summaryrefslogtreecommitdiff
path: root/xsd/doc/cxx/tree/guide/cxx-tree-guide.ps
blob: a6c4a2b517ef36690eb3ae727913769f2153032f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
%!PS
%%Title: C++/Tree Mapping Getting Started Guide
%%Creator: html2ps version 1.0 beta7
%%EndComments
save
2000 dict begin
/d {bind def} bind def
/D {def} d
/t true D
/f false D
/FL [/Times-Roman
/Times-Italic
/Times-Bold
/Times-BoldItalic
/Courier
/Courier-Oblique
/Courier-Bold
/Courier-BoldOblique
/Helvetica
/Helvetica-Oblique
/Helvetica-Bold
/Helvetica-BoldOblique] D
/WF t D
/WI 0 D
/F 1 D
/IW 471 F div D
/IL 621 F div D
/PS 791 D
/EF [0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 2 2] D
/EZ [12 10 19 17 15 13 12 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 8 8] D
/Ey [0 0 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] D
/EG [-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1] D
/Tm [1 1 0.8 0.8 0.8 0.8 0.8 0.8 0 0 0 0 0 0 0.5 1 1 1 1 0 0 1.3 0 0] D
/Bm [1 1 0.5 0.5 0.5 0.5 0.5 0.5 0 0 0 0 0 0 0.5 1 1 1 1 0 0 1 0 0] D
/Lm [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 0 0 2 0 0 0] D
/Rm [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0] D
/EU [-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0] D
/NO f D
/YY [[{()}{ h }][{ h }{()}][{()}{()}]] D
/ZZ [[{ (July 2014) }{ Pn }][{ Pn }{ (July 2014) }][{ Ti }{ Ti }]] D
/Ts EZ 0 get D
/TU f D
/Xp t D
/AU f D
/SN 0 D
/Cf t D
/Tp t D
/Fe f D
/TI 2 Ts mul D
/Fm 14 D
/xL 71 D
/xR 71 D
/yL 706 D
/yR 706 D
/Wl 471 F div D
/Wr 471 F div D
/hL 621 F div D
/hR 621 F div D
/FE {newpath Fm neg Fm M CP BB IW Fm add Fm L IW Fm add IL Fm add neg L CP BB
 Fm neg IL Fm add neg L closepath} D
/LA {PM 0 eq{/IW Wl D /IL hL D}{/IW Wr D /IL hR D}ie /W IW D /LL W D /LS W D
 TU PM 0 eq and{IW 56 F div add SA{Sf div}if 0 translate}
 {PM 0 eq{xL yL}{xR yR}ie translate F SA{Sf mul}if dup scale
 CS CF FS Cf{CA CL get VC}if /Bb f D}ie 0 0 M
 TF not Tc or {Cf{gsave SA{1 Sf div dup scale}if Cb VC FE fill grestore}if}if}D
/Pi 0 Ts mul D
/SG [0.8 1 1] D
/Ab 15 D
/J 0 D
/Tc t D
/NH 6 D
/Nf f D
/Pa f D
/LH 1.2 D
/XR f D
/Xr {/pN E D ( [p ) WB pN WB (] )WB} D
/Db [16#FF 16#FF 16#FF] D
/Dt [16#00 16#00 16#00] D
/eA f D
/Fi f D
/bT f D
/Lc t D
/Dl [16#00 16#00 16#00] D
/LX f D
/Br 0.25 D
/IA ([IMAGE]) D
/DS {/PF f D()WB NL NP()pop RC ZF} D
/Gb f D
/Mb t D
/Hc [16#00 16#00 16#00] D
/Bl 3 D
/MI -15.6 D
/DX (DRAFT) D
/Di 0 D
/Tt 113.385826771654 D
/Th { (
) 2 Al()BR (
  ) 0 1 -1 H()4 FZ (C++/Tree Mapping) ES()EH (
  ) 0 1 -1 H()4 FZ (Getting Started Guide) ES()EH (
  ) 0 1 -1 H ( ) EH (
  ) 0 1 -1 H ( ) EH (
  ) 0 1 -1 H ( ) EH (
  ) 0 1 -1 H ( ) EH (
  ) 0 1 -1 H ( ) EH (
  ) 0 1 -1 H ( ) EH (
) Ea()BR (
  ) 0 P (Copyright © 2005-2014 CODE SYNTHESIS TOOLS CC) EP (

  ) 0 P (Permission is granted to copy, distribute and/or modify this
     document under the terms of the
     ) R0 2 A (GNU Free
     Documentation License, version 1.2) EA (; with no Invariant Sections,
     no Front-Cover Texts and no Back-Cover Texts.
  ) EP (

  ) 0 P (This document is available in the following formats:
     ) R1 2 A (XHTML) EA (,
     ) R2 2 A (PDF) EA (, and
     ) R3 2 A (PostScript) EA (.) EP()} D
/tH {()0 1 -1 H (Table of Contents) EH()} D
/FD 2 D
/Dy 2 D
/cD [16#F0 16#F0 16#F0] D
/FW 0.6 D
/FU [16#00 16#00 16#00] D
/ET {/RM f D /A0 3 D /PN SN D /OU t D /Ou t D /W IW D /LL W D D1
 Ms not TP and{Ip}if /TF f D} D

%-- End of variable part --
/MySymbol 10 dict dup begin
 /FontType 3 D /FontMatrix [.001 0 0 .001 0 0 ] D /FontBBox [25 -10 600 600] D
 /Encoding 256 array D 0 1 255{Encoding exch /.notdef put}for
 Encoding (e) 0 get /euro put
 /Metrics 2 dict D Metrics begin
  /.notdef 0 D
  /euro 651 D
 end
 /BBox 2 dict D BBox begin
  /.notdef [0 0 0 0] D
  /euro [25 -10 600 600] D
 end
 /CharacterDefs 2 dict D CharacterDefs begin
  /.notdef {} D
  /euro{newpath 114 600 moveto 631 600 lineto 464 200 lineto 573 200 lineto
   573 0 lineto -94 0 lineto 31 300 lineto -10 300 lineto closepath clip
   50 setlinewidth newpath 656 300 moveto 381 300 275 0 360 arc stroke
   -19 350 moveto 600 0 rlineto -19 250 moveto 600 0 rlineto stroke}d
 end
 /BuildChar{0 begin
  /char E D /fontdict E D /charname fontdict /Encoding get char get D
  fontdict begin
   Metrics charname get 0 BBox charname get aload pop setcachedevice
   CharacterDefs charname get exec
  end
 end}D
 /BuildChar load 0 3 dict put /UniqueID 1 D
end
definefont pop

/Cd {aload length 2 idiv dup dict begin {D} repeat currentdict end} D
/EX {EC cvx exec} D
/DU {} d
/BB {pop pop}d
/ie {ifelse} d
/E {exch} d
/M {moveto} d
/R {rmoveto} d
/L {lineto} d
/RL {rlineto} d
/CP {currentpoint} d
/SW {stringwidth} d
/GI {getinterval} d
/PI {putinterval} d
/Sg {setgray} d
/LW {setlinewidth} d
/S {dup () ne OU and{0 Co R AT 3 eq LB and HF not and A1 0 ne A2 0 ne or and
 {A2 0 32 A1 0 6 -1 roll awidthshow}{show}ie 0 Co neg R}{pop}ie
 OU PH 3 eq or{/Ms t D}if} D
/U {OU{gsave CP currentfont /FontInfo get /UnderlinePosition get
 0 E currentfont /FontMatrix get dtransform E pop add newpath M dup SW pop
 CJ 0 RL stroke grestore}if} D
/B {OU Br 0 gt and{CP Ts neg Ts .33 mul R gsave 0 Sg
 CP newpath Ts Br mul 0 360 arc closepath UI 2 mod 0 eq{stroke}{fill}ie
 grestore M CP E Ts Br 1 add mul sub E BB /Ms t D}if}D
/NP {Ms TP not or PA and OU and{TP{OR}if f1{mF k2 /mF E D /YC 0 D}if
 TP TU not PM 0 eq or and{showpage}if DU Ip TE not{LA}if 0.6 LW
 /CI 0 D /TP t D /Hs f D /hl 6 D /Hv 6 D /HI hi D /Ms f D}if Bs XO BO M} D
/Np {LE sub CP E pop gt PL 0 eq and{NP}if}D
/Ip {/PN PN 1 add D /Pn RM{1}{4}ie PN Ns D /PM PN SN sub 2 mod D} D
/GP {E dup 3 -1 roll get PN 1 add 2 mod get dup type /integertype eq
 {get 0 get}{E pop}ie}d
/Fc {dup 2 GP exec SW pop /S1 E D dup 1 GP exec SW pop /S2 E D 0 GP exec SW
 pop /S3 E D S1 0 gt{S2 2 mul S1 add S3 2 mul S1 add 2 copy lt{E}if pop}{0}ie
 S2 S3 add 2 copy lt{E}if pop IW .9 mul div dup 1 gt{1 E div}{pop 1}ie}D
/OR {Df{Sd}if tp not{gsave SA{1 Sf div dup scale}if Fe{Cf{FU VC}if FW LW
 1 setlinejoin FE stroke}if /YO {60 F div dup 40 gt{pop 40}if}D /cs CS D
 /cf CF D /CF 0 D /pf PF D /PF f D /Fn FN D /At AT D /AT 0 D /FN EF Hf 1 add
 get D Fz Fs FS ZZ Fc Fz mul Fs FS EU Hf 1 add get dup type /arraytype eq
 Cf and{VC}{pop 0 Sg}ie IW IL neg YO sub M ZZ 1 GP exec dup SW pop neg 0 R Sh
 0 IL neg YO sub M ZZ 0 GP exec Sh ZZ 2 GP exec dup SW pop IW E sub 2 div
 IL neg YO sub M Sh Fz Fs FS NO{/AW IW Pn SW pop sub D AW 2 div IL neg YO sub
 S1 0 gt S2 AW .45 mul gt or S3 AW .45 mul gt or{Fz 2 mul sub}if M Pn Sh}if
 EU Hf get dup type /arraytype eq Cf and{VC}{pop 0 Sg}ie YY Fc /FN EF Hf get D
 Hz mul HS FS IW YO M YY 1 GP exec dup SW pop neg 0 R Sh 0 YO M YY 0 GP exec Sh
 YY 2 GP exec dup SW pop IW E sub 2 div YO M Sh /FN Fn D /AT At D t Pb XO SZ
 SL get neg R /PF pf D grestore /CF 0 D cs cf FS}if}D
/Sh {dup () ne{CP Hz 4 div sub BB show CP CS add BB}{pop}ie}D
/Pb {/OU E D /Ou OU D /PB t D 0 0 M Ba{/Sa save D /BP t D /Fl t D RC /PL 0 D
 /PH 0 D /W IW D /LE IL .7 mul D /EO 0 D SI ZF /YA 0 D /BO 0 D /C1 () D
 BA 0 Ts neg R Bb{Xl Yl Xh Yh}if Bb CP Sa restore M
 {/Yh E D /Xh E D /Yl E D /Xl E D}if /Fl t D}if
 BL /OU t D /HM f D /Ou t D /PB f D} D
/Bs {/BP Ba not D}D
/reencodeISO {
 dup dup findfont dup length dict begin{1 index /FID ne{D}{pop pop}ie}forall
 /Encoding ISOLatin1Encoding D currentdict end definefont} D
/ISOLatin1Encoding [
/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
/space/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright
/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash
/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon
/less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N
/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright
/asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m
/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde
/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef/.notdef
/.notdef/space/exclamdown/cent/sterling/currency/yen/brokenbar
/section/dieresis/copyright/ordfeminine/guillemotleft/logicalnot
/hyphen/registered/macron/degree/plusminus/twosuperior/threesuperior
/acute/mu/paragraph/periodcentered/cedilla/onesuperior/ordmasculine
/guillemotright/onequarter/onehalf/threequarters/questiondown
/Agrave/Aacute/Acircumflex/Atilde/Adieresis/Aring/AE/Ccedilla
/Egrave/Eacute/Ecircumflex/Edieresis/Igrave/Iacute/Icircumflex
/Idieresis/Eth/Ntilde/Ograve/Oacute/Ocircumflex/Otilde/Odieresis
/multiply/Oslash/Ugrave/Uacute/Ucircumflex/Udieresis/Yacute
/Thorn/germandbls/agrave/aacute/acircumflex/atilde/adieresis
/aring/ae/ccedilla/egrave/eacute/ecircumflex/edieresis/igrave
/iacute/icircumflex/idieresis/eth/ntilde/ograve/oacute/ocircumflex
/otilde/odieresis/divide/oslash/ugrave/uacute/ucircumflex/udieresis
/yacute/thorn/ydieresis
] D
[128/backslash 129/parenleft 130/parenright 141/circumflex 142/tilde
143/perthousand 144/dagger 145/daggerdbl 146/Ydieresis 147/scaron 148/Scaron
149/oe 150/OE 151/guilsinglleft 152/guilsinglright 153/quotesinglbase
154/quotedblbase 155/quotedblleft 156/quotedblright 157/endash 158/emdash
159/trademark]
aload length 2 idiv 1 1 3 -1 roll{pop ISOLatin1Encoding 3 1 roll put}for
/colorimage where{pop}{
 /colorimage {
  pop pop /Pr E D {/Cv Pr D /Gr Cv length 3 idiv string D 0 1 Gr length 1 sub
   {Gr E dup /i E 3 mul D Cv i get 0.299 mul Cv i 1 add get 0.587 mul add
    Cv i 2 add get 0.114 mul add cvi put}for Gr} image} D
}ie
/pdfmark where{pop}{userdict /pdfmark /cleartomark load put}ie
WF{FL{reencodeISO D}forall}{4 1 FL length 1 sub{FL E get reencodeISO D}for}ie
/Symbol dup dup findfont dup length dict begin
 {1 index /FID ne{D}{pop pop}ie}forall /Encoding [Encoding aload pop]
 dup 128 /therefore put D currentdict end definefont D

