the next section.
- The fourth argument is a character encoding that the resulting
- XML document should be in. Possible valid values for this
- argument are "US-ASCII", "ISO8859-1", "UTF-8", "UTF-16BE",
- "UTF-16LE", "UCS-4BE", and "UCS-4LE". Finally, the flags
- argument allows fine-tuning of the serialization process.
- The following example shows how we can use the above serialization
- function:</p>
-
- <pre class="c++">
-people_t&amp; p = ...
-
-xml_schema::namespace_infomap map;
-map[""].schema = "people.xsd";
-
-// Serialize to stdout.
-//
-people (std::cout, p, map);
-
-// Serialize to a file.
-//
-std::ofstream ofs ("people.xml");
-people (ofs, p, map);
-
-// Serialize to a string.
-//
-std::ostringstream oss;
-people (oss, p, map);
-std::string xml (oss.str ());
- </pre>
-
-
- <h2><a name="6.1">6.1 Namespace and Schema Information</a></h2>
-
- <p>While XML serialization can be done just from the object
- model alone, it is often desirable to assign meaningful
- prefixes to XML namespaces used in the vocabulary as
- well as to provide the schema location information.
- This is accomplished by passing the namespace information
- map to the serialization function. The key in this map is
- a namespace prefix that should be assigned to an XML namespace
- specified in the <code>name</code> variable of the
- map value. You can also assign an optional schema location for
- this namespace in the <code>schema</code> variable. Based
- on each key-value entry in this map, the serialization
- function adds two attributes to the resulting XML document:
- the namespace-prefix mapping attribute and schema location
- attribute. The empty prefix indicates that the namespace
- should be mapped without a prefix. For example, the following
- map:</p>
-
- <pre class="c++">
-xml_schema::namespace_infomap map;
-
-map[""].name = "http://www.example.com/example";
-map[""].schema = "example.xsd";
-
-map["x"].name = "http://www.w3.org/XML/1998/namespace";
-map["x"].schema = "xml.xsd";
- </pre>
-
- <p>Results in the following XML document:</p>
-
- <pre class="xml">
-&lt;?xml version="1.0" ?>
-&lt;example
- xmlns="http://www.example.com/example"
- xmlns:x="http://www.w3.org/XML/1998/namespace"
- xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
- xsi:schemaLocation="http://www.example.com/example example.xsd
- http://www.w3.org/XML/1998/namespace xml.xsd">
- </pre>
-
- <p>The empty namespace indicates that the vocabulary has no target
- namespace. For example, the following map results in only the
- <code>noNamespaceSchemaLocation</code> attribute being added:</p>
-
- <pre class="c++">
-xml_schema::namespace_infomap map;
-
-map[""].name = "";
-map[""].schema = "example.xsd";
- </pre>
-
- <h2><a name="6.2">6.2 Error Handling</a></h2>
-
- <p>Similar to the parsing functions, the serialization functions offer a
- number of ways to handle error conditions with the C++ exceptions being
- the most commonly used mechanisms. As with parsing, the easiest way to
- uniformly handle all possible serialization exceptions and print
- detailed information about the error is to catch and print
- <code>xml_schema::exception</code>:</p>
-
- <pre class="c++">
-try
-{
- people_t&amp; p = ...