/SF {/CS E D SZ SL CS put FO SL FN put /YI CS LH neg mul D dup ST cvs ( ) join
 CS ST cvs join C1 E join ( NF ) join /C1 E D CS NF /Wf WF FN 0 gt or D
 /BW Wf{( ) SW pop}{0}ie D}D
/NF {/cS E D /cF E D cF 0 ge{FL cF get}{cF -1 eq{/Symbol}{/MySymbol}ie}ie
 findfont cS scalefont setfont} D
/FS {CF or /CF E D FR SL CF put CF CF 0 ge{FN 4 mul add}if E SF} D
/PC {SH /BP f D fin not GL not and{NL}if /HM t D /LL LS D} D
/BS {/TX E D Wf{/fin f D /CW 0 D /LK 0 D /SC 0 D
 /RT TX D {RT ( ) search{/NW E D pop /RT E D /WH NW SW pop D CW WH add LL gt
 {TX SC LK SC sub 1 sub NN GI GL{SH cF cS OC
 2 copy cS ne E cF ne or{NF}{pop pop}ie}{PC /CW WH BW add D}ie
 /SC LK D}
 {GL{JC}if
 /CW CW WH add BW add D /HM t D}ie /GL f D /Ph f D
 /LK LK NW length 1 add add D}{pop exit}ie}loop
 /fin t D TX SC LK SC sub GI SH RT () ne{GL not{CC}if}if
 /LC TX length D /WH RT SW pop D CW WH add Hy{HC SW pop add}if LL gt
 {RT GL{SH cF cS OC 2 copy cS ne E cF ne or{NF}{pop pop}ie
 Hy{/Ph t D}if /LL LS D}{NL /LL LS D SH}ie}
 {RT PC Hy{CC}if /Ph Ph Hy or D}ie RT () ne{/GL t D /HM t D}if}
 {TX SW pop LL le{TX SH}{/NW () D 0 2 TX length 1 sub
 {/CW E D TX 0 CW GI dup SW pop LL gt{pop NW SH /HM t D NL/LL W XO sub MR sub D
 /CW CW 2 sub NN D /TX TX CW TX length CW sub GI D TX BS exit}
 {/NW E D}ie}for}ie}ie /HM t D}D
/CC {C0 length 0 gt{JC}if /C0 [C1 L1 YA YB Mf NS NB TB AF Bw] D
 /C1 () D /L0 L1 D /YA 0 D /YB 0 D /Mf 0 D /NS 0 D /NB 0 D}D
/JC {C0 aload length 0 gt{pop pop pop NB add /NB E D NS add /NS E D
 dup Mf gt{/Mf E D}{pop}ie dup YB gt{/YB E D}{pop}ie
 dup YA gt{/YA E D}{pop}ie pop C1 join /C1 E D /C0 [] D}if}D
/OC {C0 length 0 gt{C1 L1 L0 sub YA YB Mf NS NB TB AF Bw GL C0 aload pop
 /Bw E D /AF E D /TB E D /NB E D /NS E D /Mf E D /YB E D /YA E D /C0 [] D
 /L1 E D /C1 E D Ph{HC SH}if NL /GL E D /Bw E D /AF E D /TB E D /NB E D /NS E D
 /Mf E D /YB E D /YA E D /L1 E D /LL W L1 sub XO sub MR sub WH sub D /CW 0 D
 C1 E join /C1 E D}if}D
/BT {/LB t D dup length string copy RS dup dup () ne E ( ) ne and
 {/CI 0 D /LS LL D /LL W L1 sub XO sub MR sub D BS}
 {dup ( ) eq{/GL f D}if dup () eq L1 0 eq or{pop}{SH /BP f D /Ph f D}ie}ie
 /LB f D} D
/BL {CP E pop XO E M} D
/NL {JC /GL f D /SK W XO sub MR sub L1 sub TB{Bw add}if D
 /YA LF{Mf HM Fl not and PF or{LH mul}if}{0 /LF t D}ie YA 2 copy lt{E}if pop D
 C1 () ne{/FB YB Mf SA{Sf mul}if 4 div 2 copy lt{E}if pop D}if Fl{/Ya YA D}if
 CP E pop YA sub YB sub LE neg lt Fl not and PB not and{NP}if NT TL BL
 OU PF not and PB or{/RE L1 TB{Bw sub}if
 W XO sub MR sub div YA YB add LE BO add div 2 copy lt{E}if pop D
 RE 1 gt{BL 1 RE div dup scale}if}if
 AT 2 le{SK AT mul 2 div YA neg R}if
 AT 3 eq{0 YA neg R TB{/NB NB 1 sub D /NS NS 1 sub D}if /NB NB 1 sub NN D
 /A3 NS 6 mul NB add D NS NB add 0 eq
  {/A1 0 D /A2 0 D}
  {NS 0 eq{/A1 SK NB div dup J gt{pop 0}if D /A2 0 D}{J A3 mul SK lt
   {/A1 J D /A2 SK J NB mul sub NS div dup Ab gt{/A1 0 D pop 0}if D}
   {/A1 SK A3 div D /A2 A1 6 mul D}ie}ie}ie /A1 A1 NN D /A2 A2 NN D}if
 AT 4 eq{0 YA neg R PH 2 le{PD 0 lt{/PD L1 D}if PD M1 gt{/M1 PD D}if
 L1 PD sub M2 gt{/M2 L1 PD sub D}if}{DV ID 1 sub get 0 ge{Lo 0 R}if}ie}if
 F0 cF ne Cs cS ne or{F0 Cs NF}if
 /ms Ms D /Ms f D CP FB sub
 C1 cvx exec XO EO sub L1 add TB{BW sub}if dup LM gt{/LM E D}{pop}ie
 PH 0 eq PH 4 eq or Ms and{HF not{/PO t D /AH t D}if
 BB CP YA add E AT 3 eq LB and{A1 sub}if TB{BW sub}if E BB}
 {pop pop}ie Ms HM PH 3 eq and or{/BP f D /Fl f D}if
 /Lo 0 D /L1 0 D /F0 cF D /Cs cS D BP not{0 YB NN neg R}if
 OU f1 and mF not and{k2 /f1 f D}if
 OU PF not and PB or{RE 1 gt{RE dup scale}if}if /Ms ms Ms or D
 /C1 AF{(Cp )}{()}ie D /YA 0 D /YB 0 D BL
 AT 4 eq LB not and PH 3 ge and
 {ID DV length lt{DV ID get dup 0 ge{DO E sub /Lo E D /L1 Lo D}{pop}ie
 /ID ID 1 add D}if}if /T t D CD{/LN LN 1 add D PD}if
 /PD -1 D /NS 0 D /NB 0 D /TB f D /Ph f D /Mf 0 D /HM f D} D
/RS {/TM E D /CN 0 D TM{10 eq{TM CN ( ) PI}if /CN CN 1 add D}forall
 /CN 0 D /BK HM EN and{0}{1}ie D TM
 {dup 32 ne{TM CN 3 2 roll put /CN CN 1 add D /BK 0 D}
 {pop BK 0 eq{TM CN 32 put /CN CN 1 add D}if /BK 1 D}ie}forall
 TM 0 CN GI dup dup () ne E ( ) ne and
 {dup CN 1 sub get 32 eq{/EN f D}{/EN t D}ie}if} D
/join {2 copy length E length add string dup 4 2 roll 2 index 0 3 index
 PI E length E PI}d
/WR {(\n) search{dup () ne BP not or
 {Li 4 le CP E pop YI Li mul add LE add 0 lt and PL 0 eq and{NP}if
 SH NL pop /Li Li 1 sub D WR}{pop pop WR}ie}{SH}ie /CI 0 D /BP f D} D
/SH {dup dup () ne E ( ) ne and PF or CS Mf gt and{/Mf CS D}if
 T not Wf and{( ) E join /T t D}if dup BP{/MF CS D}if
 AT 3 eq{2 copy length dup 0 gt{/NB E NB add D
 {( ) search{/NS NS 1 add D pop pop}{pop exit}ie}loop}{pop pop}ie}if
 CD PD 0 lt and{dup DC search{SW pop /PD E L1 add D pop pop}{pop}ie}if
 0 Np dup SW pop L1 add /L1 E D dup () ne
 {C1 (\() join E join (\)) join AU AF and UF or Wf and{( U ) join}if
 sF{( s ) join}if ( S ) join
 /C1 E D dup length 1 sub get 32 eq /TB E D /Bw BW D}{pop pop}ie} D
/BG {AI LG BC add add 0 eq} D
/ON {OU{Ty AR AI NN get dup 1 add Ln Ns Ty 2 mod 0 eq{(.  )}{(\)  )}ie join
 dup SW pop neg 0 R CP E 0 lt{0 E M}{pop}ie CP BB show /Ms t D}if} D
/Ln {AR AI 3 -1 roll put}D
/SP {dup CI lt BP not and{dup CI sub 0 E R /CI E D}{pop}ie} D
/BN {PF{WR /HM f D}{BT NL}ie} D
/NN {dup 0 lt{pop 0}if} D
/h {(h) HI ST cvs join cvx exec dup 1 get E Nf{0 get E join}{pop}ie} D
/H {/fn FN D /Hi E 1 add D 1 sub /HL E D /H2 HL 2 add D /GS EZ H2 get D
 E Tm H2 get GS mul BE dup 0 gt{1 sub}{pop EG H2 get dup 0 lt{pop AT}if}ie NA
 WW Np /SL SL 1 add D /FN EF H2 get D GS Ey H2 get FS
 EU H2 get Sc Hs not HL Hl lt and Hs HL hl lt and or Hi 0 eq or
 {/HI Hi D /Hs t D /hl HL D /Hv HL D}if HL Hl lt{/hi Hi D}if
 Nf HI 0 gt and{(h) Hi ST cvs join cvx exec 0 get WB}if
 /HF t D /AH f D /PO f D} D
/EH {Bm H2 get GS mul BE OA /SL SL 1 sub NN D /CF 0 D /FN fn D
 SZ SL get FR SL get FS /HF f D /GS Ts D ()Ec} D
/P {E PF{WR}{PO{EP}{BN}ie Ts 4 mul Np AE not{Tm 0 get Ts mul neg SP}if
 dup 0 ge AH and{Pi Pd}if}ie 1 sub dup 0 lt{pop AV AL get}if /AT E D /PO t D} D
/EP {PF{WR}{BN Ts 4 mul Np}ie AE not{Bm 0 get Ts mul neg SP}if
 /AT AV AL get D /PO f D} D
/BE {E PO{EP}{BN}ie Ts 4 mul Np neg SP} D
/HR {/Aw W EO sub D /RW E dup 0 gt{Aw mul}{neg}ie dup Aw gt{pop Aw}if D /RZ E D
 E BN Ts neg SP 1 sub 2 div Aw RW sub mul EO add CP E pop M PF{0 Ps neg R}if
 0 Np OU{gsave RZ LW Cf{Hc VC}{0 Sg}ie CP BB RW 0 RL CP BB stroke grestore}if
 /CI 0 D /BP f D PF not{Ts neg SP}if /Ms t D} D
/AD {I NL EG 14 get dup 0 lt{pop AT}if NA /AE t D Tm 14 get Ts mul neg SP
 Cf{EU 14 get dup -1 eq{pop CA CL get}if Sc}if} D
/DA {BN ()ES OA /AE f D ()Ec Bm 14 get Ts mul neg SP} D
/PR {/MW E D /Li E D Tm 1 get Ps mul BE 0 NA /FN Fp D /PF t D SI /SL SL 1 add D
 /CF 0 D Ps CS mul Ts div MW WC mul CS mul Ts div dup LL gt PL 0 eq and
 {LL div div}{pop}ie Ey 1 get FS CP E pop LE add YI neg div cvi dup Li lt
 AH and{4 lt YI Li mul 5 mul LE add 0 gt or PL 0 eq and{NP}if}{pop}ie
 EU 1 get Sc /GS Ps D}D
/RP {WR NL () /PF f D SI /FN 0 D ES Bm 1 get Ps mul neg SP OA /GS Ts D} D
/SI {/XO Lm 15 get BC NN mul Lm 16 get AI UI sub NN mul add
 Lm 17 get UI NN mul add Lm 20 get LG NN mul add Ts mul
 PF{Lm 1 get Ps mul add}if EO add D
 /MR Rm 15 get BC NN mul Rm 16 get AI UI sub NN mul add
 Rm 17 get UI NN mul add Rm 20 get LG NN mul add Ts mul
 PF{Rm 1 get Ps mul add}if D /LL W XO sub MR sub D} D
/DT {/cC E D BN /LG LG 1 sub D SI /LG LG 1 add D WW 2 div Np BL} D
/DD {WB Cc 0 eq cC 0 eq and L1 0 eq or Lm 20 get Ts mul L1 sub TB{BW add}if
 Ts 2 div lt or NL /LF E D SI BL /cC 0 D} D
/DL {Dc LG Cc put /Cc E D BG{Tm 18 get Ts mul BE}{BN}ie /LG LG 1 add D BL} D
/LD {BN LG 0 gt{/LG LG 1 sub D}if /Cc Dc LG get D SI
 BG{()Bm 18 get Ts mul BE}if BL} D
/UL {BG{Tm 17 get Ts mul BE}{BN}ie NR AI NN 0 put /UI UI 1 add D
 /AI AI 1 add D SI BL} D
/LU {BN /UI UI 1 sub D /AI AI 1 sub D SI BG{()Bm 17 get Ts mul BE}if BL} D
/OL {E BG{Tm 16 get Ts mul BE}{BN}ie TR AI NN Ty put /Ty E D NR AI NN 1 put
 /AI AI 1 add D SI BL 1 Ln} D
/LO {BN /AI AI 1 sub D /Ty TR AI get D SI BG{()Bm 16 get Ts mul BE}if BL} D
/LI {E BN -1 SP /BP f D /CI 0 D 0 Np NR AI 1 sub NN get 1 eq
 {dup dup 0 gt E 4 le and{/Ty E D}{pop}ie
 /L1 L1 Ty AR AI NN get Ns SW pop XO sub dup 0 lt{pop 0}if add D ( ON )}
 {pop ( B )}ie C1 E join /C1 E D CS Mf gt{/Mf CS D}if BL} D
/BQ {Tm 15 get Ts mul BE /BC BC 1 add D SI BL} D
/QB {Bm 15 get Ts mul BE /BC BC 1 sub D SI BL} D
/Al {E EP 1 sub dup 0 lt{pop AV AL get}if NA} D
/Ea {EP OA} D
/WB {PF{WR}{BT}ie} D
/F1 {WB /FN 0 D CS 0 FS} D
/F2 {WB /FN WI D CS 0 FS} D
/HY {/Hy t D WB /Hy f D} D
/YH {WB} D
/A {/LT E D LT 1 eq{/RN E D}if /Lh E D WB /C1 C1 ( Cp ) join D
 Lc AF not and{Cl Sc}if /AF t D} D
/EA {Lc AF and{Ec}{WB}ie TL Pa AF and Lh 0 ne and
 {( \() Lh join (\)) join /AF f D WB}if /AF f D} D
/TL {C1 ( Tl ) apa /C1 E D} d
/apa {AF OU and Lh 0 ne LT 1 eq or and{LT 1 eq{RN ( /) E ST cvs join}
 {(\() Lh join (\)) join}ie E join join}{pop}ie} d
/Cp {/Xc CP /Yc E D D} D
/SS {Cf{dup 0 ge{EU E get dup -1 eq{pop CA CL get}if}{pop CA CL get}ie Sc}
 {pop}ie SZ SL get /SL SL 1 add D} D
/I {WB 8 SS 1 FS} D
/EM {WB 8 SS /CF CF 1 xor D 0 FS} D
/BD {WB 9 SS 2 FS} D
/TT {WB 10 SS /FN Fp D 0 FS} D
/KB {WB 11 SS /FN Fp D 2 FS} D
/CT {WB 12 SS 1 FS} D
/SM {WB 13 SS /FN Fp D 0 FS} D
/Q {/QL QL 1 add D QO QL 2 mod get La get join WB} D
/EQ {QC QL 2 mod get La get join WB /QL QL 1 sub D} D
/RO {WB -1 SS /CF 0 D 0 FS} D
/SY {WB -1 SS -1 FS} D
/MY {WB -1 SS -2 FS} D
/ES {WB /SL SL 1 sub NN D /CF 0 D /FN FO SL get D SZ SL get FR SL get FS ()Ec}D
/FZ {3 sub 1.2 E exp GS mul E WB TL /C1 C1 ( Cp ) join D /SL SL 1 add D 0 FS} D
/Ef {WB TL ()ES /C1 C1 ( Cp ) join D} D
/BZ {dup /Bf E D FZ}D
/Sc {dup -1 ne Cf and{/CL CL 1 add D dup 0 eq{pop [0 0 0]}if
 dup CA E CL E put VS ( VC ) join C1 E join /C1 E D}{pop}ie} D
/Ec {WB Cf{/CL CL 1 sub NN D CA CL get VS ( VC ) join C1 E join /C1 E D}if} D
/VS {dup type /arraytype eq{([) E {ST cvs join ( ) join}forall (]) join}if} D
/VC {{255 div}forall setrgbcolor} D
/Sl {dup type /integertype ne{Ds}if /La E D WB}d
/UN {WB /UF t D} D
/NU {WB /UF f D} D
/SE {WB /sF t D} D
/XE {WB /sF f D} D
/sM {/C1 C1 ( k1 ) join D}d
/eM {/C1 C1 ( k2 ) join D}d
/k1 {/YC CP E pop Ts add D /mF t D /f1 t D}d
/k2 {gsave 3 LW -9 CP E pop Ts 0.2 mul sub M -9 YC L stroke grestore /mF f D}d
/Ac {/AC E D WB}d
/Ca {eA{( \()join AC join(\) )join}if WB}d
/s {OU{gsave 0 CS .25 mul R dup SW pop CJ 0 RL stroke grestore}if}D
/CJ {AT 3 eq LB and{E dup dup length 1 sub A1 mul E
 {( ) search{pop pop E A2 add E}{pop exit}ie}loop 3 -1 roll add
 W CP pop sub 2 copy gt{E}if pop}if}D
/So {/Co E D} D
/SO {C1 Yo ST cvs join ( So ) join /C1 E D (j) SW pop 2 div Pd} D
/Se {E WB CS E div Pd}D
/Pd {dup type /stringtype eq{SW pop}if dup /L1 E L1 add D
 ST cvs ( 0 R ) join C1 E join /C1 E D} D
/Sp {0.35 CO} D
/Sb {-0.2 CO} D
/CO {OV Io Yo put /Yo E CS mul Yo add D /Io Io 1 add D -1.5 Io mul 3 add FZ SO
 CS Yo add dup YA gt{/YA E D}{pop}ie
 Yo neg dup YB gt{/YB E D}{pop}ie} D
/Es {ES /Io Io 1 sub NN D /Yo OV Io get D SO} D
/SB {/N2 0 D 0 1 NI{/N E D{IX N2 get 0 lt{/N2 N2 1 add D}{exit}ie}loop
 /K WS N get FC N get mul D /NY AY N2 get D /BV NY array D
 0 1 NY 1 sub{/TM K string D currentfile TM readhexstring pop pop BV E TM put}
 for BM N BV put /N2 N2 1 add D}for} D
/IC [{/MA E D /MB 0 D}{2 div /MA E D /MB MA D}{/MB E CS sub D /MA CS D}
 {pop /MA YS AB mul D /MB 1 AB sub YS mul D}{pop /MA 0 D /MB 0 D}] D
/IP {BV N get /N N 1 add D} D
/II {/K E D IX K get 0 lt{/EC E D}if /TY E D
 TY 4 eq{/Y E D /X E D}if TY 3 eq{/AB E D}if
 /XW AX K get D /YW AY K get D /IS SG IT K get get D /XS XW IS mul D
 /YS YW IS mul D YS IC TY get exec /MA MA Fl not{3 add}if D} D
/IM {II /ty TY D /xs XS D /ys YS D /ya YA D /yb YB D /ma MA D /mb MB D /k K D
 /ec EC D /BP f D /CI 0 D WB TL L1 xs add dup XO add MR add W gt
 {pop /ma ma Fl{3 add}if D NL /YA ma D /YB mb D /YS ys D /L1 xs D}
 {/L1 E D ma YA gt{/YA ma D}if mb YB gt{/YB mb D}if}ie /TB f D
 OU{CP E pop YS sub LE neg lt Fl not and PB not and{NP /YA ma D /YB mb D}if
 /BP f D ty ST cvs ( ) join IX k get 0 lt{(\() join ec join (\) ) join}if
 k ST cvs join ty 3 eq{AB ST cvs ( ) join E join}if
 ty 4 eq{X ST cvs ( ) join Y ST cvs join ( ) join E join}if C1 E join
 ( DI ) join FP 2 eq FP 1 eq AF and or{( FM ) join}if
 ( Il Cp ) apa /C1 E D /EN f D}if /HM t D /T f D} D
/DI {II /Xc CP /Yc E D D /YN YW neg D /HM t D /CI 0 D /K2 IX K get D gsave
 TY 4 eq{OX X IS mul add OY FY add YS sub Y IS mul sub}
 {/FY YS D CP MB sub 2 copy /OY E D /OX E D}ie
 translate K2 0 ge{/DP AZ K2 get D /BV BM K2 get D XS YS scale /N 0 D XW YW DP
 [XW 0 0 YN 0 YW] {IP} FC K2 get 1 eq{image}{f 3 colorimage}ie}
 {EX}ie grestore XS 0 R /Ms t D} D
/FM {gsave 0 Sg CP MB sub translate XS neg 0 M 0 YS RL XS 0 RL 0 YS neg RL
 XS neg 0 RL stroke grestore} D
/NA {/AT E D /AL AL 1 add D AV AL AT put} D
/OA {AL 0 gt{/AL AL 1 sub D /AT AV AL get D}if} D
/D1 {/BR {CP E pop E BN Mb{CP E pop eq{0 YI R}if}{pop}ie} D
 /Sn {OU{C1 E ST cvs join ( Ld ) join /C1 E D}{pop}ie} D} D
/D1 {/BR {BN} D /Sn {OU {C1 E ST cvs join ( Ld ) join /C1 E D} {pop} ie} D} D
/TC {/TF t D /ML 0 D HN{SW pop dup ML gt{/ML E D}{pop}ie}forall NP /RM RM not D
 RC /OU Tc D Ep /PN 0 D Ms not TP and{Ip}if /W IW ML sub Ts sub D
 /A0 0 D TH{/BR {( ) join BT} D /Sn {pop} D /Au () D}if} D
/TN {0 eq{E EA PF HF or not XR and{HN E get Xr}{pop}ie}
 {OU{Tn 0 ge{() BN}if /Tn E D}{pop}ie WB}ie} D
/NT {OU LB not and Tn 0 ge and{PL 0 eq{Ms not{CS CF FS}if CP dup
 /y E YA sub D W 9 sub CS -1.8 mul XO L1 add 2 add{y M (.) show}for
 HN Tn get dup SW pop IW E sub y M show CP BB M}if /Tn -1 D}if} D
/Ld {/DN E D HN DN Pn put [/View [/XYZ -4 Fl{PS}{CP YA add US E pop}ie null]
 /Dest DN ST cvs cvn /DEST pdfmark} D
/C {ND 1 eq{1 sub}if TI mul /XO E D NL Nf not{pop()}if 0 3 -1 roll 1 A} D
/OP {BP not{NP}if PN 2 mod 0 eq{/Ms t D NP}if}D
/Ep {Xp PN 2 mod 0 eq and OU and{/Pn (-) D showpage /PM 1 D LA}if}D
/Dg [73 86 88 76 67 68 77] D
/Rd [0 [1 1 0][2 1 0][3 1 0][2 1 1][1 1 1][2 2 1][3 3 1][4 4 1][2 1 2]] D
/Ns {/m E D /c E 32 mul D /j m 1000 idiv D /p j 12 add string D
 c 96 le m 0 gt and{c 32 le {/i 0 D /d 77 D /l 100 D /m m j 1000 mul sub D
  j -1 1 {pop p i d c add put /i i 1 add D}for
  4 -2 0 {/j E D /n m l idiv D /m m n l mul sub D /d Dg j get D
   n 0 gt {/x Rd n get D x 0 get -1 1 {pop p i d c add put /i i 1 add D}for
   p i x 1 get sub Dg x 2 get j add get c add put}if /l l 10 idiv D
  }for p 0 i GI}
  {/i ST length 1 sub D m {1 sub dup 0 ge{dup 26 mod c add 1 add
   ST i 3 -1 roll put 26 idiv dup 0 eq{pop exit}if}if /i i 1 sub D}loop
   ST i ST length i sub GI}ie}
 {m p cvs}ie} D
/US {matrix currentmatrix matrix defaultmatrix matrix invertmatrix
 matrix concatmatrix transform} D
/GB {Gb{US}if}D
/Tl {/Rn E D Xc CP pop ne{
 [/Rect [Xc 1 sub Yc cS 0.25 mul sub GB CP E 1 add E cS 0.85 mul add GB]
  /Subtype /Link /Border [0 0 Cf Lc and LX and AU or{0}{1}ie] Rn type
  /nametype eq {/Dest Rn}{/Action [/Subtype /URI /URI Rn] Cd}ie
  /ANN pdfmark}if} D
/Il {/Rn E D [/Rect [Xc Yc GB Xc XS add Yc YS add GB] /Subtype /Link
 /Border [0 0 0] Rn type /nametype eq{/Dest Rn}
 {/Action [/Subtype /URI /URI Rn] Cd}ie /ANN pdfmark} D
/XP {[{/Z Bz 2 div D Z 0 R Z Z RL Z neg Z RL Z neg Z neg RL Z Z neg RL
 Fi cH 1 eq and{fill}if} {Bz 0 RL 0 Bz RL Bz neg 0 RL 0 Bz neg RL
 Fi cH 1 eq and{fill}if} {0 -5 R Bz 0 RL 0 21 RL Bz neg 0 RL 0 -21 RL}]} D
/MS {/Sm E D WB}D
/O {BN()0 Sm BX} D
/BX {/Bt E D Bt 2 lt{/Ch E D CS 0.8 mul}{11 mul}ie W XO sub MR sub
 2 copy gt{E}if pop /HZ E D Bt 2 eq{Fi not{pop()}if ( )E join /Ft E D TT
 /PF t D /MW 1 D /Li 1 D /Fw Ft SW pop D Fw HZ gt{/HZ Fw 8 add D}if
 HZ ST cvs( )join}{WB Ch ST cvs( )join}ie L1 HZ add XO add MR add W gt{NL}if
 Bt 2 eq{Ft ES Fw neg HM{CS sub}if Pd}if Bt ST cvs join( Bx )join
 Bt 2 eq HM and{CS Pd}if C1 E join /C1 E D /L1 L1 HZ add D /T f D
 ( ) Pd /PF f D Bt 2 lt{YA CS .8 mul lt{/YA CS .8 mul D}if}
 {YB 5 lt{/YB 5 D}if YA 21 lt{/YA 21 D}if}ie /CI 0 D} D
/Bx {dup 2 eq{E /Bz E D}{E /cH E D /Bz CS .8 mul D}ie
 OU {gsave 0 Sg XP E get exec stroke grestore}{pop}ie Bz 0 R /Ms t D}D
/SD {FD 4 mul Dy add DZ NF newpath 0 0 M DX t charpath pathbbox
 3 -1 roll sub /DY E D E dup /X1 E D sub WM mul WX DY mul add WM DG mul E div
 /DF E D /DR WX DF mul DY mul WM div 2 div D} d
/Sd {gsave 0 IL Di mul neg translate IL IW atan Di 0 eq{neg}if rotate
 FD 4 mul Dy add DZ NF DR X1 sub DY 2 div neg M cD VC DX show grestore} d
/Pt {/tp t D Tp{NP /Pn (TP) D 0 Tt neg R Th BN NP Ep ET RC ZF}if /tp f D} D
/RC {/AI 0 D /LG 0 D /BC 0 D /UI 0 D /PF f D /Cc 0 D /cC 0 D /Dc 10 array D
 /NR [0 1 9{pop 0}for] D /La Ds D /AR 10 array D /TR 10 array D /AV 30 array D
 SI /AL -1 D /AT A0 D AT NA /OV 9 array D /Yo 0 D /Co 0 D /Io 0 D /Hy f D
 /Ph f D /CL -1 D Ct Sc}D
/ZF {/FR [0 1 30{pop 0}for] D /SZ [0 1 30{pop 0}for] D /FO [0 1 30{pop 0}for] D
 /SL 0 D /CF 0 D /FN 0 D 0 Ts SF}D
/QO [[(\234)(\233)(\253\240)(\232)(\273)(\253)][(')(`)(\253\240)(\231)(\273)(\253)]] D
/QC [[(\234)(\234)(\240\273)(\233)(\253)(\273)][(')(')(\240\273)(`)(\253)(\273)]] D
/Hf EF length 2 sub D
/Hz EZ Hf get D
/HS Ey Hf get D
/Fz EZ Hf 1 add get D
/Fs Ey Hf 1 add get D
/LE IL D
/Ps EZ 1 get D
/Fp EF 1 get D
/XO 0 D
/YI 0 D
/CI 0 D
/FP 0 D
/WW Ts 7 mul D
/Mf 0 D
/YA 0 D
/YB 0 D
/Cs Ts D
/GS Ts D
/F0 0 D
/NS 0 D
/NB 0 D
/N 0 D
/C0 [] D
/C1 () D
/Lo 0 D
/L1 0 D
/LM 0 D
/PH 0 D
/EC 0 D
/Lh 0 D
/LT 0 D
/CH 1 string D
/ST 16 string D
/CA 9 array D
/HC (\255) D
/HM f D
/PF f D
/EN f D
/TB f D
/UF f D
/sF f D
/AE f D
/AF f D
/BP t D
/CD f D
/PA t D
/GL f D
/T t D
/HF f D
/AH f D
/SA f D
/PB f D
/f1 f D
/mF f D
/OX 0 D
/OY 0 D
/FY 0 D
/EO 0 D
/FB 0 D
/PL 0 D
/Bw 0 D
/PD -1 D
/TP f D
/tp f D
/TH t D
/Ty 4 D
/Tn -1 D
/Fl t D
/LB t D
/PM 1 D
/Ms f D
/Ba f D
/Bb f D
/Hl 3 D
/hl 6 D
/Hv 6 D
/Hs f D
/HI 0 D
/hi 0 D
/PO t D
/TE f D
/LF t D
/BO 0 D
/Sm 1 D
/Bf 3 D
/A1 0 D
/A2 0 D
/Ds 1 D
/QL -1 D
/Cb Db D
/Ct Dt D
/Cl Dl D
[/Creator (html2ps version 1.0 beta7) /Author () /Keywords (xsd, xml, schema, c++, mapping, data, binding, parsing, serialization, validation) /Subject ()
 /Title (C++/Tree Mapping Getting Started Guide) /DOCINFO pdfmark
/ND 1 D
/HN [(1) (1) (1) (1) (1) (1) (1) (1) (2) (3) (3) (5) (7) (7) (8) (11) (13) (15)
(16) (16) (16) (17) (17) (18) (20) (23) (24) (26) (29) (??) (32) (33) (35)
(36) (37) (38) (1) (1) (1) (1) (1) (2) (3) (3) (5) (7) (7) (8) (11) (13)
(15) (16) (16) (16) (17) (17) (18) (20) (23) (24) (26) (29) (32) (33) (35)
(36) (37) (38)] D
/h0 [()(Table of Contents)] D
/h1 [(1\240\240)(Preface)] D
/h2 [(1.1\240\240)(About This Document)] D
/h3 [(1.2\240\240)(More Information)] D
/h4 [(2\240\240)(1 Introduction)] D
/h5 [(2.1\240\240)(1.1 Mapping Overview)] D
/h6 [(2.2\240\240)(1.2 Benefits)] D
/h7 [(3\240\240)(2 Hello World Example)] D
/h8 [(3.1\240\240)(2.1 Writing XML Document and Schema)] D
/h9 [(3.2\240\240)(2.2 Translating Schema to C++)] D
/h10 [(3.3\240\240)(2.3 Implementing Application Logic)] D
/h11 [(3.4\240\240)(2.4 Compiling and Running)] D
/h12 [(3.5\240\240)(2.5 Adding Serialization)] D
/h13 [(3.6\240\240)(2.6 Selecting Naming Convention)] D
/h14 [(3.7\240\240)(2.7 Generating Documentation)] D
/h15 [(4\240\240)(3 Overall Mapping Configuration)] D
/h16 [(4.1\240\240)(3.1 C++ Standard)] D
/h17 [(4.2\240\240)(3.2 Character Type and Encoding)] D
/h18 [(4.3\240\240)(3.3 Support for Polymorphism)] D
/h19 [(4.4\240\240)(3.4 Namespace Mapping)] D
/h20 [(4.5\240\240)(3.5 Thread Safety)] D
/h21 [(5\240\240)(4 Working with Object Models)] D
/h22 [(5.1\240\240)(4.1 Attribute and Element Cardinalities)] D
/h23 [(5.2\240\240)(4.2 Accessing the Object Model)] D