-
- xml_schema::namespace_infomap map;
- map[""].schema = "people.xsd";
-
- people (std::cout, p, map));
-}
-catch (const xml_schema::exception&amp; e)
-{
- cerr &lt;&lt; e &lt;&lt; endl;
-}
- </pre>
-
- <p>The most commonly encountered serialization exception is
- <code>xml_schema::serialization</code>. It is thrown
- when the XML serialization in the underlying XML writer
- fails. It encapsulates various diagnostics information
- such as the file name, line and column numbers, as well as the
- error or warning message for each entry. For more information
- about this and other exceptions that can be thrown during
- serialization, refer to
- <a href="http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#4.4">Section
- 4.4, "Error Handling"</a> in the C++/Tree Mapping
- User Manual.</p>
-
- <p>Note that if you are serializing to <code>std::ostream</code> on
- which exceptions are not enabled, then you will need to check the
- stream state after the call to the serialization function in order
- to detect any possible stream failures, for example:</p>
-
- <pre class="c++">
-std::ofstream ofs ("people.xml");
-
-if (ofs.fail ())
-{
- cerr &lt;&lt; "people.xml: unable to open" &lt;&lt; endl;
- return 1;
-}
-
-people (ofs, p, map));
-
-if (ofs.fail ())
-{
- cerr &lt;&lt; "people.xml: write error" &lt;&lt; endl;
- return 1;
-}
- </pre>
-
- <p>The above example can be rewritten to use exceptions as
- shown below:</p>
-
- <pre class="c++">
-try
-{
- std::ofstream ofs;
- ofs.exceptions (std::ofstream::badbit | std::ofstream::failbit);
- ofs.open ("people.xml");
-
- people (ofs, p, map));
-}
-catch (const std::ofstream::failure&amp;)
-{
- cerr &lt;&lt; "people.xml: unable to open or write error" &lt;&lt; endl;
- return 1;
-}
- </pre>
-
- </div>
-</div>
-
-</body>
-</html>
diff --git a/xsd/documentation/cxx/tree/guide/makefile b/xsd/documentation/cxx/tree/guide/makefile
deleted file mode 100644
index 521a095..0000000
--- a/xsd/documentation/cxx/tree/guide/makefile
+++ /dev/null
@@ -1,53 +0,0 @@
-# file : documentation/cxx/tree/guide/makefile
-# author : Boris Kolpackov <boris@codesynthesis.com>
-# copyright : Copyright (c) 2006-2010 Code Synthesis Tools CC
-# license : GNU GPL v2 + exceptions; see accompanying LICENSE file
-
-include $(dir $(lastword $(MAKEFILE_LIST)))../../../../build/bootstrap.make
-
-default := $(out_base)/
-install := $(out_base)/.install
-dist := $(out_base)/.dist
-dist-win := $(out_base)/.dist-win
-cleandoc := $(out_base)/.cleandoc
-
-# Build.
-#
-$(default): $(out_base)/cxx-tree-guide.ps $(out_base)/cxx-tree-guide.pdf
-
-
-$(out_base)/cxx-tree-guide.ps: $(src_base)/index.xhtml \
- $(src_base)/guide.html2ps \
- | $(out_base)/.
- $(call message,html2ps $<,html2ps -f $(src_base)/guide.html2ps -o $@ $<)
-
-$(out_base)/cxx-tree-guide.pdf: $(out_base)/cxx-tree-guide.ps | $(out_base)/.
- $(call message,ps2pdf $<,ps2pdf14 $< $@)
-
-# Install & Dist.
-#
-$(install): path := $(subst $(src_root)/documentation/,,$(src_base))
-$(dist): path := $(subst $(src_root)/,,$(src_base))
-
-$(install): $(out_base)/cxx-tree-guide.ps $(out_base)/cxx-tree-guide.pdf
- $(call install-data,$(src_base)/index.xhtml,$(install_doc_dir)/xsd/$(path)/index.xhtml)
- $(call install-data,$(out_base)/cxx-tree-guide.ps,$(install_doc_dir)/xsd/$(path)/cxx-tree-guide.ps)
- $(call install-data,$(out_base)/cxx-tree-guide.pdf,$(install_doc_dir)/xsd/$(path)/cxx-tree-guide.pdf)
-
-$(dist): $(out_base)/cxx-tree-guide.ps $(out_base)/cxx-tree-guide.pdf
- $(call install-data,$(src_base)/index.xhtml,$(dist_prefix)/$(path)/index.xhtml)
- $(call install-data,$(out_base)/cxx-tree-guide.ps,$(dist_prefix)/$(path)/cxx-tree-guide.ps)
- $(call install-data,$(out_base)/cxx-tree-guide.pdf,$(dist_prefix)/$(path)/cxx-tree-guide.pdf)
-
-$(dist-win): $(dist)
-
-
-# Clean
-#
-$(cleandoc):
- $(call message,rm $$1,rm -f $$1,$(out_base)/cxx-tree-guide.ps)
- $(call message,rm $$1,rm -f $$1,$(out_base)/cxx-tree-guide.pdf)
-
-# How to.
-#
-$(call include,$(bld_root)/install.make)