/h24 [(5.3\240\240)(4.3 Modifying the Object Model)] D
/h25 [(5.4\240\240)(4.4 Creating the Object Model from Scratch)] D
/h26 [(5.5\240\240)(4.5 Mapping for the Built-in XML Schema Types)] D
/h27 [(6\240\240)(5 Parsing)] D
/h28 [(6.1\240\240)(5.1 XML Schema Validation and Searching)] D
/h29 [(6.2\240\240)(5.2 Error Handling)] D
/h30 [(7\240\240)(6 Serialization)] D
/h31 [(7.1\240\240)(6.1 Namespace and Schema Information)] D
/h32 [(7.2\240\240)(6.2 Error Handling)] D
/Hr [36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59 60 61 62 63 64 65 66 67]D
/HV [1 2 2 1 2 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 1 2 2]D
/Cn [2 0 0 2 0 0 7 0 0 0 0 0 0 0 5 0 0 0 0 0 5 0 0 0 0 0 2 0 0 2 0 0]D
Hr length 0 gt{[/PageMode /UseOutlines /DOCVIEW pdfmark}if
/Hn 1 D
0 1 Hr length 1 sub{
 /Bn E D [Cn Bn get dup 0 gt{/Count E HV Bn get Bl ge{neg}if}{pop}ie
 /Dest Hr Bn get dup abs ST cvs cvn E 0 ge{(h)Hn ST cvs join cvx exec
 dup 1 get E Nf{0 get E join}{pop}ie /Hn Hn 1 add D}{()}ie
 /Title E dup length 255 gt{0 255 getinterval}if /OUT pdfmark}for
ZF /FN Fp D Ps 0 FS /WC Wf{( )}{<A1A1>}ie SW pop D
ET RC ZF
/Df f D
/R0 (http://www.codesynthesis.com/licenses/fdl-1.2.txt) D
/R1 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/index.xhtml) D
/R2 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/cxx-parser-guide.pdf) D
/R3 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/guide/cxx-parser-guide.ps) D
/R1 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/) D
/R2 (http://wiki.codesynthesis.com/Tree/Customization_guide) D
/R3 (http://wiki.codesynthesis.com/Tree/FAQ) D
/R4 (http://www.codesynthesis.com/projects/xsd/documentation/xsd.xhtml) D
/R5 (http://www.codesynthesis.com/mailman/listinfo/xsd-users) D
/R6 (http://www.codesynthesis.com/pipermail/xsd-users/) D
/R7 (http://www.w3.org/TR/xmlschema-0/) D
/R8 (http://www.doxygen.org/) D
/R9 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/hello/html/annotated.html) D
/R10 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.11) D
/R11 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.8.4) D
/R12 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.8) D
/R13 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.5) D
/R14 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#2.9) D
/R15 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#3) D
/R16 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#3.3) D
/R17 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#4) D
/R18 (http://www.codesynthesis.com/projects/xsd/documentation/cxx/tree/manual/#4.4) D
/TS {
 tables E get /table E D
 table aload pop /rdesc E D /cdesc E D /tdesc E D
 tdesc aload pop /capalg E D /caption E D /rules E D /frame E D /nfoot E D
  /nhead E D /ncol E D /nrow E D /border E D /twid E D /units E D /talign E D
  /flow E D /clear E D /tclass E D pop pop
 /w W D /eps 0.1 D /OU f D /PL 1 D
 /FN EF 21 get D EZ 21 get Ey 21 get FS
 0 1 1{
  /pass E D
  0 1 nrow{
   /irow E D
   /cells rdesc irow get 6 get D
   0 1 ncol{
    /icol E D
    /cell cells icol get D
    cell 0 ne{
     cell aload pop /ang E D /CB E D pop pop pop
     /DV E D /bot E D /top E D /right E D /left E D /nowrap E D /valign E D
     /dp E D /align E D /rspan E D /cspan E D /cclass E D /ctype E D /cmax E D
     /cmin E D /proc E D
     rspan 0 eq{/rspan nrow irow sub 1 add D}if
     cspan 0 eq{/cspan ncol icol sub 1 add D}if
     pass 0 eq cspan 1 eq and pass 1 eq cspan 1 gt and or{
      /W 1e5 D /LL W D /PH 1 D
      ctype 1 eq{() BD}if
      RC align NA
      AT 4 eq{/CD t D /DC dp D /LN 0 D /M1 0 D /M2 0 D}{/CD f D}ie
      0 0 M /LM 0 D proc exec BN
      AT 4 eq{
       LN array astore cell 15 3 -1 roll put
       cdesc icol get dup dup 5 get M1 lt{5 M1 put}{5 get /M1 E D}ie
       dup 6 get M2 lt{6 M2 put}{6 get /M2 E D}ie
       /LM M1 M2 add D
      }if
      /CD f D
      ang 0 ne{/LM CP E pop neg D}if
      /thiswid LM left add right add eps add D
      /oldmin 0 D /oldmax 0 D
      0 1 cspan 1 sub{
       icol add cdesc E get dup 2 get /oldmax E oldmax add D
       1 get /oldmin E oldmin add D
      }for
      thiswid oldmax ge{
       0 1 cspan 1 sub{
        icol add cdesc E get dup 2 E 2 get oldmax 0 eq
         {pop thiswid cspan div}{thiswid mul oldmax div}ie
        put
       }for
      }if
      nowrap 1 eq{
       thiswid oldmin ge{
        0 1 cspan 1 sub{
         icol add cdesc E get dup 1 E 1 get oldmin 0 eq
          {pop thiswid cspan div}{thiswid mul oldmin div}ie
         put
        }for
       }if
      }{
       /W 0 D /LL W D /PH 2 D
       ctype 1 eq{() ES () BD}if
       0 0 M /LM 0 D RC proc exec BN
       /thiswid LM left add right add eps add D
       thiswid oldmin ge{
        0 1 cspan 1 sub{
         icol add cdesc E get dup 1 E 1 get oldmin 0 eq
          {pop thiswid cspan div}{thiswid mul oldmin div}ie
         put
        }for
       }if
      }ie
      ctype 1 eq{() ES}if
     }if
    }if
   }for
  }for
 }for
 /tmin 0 D /tmax 0 D
 0 1 ncol{
  cdesc E get dup 1 get E 2 get 2 copy gt{pop dup}if
  tmax add /tmax E D tmin add /tmin E D
 }for
 twid 0 lt{twid neg IW gt{IW neg}{twid}ie /twid E D}if
 tdesc 0 twid neg tmin 2 copy lt{E}if pop put
 tdesc 1 twid neg tmax 2 copy lt{E}if pop put
 /W w D /LL W D /OU t D /PH 0 D /PL 0 D
} D
/PT {
 /PL PL 1 add D
 tables E get /table E D Tm 21 get Ts mul BE
 PL 2 ge{save}if
 /SL SL 1 add D /FN EF 21 get D EZ 21 get Ey 21 get FS
 table aload pop /rdesc E D /cdesc E D /tdesc E D
 tdesc aload pop /capalg E D /caption E D /rules E D /frame E D /nfoot E D
  /nhead E D /ncol E D /nrow E D /border E D /twid E D /units E D /talign E D
  /flow E D /clear E D /tclass E D /tmax E D /tmin E D
 /w W D /xo XO D /mr MR D /ll LL D /lg LG D /ai AI D /bc BC D /nr NR D /ar AR D
 /tr TR D /ui UI D /ph PH D /a0 A0 D /pf PF D /at AT D /av AV D /al AL D
 /Le LE D /la La D
 talign 0 lt{/talign AL 0 gt{AV AL get}{A0 2 le{A0}{0}ie}ie D}if
 ph 1 eq ph 2 eq or{
  NL ph 1 eq{tmax}{tmin}ie dup XO add LM gt{/LM E XO add D}{pop}ie LM E
 }{
  /PH 3 D /LE 1e5 D RC %ZF
  border 0 gt{/border 1 D}if
  /twidth 0 D /avail W xo sub D
  twid 0 eq{0 1 ncol{cdesc E get dup 2 get E 3 get dup 0 gt{div neg dup twid lt
   {/twid E D}{pop}ie}{pop pop}ie}for}if
  /twid twid dup 0 lt{neg avail 2 copy gt{E}if pop}{avail mul}ie D
  /OK t D 0 1 ncol{cdesc E get dup 1 get E 3 get twid mul gt{/OK f D}if}for
  0 1 ncol{
   cdesc E get dup 1 get /colmin E D dup 3 get /cwid E twid mul D dup
   tmax avail le{2 get}if
   tmin avail le tmax avail gt and{
    dup 2 get E 1 get dup 3 1 roll sub avail tmin sub mul tmax tmin sub div add
   }if
   tmin avail gt{1 get}if
   0 E colmin cwid lt OK and{pop cwid}if dup /twidth E twidth add D put
  }for
  /OU f D CP
  tmin twid le{
   0 1 ncol{cdesc E get dup 0 get twidth div twid mul 0 E put}for
   /twidth twid D
  }if
  CP printcap CP E pop sub /caphig E D pop
  0 1 1{
   /pass E D
   0 1 nrow{
    /irow E D
    /cells rdesc irow get 6 get D
    0 1 ncol{
     /icol E D
     /cell cells icol get D
     cell 0 ne{
      cell aload pop /ang E D /CB E D pop pop pop
      /DV E D /bot E D /top E D /right E D /left E D /nowrap E D /valign E D
      /dp E D /align E D /rspan E D /cspan E D /cclass E D /ctype E D /cmax E D
      /cmin E D /proc E D
      rspan 0 eq{/rspan nrow irow sub 1 add D}if
      cspan 0 eq{/cspan ncol icol sub 1 add D}if
      /W 0 D
      0 1 cspan 1 sub{icol add cdesc E get 0 get /W E W add D}for
      pass 0 eq rspan 1 eq and pass 1 eq rspan 1 gt and or{
       ctype 1 eq{() BD}if
       /W W left sub right sub D /XO 0 D /EO 0 D SI
       /A0 align D RC align NA
       AT 4 eq{
        /DC dp D /DO 0 D /ID 1 D
        0 1 DV length 1 sub{DV E get dup DO gt{/DO E D}{pop}ie}for
        /Lo DO DV 0 get sub D /L1 Lo D
       }if
       0 0 M /BP t D /Fl t D /MF 0 D /FB 0 D
       proc exec T not{/CI 0 D}if BN 0 FB neg R MF 0 eq{/MF CS D}if
       CP /thishig E neg bot add top add CI add D pop
       ang 0 ne{/thishig LM bot add top add D}if
       cell 16 MF put cell 17 Ya put cell 18 thishig put
       valign 4 eq{
        /below thishig Ya sub D
        rdesc irow get dup dup 4 get Ya lt
         {4 Ya put}{4 get /Ya E D}ie
        dup 5 get below lt{5 below put}{5 get /below E D}ie
        /thishig Ya below add D
       }if
       ctype 1 eq{()ES}if
       /oldhig 0 D
       0 1 rspan 1 sub{
        irow add rdesc E get 0 get /oldhig E oldhig add D
       }for
       thishig oldhig ge{
        0 1 rspan 1 sub{
         irow add rdesc E get dup 0 E 0 get oldhig 0 eq
          {pop thishig rspan div}{thishig mul oldhig div}ie
         put
        }for
       }if
      }if
     }if
    }for
   }for
  }for M RC %ZF
  /thight 0 D /racc 0 D /maxh 0 D /brk 0 D /rbeg nhead nfoot add D
  0 1 nrow{
   rdesc E get dup 0 get dup /thight E thight add D
   brk 0 eq{/racc E D}{/racc E racc add D}ie
   racc maxh gt{/maxh racc D}if 2 get /brk E D
  }for
  ph 3 ge{thight caphig add E}if
  ph 0 eq ph 4 eq or{
   /PH 4 D /LE Le D /OU Ou D /yoff 0 D /headsz 0 D
   0 1 nhead 1 sub{rdesc E get 0 get headsz add /headsz E D}for
   /footsz 0 D
   0 1 nfoot 1 sub{rdesc E nhead add get 0 get footsz add /footsz E D}for
   /ahig LE BO add MI add D /maxh maxh headsz add footsz add D
   /thight thight headsz add footsz add D
   tmin avail gt maxh ahig gt or
    {/Sf avail tmin div dup ahig maxh div gt{pop ahig maxh div}if D /SA t D}
    {/Sf 1 D}ie
   tclass 1 eq thight LE 15 sub gt and
    {/SA t D LE 15 sub thight div dup Sf lt{/Sf E D}{pop}ie}if
   SA{Sf Sf scale /ll ll Sf div D /xo xo Sf div D /LE LE Sf div D
    /mr mr Sf div D /BO BO Sf div D /ahig ahig Sf div D}if
   nhead nfoot add getwid
   LE CP E pop add capalg 0 eq{caphig sub}if
   bT{f}{dup thight lt thight ahig lt and}ie
   E headsz sub footsz sub rwid lt or{NP}if
   capalg 0 eq{printcap -8 SP}if
   CP /ycur E D pop
   printhead
   rbeg 1 nrow{/row E D row
    getwid
    ycur yoff add rwid sub footsz sub LE add 0 lt
    {nfoot 0 gt{printfoot}if Tf NP /rbeg irow1 D
     Ba{MI /MI MI SA{Sf div}if D MI SP /MI E D}if
     CP /ycur E D pop /yoff 0 D printhead}if
    irow1 printrow
   }for
   printfoot /row row 1 add D Tf
   0 ycur yoff add M
   capalg 1 eq{/EO 0 D SI -3 SP printcap}if
   Sf 1 lt{1 Sf div dup scale /ll ll Sf mul D /xo xo Sf mul D /LE LE Sf mul D
    /mr mr Sf mul D /BO BO Sf mul D /SA f D}if
   /EO 0 D
  }if
 }ie
 /W w D /XO xo D /MR mr D /LL ll D /LG lg D /AI ai D /BC bc D /NR nr D /AR ar D
 /TR tr D /UI ui D /PH ph D /A0 a0 D /PF pf D /AT at D /AV av D /AL al D
 /La la D
 /SL SL 1 sub NN D /CF 0 D /FN 0 D SZ SL get FR SL get FS Wf not{()F2}if
 PL 2 ge{Ms E restore Ms or /Ms E D PH 1 eq PH 2 eq or
  {/LM E D}if PH 3 ge{/CI 0 D NL 0 E neg R}if
 }if
 /PL PL 1 sub D /CI 0 D /BP f D /PO f D () Bm 21 get Ts mul BE BL %CF CS SF
} D
/printcap{
 capalg 0 ge{
  SA{/W w Sf div D}
   {talign 1 eq{/XO xo ll twidth sub 2 div add D}if
    talign 2 eq{/XO xo ll twidth sub add D}if
    /W XO twidth add D
   }ie /XO xo D /LL W XO sub MR sub D
  /PA f D /Fl capalg 0 eq D
  1 NA BL caption exec BN OA /PA t D
 }if
} D
/getwid{
 /irow1 E D
 /irow2 irow1 D
 /rwid 0 D
 {rdesc irow2 get dup 0 get rwid add /rwid E D 2 get 0 eq
  {exit}{/irow2 irow2 1 add D}ie
 }loop
} D
/printrow{
 /xoff ll twidth PL 2 ge{Sf div}if sub talign mul 2 div D
 /xleft xoff xo add D
 /irow E D
 /cells rdesc irow get 6 get D
 0 1 ncol{
  /icol E D
  /cell cells icol get D
  cell 0 ne{
   cell aload pop /ang E D /CB E D /cvsize E D /above E D /fontsz E D
   /DV E D /bot E D /top E D /right E D /left E D /nowrap E D /valign E D
   /dp E D /align E D /rspan E D /cspan E D /cclass E D /ctype E D /cmax E D
   /cmin E D /proc E D
   rspan 0 eq{/rspan nrow irow sub 1 add D}if
   cspan 0 eq{/cspan ncol icol sub 1 add D}if
   /width 0 D
   0 1 cspan 1 sub{icol add cdesc E get 0 get /width E width add D}for
   /rhight rdesc irow get 0 get D
   /hight rhight D
   1 1 rspan 1 sub{irow add rdesc E get 0 get /hight E hight add D}for
   /W xo xoff add width add right sub D
   ang 0 ne{/W xo xoff add hight add right sub D}if
   /EO xo xoff add left add D SI
   Cf{
    gsave CB VC xo xoff add ycur yoff add M
    0 hight neg RL width 0 RL 0 hight RL width neg 0 RL fill
    grestore
   }if
   ctype 1 eq{() BD}if
   /A0 align D RC
   AT 4 eq{
    /DC dp D /ID 1 D /DO cdesc icol get 5 get D /Lo DO DV 0 get sub D /L1 Lo D
   }if
   ang 0 ne{
    gsave ang 90 eq
     {xoff ycur add hight cvsize sub 2 div sub ycur hight sub xoff sub}
     {xoff ycur sub width add hight cvsize sub 2 div add ycur xoff add}ie
    translate ang rotate
   }if
   valign 3 le{0 ycur yoff add top sub
    hight cvsize sub valign 1 sub mul 2 div sub M}
   {0 ycur yoff add top sub above add rdesc irow get 4 get sub M}ie
   /PA f D /BP t D /Fl t D
   BL proc exec BN
   ang 0 ne{grestore}if
   /PA t D
   ctype 1 eq{() ES}if
  }if
  /xoff xoff cdesc icol get 0 get add D
 }for
 /yoff yoff rhight sub D
} D
/printhead {0 1 nhead 1 sub{printrow}for} D
/printfoot {nhead 1 nhead nfoot add 1 sub{printrow}for} D
/Tf {
 OU{rules 2 ge{/yoff 0 D
   gsave 0 Sg
   [0 1 nhead 1 sub{}for rbeg 1 row 1 sub{}for nhead 1 nhead nfoot add 1 sub{}for]{
    /irow E D
    /xoff ll twidth PL 2 ge{Sf div}if sub talign mul 2 div D
    /cells rdesc irow get 6 get D
    0 1 ncol{
     /icol E D
     /cell cells icol get D
     cell 0 ne{
      /rspan cell 6 get D
      /cspan cell 5 get D
      rspan 0 eq{/rspan nrow irow sub 1 add D}if
      cspan 0 eq{/cspan ncol icol sub 1 add D}if
      /width 0 D
      0 1 cspan 1 sub{icol add cdesc E get 0 get /width E width add D}for
      /rhight rdesc irow get 0 get D
      /hight rhight D
      1 1 rspan 1 sub{irow add rdesc E get 0 get /hight E hight add D}for
      xo xoff add width add ycur yoff add M
      0 hight neg icol cspan add 1 sub ncol lt
       {cdesc icol 1 add get 4 get dup rules 3 le{1 eq}{pop t}ie
        {1 eq{0.8}{0.3}ie
        LW RL CP stroke M}{pop R}ie}{R}ie
      irow nhead nfoot add 1 sub ne nfoot 0 eq or
       {irow rspan add 1 sub nrow lt
       {rdesc irow rspan add get 3 get}{nfoot 0 eq{0}{1}ie}ie
       dup rules 2 mod 0 eq{1 eq}{pop t}ie
       {1 eq irow rspan add nhead eq or irow rspan add row eq nfoot 0 gt and or
        {0.8}{0.3}ie LW width neg 0 RL CP stroke M}{pop}ie}if
     }if
     /xoff xoff cdesc icol get 0 get add D
    }for
    /yoff yoff rhight sub D
   }forall
   grestore
   /Ms t D
  }if
  frame 1 gt{
   gsave
   1 LW 0 Sg
   xleft ycur M CP BB
   0 yoff frame 5 eq frame 7 ge or{RL}{R}ie
   twidth 0 frame 3 eq frame 4 eq or frame 8 ge or{RL}{R}ie CP BB
   0 yoff neg frame 6 ge{RL}{R}ie
   twidth neg 0 frame 2 eq frame 4 eq or frame 8 ge or{RL}{R}ie
   closepath stroke
   grestore
   /Ms t D
  }if
 }if
} D
/tables [[[0 0 0 0 0 -1 0 0 1 55 2 0 0 9 5 {()} -1]
 [[0 0 0 0 0 0 0][0 0 0 0 0 0 0][0 0 0 0 0 0 0]]
 [[0 0 0 0 0 0 [[{()1 Sl()WB(XML Schema type)} 0 0 1 0 1 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB(Alias in the )SM(xml_schema)ES( names)HY(pace)YH()} 0 0 1 0 1 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB(C++ type
    )} 0 0 1 0 1 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB(fixed-length inte)HY(gral)YH( types
    )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
0
0
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(byte)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(byte)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(signed\240char)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(unsigned)HY(Byte)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(unsigned_byte)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(unsigned\240char)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(short)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(short_)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(short)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(unsigned)HY(Short)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(unsigned_short)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(unsigned\240short)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(int)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(int_)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(int)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(unsignedInt)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(unsigned_int)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(unsigned\240int)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(long)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(long_)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(long\240long)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(unsigned)HY(Long)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(unsigned_long)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(unsigned\240long\240long)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB(arbi)HY(trary)YH(-length inte)HY(gral)YH( types
    )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
0
0
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(integer)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(integer)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(long\240long)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(nonPos)HY(i)HY(tiveIn)HY(te)HY(ger)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(non_posi)HY(tive)YH(_integer)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(long\240long)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(nonNeg)HY(a)HY(tiveIn)HY(te)HY(ger)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(non_nega)HY(tive)YH(_integer)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(unsigned long\240long)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(posi)HY(tiveIn)HY(te)HY(ger)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(posi)HY(tive)YH(_integer)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(unsigned long\240long)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(nega)HY(tiveIn)HY(te)HY(ger)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(nega)HY(tive)YH(_integer)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(long\240long)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB(boolean types
    )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
0
0
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(boolean)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(boolean)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(bool)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB(fixed-preci)HY(sion)YH( float)HY(ing)YH(-point types
    )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
0
0
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(float)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(float_)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(float)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(double)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(double_)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(double)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB(arbi)HY(trary)YH(-preci)HY(sion)YH( float)HY(ing)YH(-point types
    )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
0
0
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(decimal)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(decimal)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(double)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB(string types
    )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
0
0
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(string)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(string)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB(type derived from )SM(std::basic_string)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(normal)HY(ized)HY(String)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(normal)HY(ized)YH(_string)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB(type derived from )SM(string)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(token)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(token)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB(type\240derived\240from\240)SM(normal)HY(ized)YH(_string)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(Name)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(name)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB(type derived from )SM(token)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(NMTOKEN)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(nmtoken)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB(type derived from )SM(token)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(NMTO)HY(KENS)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(nmto)HY(kens)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB(type derived from )SM(sequence<nmtoken>)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(NCName)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(ncname)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB(type derived from )SM(name)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(language)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(language)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB(type derived from )SM(token)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB(qual)HY(i)HY(fied)YH( name
    )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
0
0
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(QName)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(qname)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(xml_schema::qname)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB(ID/IDREF types
    )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
0
0
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(ID)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(id)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB(type derived from )SM(ncname)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(IDREF)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(idref)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB(type derived from )SM(ncname)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(IDREFS)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(idrefs)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB(type derived from )SM(sequence<idref>)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB(URI types
    )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
0
0
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(anyURI)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(uri)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB(type derived from )SM(std::basic_string)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB(binary types
    )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
0
0
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(base64Binary)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(base64_binary)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(xml_schema::base64_binary)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(hexBi)HY(nary)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(hex_binary)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(xml_schema::hex_binary)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB(date/time types
    )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
0
0
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(date)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(date)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(xml_schema::date)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(date)HY(Time)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(date_time)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(xml_schema::date_time)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(dura)HY(tion)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(dura)HY(tion)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(xml_schema::dura)HY(tion)YH()ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(gDay)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(gday)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(xml_schema::gday)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(gMonth)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(gmonth)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(xml_schema::gmonth)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(gMon)HY(th)HY(Day)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(gmonth_day)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(xml_schema::gmonth_day)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(gYear)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(gyear)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(xml_schema::gyear)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(gYear)HY(Month)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(gyear_month)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(xml_schema::gyear_month)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(time)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(time)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(xml_schema::time)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB(entity types
    )} 0 0 1 0 3 1 1 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
0
0
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(ENTITY)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(entity)ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB(type derived from )SM(name)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
[0 0 0 0 0 0 [[{()1 Sl()WB()SM(ENTI)HY(TIES)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB()SM(enti)HY(ties)YH()ES()} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
[{()1 Sl()WB(type derived from )SM(sequence<entity>)ES(
    )} 0 0 0 0 1 1 0 (.) 2 0 4 4 2 6 0 0 0 0 Db 0 ]
]]
]]
] D
0 1 0{TS}for RC ZF
/Ba f D /BO 0 D Bs
/UR (/home/boris/work/xsd/xsd/doc/cxx/tree/guide/index.xhtml) D
/Ti (C++/Tree Mapping Getting Started Guide) D
/Au () D
/Df f D
/ME [] D
Pt
/BO 0 D TC /Ba f D Bs /AU f D /UR () D RC ZF
 tH WB
ND 1 gt{Ts 3 mul Np 0()0 C()BD(C++/Tree Mapping Getting Started Guide)ES()0 1 TN()EA()BN}if
1 NH le{36(1\240\240)1 C(Preface)WB 3 Sn()36 1 TN()EA()BN}if
2 NH le{37(1.1\240\240)2 C(About)WB 4 Sn( This Docu)HY(ment)YH()37 1 TN()EA()BN}if
2 NH le{38(1.2\240\240)2 C(More)WB 5 Sn( Infor)HY(ma)HY(tion)YH()38 1 TN()EA()BN}if
1 NH le{39(2\240\240)1 C(1)WB 6 Sn( Intro)HY(duc)HY(tion)YH()39 1 TN()EA()BN}if
2 NH le{40(2.1\240\240)2 C(1.1)WB 7 Sn( Mapping Overview)40 1 TN()EA()BN}if
2 NH le{41(2.2\240\240)2 C(1.2)WB 8 Sn( Bene)HY(fits)YH()41 1 TN()EA()BN}if
1 NH le{42(3\240\240)1 C(2)WB 9 Sn( Hello World Example)42 1 TN()EA()BN}if
2 NH le{43(3.1\240\240)2 C(2.1)WB 10 Sn( Writing XML Docu)HY(ment)YH( and Schema)43 1 TN()EA()BN}if
2 NH le{44(3.2\240\240)2 C(2.2)WB 11 Sn( Trans)HY(lat)HY(ing)YH( Schema to C++)44 1 TN()EA()BN}if
2 NH le{45(3.3\240\240)2 C(2.3)WB 12 Sn( Imple)HY(ment)HY(ing)YH( Appli)HY(ca)HY(tion)YH( Logic)45 1 TN()EA()BN}if
2 NH le{46(3.4\240\240)2 C(2.4)WB 13 Sn( Compil)HY(ing)YH( and Running)46 1 TN()EA()BN}if
2 NH le{47(3.5\240\240)2 C(2.5)WB 14 Sn( Adding Seri)HY(al)HY(iza)HY(tion)YH()47 1 TN()EA()BN}if
2 NH le{48(3.6\240\240)2 C(2.6)WB 15 Sn( Select)HY(ing)YH( Naming Conven)HY(tion)YH()48 1 TN()EA()BN}if
2 NH le{49(3.7\240\240)2 C(2.7)WB 16 Sn( Gener)HY(at)HY(ing)YH( Docu)HY(men)HY(ta)HY(tion)YH()49 1 TN()EA()BN}if
1 NH le{50(4\240\240)1 C(3)WB 17 Sn( Overall Mapping Config)HY(u)HY(ra)HY(tion)YH()50 1 TN()EA()BN}if
2 NH le{51(4.1\240\240)2 C(3.1)WB 18 Sn( C++ Stan)HY(dard)YH()51 1 TN()EA()BN}if
2 NH le{52(4.2\240\240)2 C(3.2)WB 19 Sn( Char)HY(ac)HY(ter)YH( Type and Encod)HY(ing)YH()52 1 TN()EA()BN}if
2 NH le{53(4.3\240\240)2 C(3.3)WB 20 Sn( Support for Poly)HY(mor)HY(phism)YH()53 1 TN()EA()BN}if
2 NH le{54(4.4\240\240)2 C(3.4)WB 21 Sn( Names)HY(pace)YH( Mapping)54 1 TN()EA()BN}if
2 NH le{55(4.5\240\240)2 C(3.5)WB 22 Sn( Thread Safety)55 1 TN()EA()BN}if
1 NH le{56(5\240\240)1 C(4)WB 23 Sn( Working with Object Models)56 1 TN()EA()BN}if
2 NH le{57(5.1\240\240)2 C(4.1)WB 24 Sn( Attribute and Element Cardi)HY(nal)HY(i)HY(ties)YH()57 1 TN()EA()BN}if
2 NH le{58(5.2\240\240)2 C(4.2)WB 25 Sn( Access)HY(ing)YH( the Object Model)58 1 TN()EA()BN}if
2 NH le{59(5.3\240\240)2 C(4.3)WB 26 Sn( Modi)HY(fy)HY(ing)YH( the Object Model)59 1 TN()EA()BN}if
2 NH le{60(5.4\240\240)2 C(4.4)WB 27 Sn( Creat)HY(ing)YH( the Object Model from Scratch)60 1 TN()EA()BN}if
2 NH le{61(5.5\240\240)2 C(4.5)WB 28 Sn( Mapping for the Built-in XML Schema Types)61 1 TN()EA()BN}if
1 NH le{62(6\240\240)1 C(5)WB 30 Sn( Parsing)62 1 TN()EA()BN}if
2 NH le{63(6.1\240\240)2 C(5.1)WB 31 Sn( XML Schema Vali)HY(da)HY(tion)YH( and Search)HY(ing)YH()63 1 TN()EA()BN}if
2 NH le{64(6.2\240\240)2 C(5.2)WB 32 Sn( Error Handling)64 1 TN()EA()BN}if
1 NH le{65(7\240\240)1 C(6)WB 33 Sn( Seri)HY(al)HY(iza)HY(tion)YH()65 1 TN()EA()BN}if
2 NH le{66(7.1\240\240)2 C(6.1)WB 34 Sn( Names)HY(pace)YH( and Schema Infor)HY(ma)HY(tion)YH()66 1 TN()EA()BN}if
2 NH le{67(7.2\240\240)2 C(6.2)WB 35 Sn( Error Handling)67 1 TN()EA()BN}if
/OU t D /Cb Db D NP Ep ET 
/Cb Db D /Ct [16#00 16#00 16#00] D /Cl [16#00 16#00 16#00] D /CL -1 D Ct Sc

/Ba f D /BO 0 D Bs
/UR (/home/boris/work/xsd/xsd/doc/cxx/tree/guide/index.xhtml) D
/Ti (C++/Tree Mapping Getting Started Guide) D
/Au () D
/Df f D
/ME [] D

NP RC ZF
()1 Sl()WB 0 Sn(

)BR()WB 1 Sn(  )BR()WB 2 Sn(
  

  )0 1 0 H(Preface)WB 36 Sn()WB 3 Sn()EA()EH(

  )0 2 1 H(About)WB 37 Sn()WB 4 Sn( This Docu)HY(ment)YH()EA()EH(

  )0 P(The goal of this docu)HY(ment)YH( is to provide you with an under)HY(stand)HY(ing)YH( of
     the C++/Tree program)HY(ming)YH( model and allow you to effi)HY(ciently)YH( eval)HY(u)HY(ate)YH(
     XSD against your project's tech)HY(ni)HY(cal)YH( require)HY(ments)YH(. As such, this
     docu)HY(ment)YH( is intended for C++ devel)HY(op)HY(ers)YH( and soft)HY(ware)YH( archi)HY(tects)YH(
     who are looking for an XML process)HY(ing)YH( solu)HY(tion)YH(. For a more in-depth
     descrip)HY(tion)YH( of the C++/Tree mapping refer to the
     )R1 2 A(C++/Tree
     Mapping User Manual)EA(.)EP(

  )0 P(Prior expe)HY(ri)HY(ence)YH( with XML and C++ is required to under)HY(stand)YH( this
     docu)HY(ment)YH(. Basic under)HY(stand)HY(ing)YH( of XML Schema is advan)HY(ta)HY(geous)YH( but
     not expected or required.
  )EP(


  )0 2 2 H(More)WB 38 Sn()WB 5 Sn( Infor)HY(ma)HY(tion)YH()EA()EH(

  )0 P(Beyond this guide, you may also find the follow)HY(ing)YH( sources of
     infor)HY(ma)HY(tion)YH( useful:)EP(

  )UL(    )-1 LI()R1 2 A(C++/Tree
        Mapping User Manual)EA(

    )-1 LI()R2 2 A(C++/Tree
        Mapping Customiza)HY(tion)YH( Guide)EA(

    )-1 LI()R3 2 A(C++/Tree
        Mapping Frequently Asked Ques)HY(tions)YH( \201FAQ\202)EA(

    )-1 LI()R4 2 A(XSD
        Compiler Command Line Manual)EA(

    )-1 LI(The )SM(exam)HY(ples)YH(/cxx/tree/)ES( direc)HY(tory)YH( in the XSD
        distri)HY(bu)HY(tion)YH( contains a collec)HY(tion)YH( of exam)HY(ples)YH( and a README
        file with an overview of each example.

    )-1 LI(The )SM(README)ES( file in the XSD distri)HY(bu)HY(tion)YH( explains
        how to compile the exam)HY(ples)YH( on various plat)HY(forms)YH(.

    )-1 LI(The )R5 2 A(xsd-users)EA(
        mailing list is the place to ask tech)HY(ni)HY(cal)YH( ques)HY(tions)YH( about XSD and the C++/Parser mapping.
        Further)HY(more)YH(, the )R6 2 A(archives)EA(
        may already have answers to some of your ques)HY(tions)YH(.
  )LU(

  

  )0 1 3 H(1)WB 39 Sn()WB 6 Sn( Intro)HY(duc)HY(tion)YH()EA()EH(

  )0 P(Welcome to CodeSyn)HY(the)HY(sis)YH( XSD and the C++/Tree mapping. XSD is a
     cross-plat)HY(form)YH( W3C XML Schema to C++ data binding compiler. C++/Tree
     is a W3C XML Schema to C++ mapping that repre)HY(sents)YH( the data stored
     in XML as a stat)HY(i)HY(cally)YH(-typed, vocab)HY(u)HY(lary)YH(-specific object model.
  )EP(

  )0 2 4 H(1.1)WB 40 Sn()WB 7 Sn( Mapping Overview)EA()EH(

  )0 P(Based on a formal descrip)HY(tion)YH( of an XML vocab)HY(u)HY(lary)YH( \201schema\202, the
     C++/Tree mapping produces a tree-like data struc)HY(ture)YH( suit)HY(able)YH( for
     in-memory process)HY(ing)YH(. The core of the mapping consists of C++
     classes that consti)HY(tute)YH( the object model and are derived from
     types defined in XML Schema as well as XML parsing and
     seri)HY(al)HY(iza)HY(tion)YH( code.)EP(

  )0 P(Besides the core features, C++/Tree provide a number of addi)HY(tional)YH(
     mapping elements that can be useful in some appli)HY(ca)HY(tions)YH(. These
     include seri)HY(al)HY(iza)HY(tion)YH( and extrac)HY(tion)YH( to/from formats others than
     XML, such as unstruc)HY(tured)YH( text \201useful for debug)HY(ging)YH(\202 and binary
     repre)HY(sen)HY(ta)HY(tions)YH( such as XDR and CDR for high-speed data process)HY(ing)YH(
     as well as auto)HY(matic)YH( docu)HY(men)HY(ta)HY(tion)YH( gener)HY(a)HY(tion)YH(. The C++/Tree mapping
     also provides a wide range of mech)HY(a)HY(nisms)YH( for control)HY(ling)YH( and
     customiz)HY(ing)YH( the gener)HY(ated)YH( code.)EP(

  )0 P(A typical appli)HY(ca)HY(tion)YH( that uses C++/Tree for XML process)HY(ing)YH( usually
     performs the follow)HY(ing)YH( three steps: it first reads \201parses\202 an XML
     docu)HY(ment)YH( to an in-memory object model, it then performs some useful
     compu)HY(ta)HY(tions)YH( on that object model which may involve modi)HY(fi)HY(ca)HY(tion)YH(
     of the model, and finally it may write \201seri)HY(al)HY(ize)YH(\202 the modi)HY(fied)YH(
     object model back to XML.)EP(

  )0 P(The next chapter presents a simple appli)HY(ca)HY(tion)YH( that performs these
     three steps. The follow)HY(ing)YH( chap)HY(ters)YH( show how to use the C++/Tree
     mapping in more detail.)EP(

  )0 2 5 H(1.2)WB 41 Sn()WB 8 Sn( Bene)HY(fits)YH()EA()EH(

  )0 P(Tradi)HY(tional)YH( XML access APIs such as Docu)HY(ment)YH( Object Model \201DOM\202
     or Simple API for XML \201SAX\202 have a number of draw)HY(backs)YH( that
     make them less suit)HY(able)YH( for creat)HY(ing)YH( robust and main)HY(tain)HY(able)YH(
     XML process)HY(ing)YH( appli)HY(ca)HY(tions)YH(. These draw)HY(backs)YH( include:
  )EP(

  )UL(    )-1 LI(Generic repre)HY(sen)HY(ta)HY(tion)YH( of XML in terms of elements, attributes,
        and text forces an appli)HY(ca)HY(tion)YH( devel)HY(oper)YH( to write a substan)HY(tial)YH(
        amount of bridg)HY(ing)YH( code that iden)HY(ti)HY(fies)YH( and trans)HY(forms)YH( pieces
        of infor)HY(ma)HY(tion)YH( encoded in XML to a repre)HY(sen)HY(ta)HY(tion)YH( more suit)HY(able)YH(
        for consump)HY(tion)YH( by the appli)HY(ca)HY(tion)YH( logic.

    )-1 LI(String-based flow control defers error detec)HY(tion)YH( to runtime.
        It also reduces code read)HY(abil)HY(ity)YH( and main)HY(tain)HY(abil)HY(ity)YH(.

    )-1 LI(Lack of type safety because the data is repre)HY(sented)YH( as text.

    )-1 LI(Result)HY(ing)YH( appli)HY(ca)HY(tions)YH( are hard to debug, change, and
        main)HY(tain)YH(.
  )LU(

  )0 P(In contrast, stat)HY(i)HY(cally)YH(-typed, vocab)HY(u)HY(lary)YH(-specific object model
     produced by the C++/Tree mapping allows you to operate in your
     domain terms instead of the generic elements, attributes, and
     text. Static typing helps catch errors at compile-time rather
     than at run-time. Auto)HY(matic)YH( code gener)HY(a)HY(tion)YH( frees you for more
     inter)HY(est)HY(ing)YH( tasks \201such as doing some)HY(thing)YH( useful with the
     infor)HY(ma)HY(tion)YH( stored in the XML docu)HY(ments)YH(\202 and mini)HY(mizes)YH( the
     effort needed to adapt your appli)HY(ca)HY(tions)YH( to changes in the
     docu)HY(ment)YH( struc)HY(ture)YH(. To summa)HY(rize)YH(, the C++/Tree object model has
     the follow)HY(ing)YH( key advan)HY(tages)YH( over generic XML access APIs:)EP(

  )UL(    )-1 LI()BD(Ease of use.)ES( The gener)HY(ated)YH( code hides all the complex)HY(ity)YH(
        asso)HY(ci)HY(ated)YH( with parsing and seri)HY(al)HY(iz)HY(ing)YH( XML. This includes navi)HY(gat)HY(ing)YH(
        the struc)HY(ture)YH( and convert)HY(ing)YH( between the text repre)HY(sen)HY(ta)HY(tion)YH( and
        data types suit)HY(able)YH( for manip)HY(u)HY(la)HY(tion)YH( by the appli)HY(ca)HY(tion)YH(
        logic.

    )-1 LI()BD(Natural repre)HY(sen)HY(ta)HY(tion)YH(.)ES( The object repre)HY(sen)HY(ta)HY(tion)YH( allows
         you to access the XML data using your domain vocab)HY(u)HY(lary)YH( instead
         of generic elements, attributes, and text.

    )-1 LI()BD(Concise code.)ES( With the object repre)HY(sen)HY(ta)HY(tion)YH( the
        appli)HY(ca)HY(tion)YH( imple)HY(men)HY(ta)HY(tion)YH( is simpler and thus easier
        to read and under)HY(stand)YH(.

    )-1 LI()BD(Safety.)ES( The gener)HY(ated)YH( object model is stat)HY(i)HY(cally)YH(
        typed and uses func)HY(tions)YH( instead of strings to access the
        infor)HY(ma)HY(tion)YH(. This helps catch program)HY(ming)YH( errors at compile-time
        rather than at runtime.

    )-1 LI()BD(Main)HY(tain)HY(abil)HY(ity)YH(.)ES( Auto)HY(matic)YH( code gener)HY(a)HY(tion)YH( mini)HY(mizes)YH( the
        effort needed to adapt the appli)HY(ca)HY(tion)YH( to changes in the
        docu)HY(ment)YH( struc)HY(ture)YH(. With static typing, the C++ compiler
        can pin-point the places in the client code that need to be
        changed.

    )-1 LI()BD(Compat)HY(i)HY(bil)HY(ity)YH(.)ES( Sequences of elements are repre)HY(sented)YH( in
        the object model as contain)HY(ers)YH( conform)HY(ing)YH( to the stan)HY(dard)YH( C++
        sequence require)HY(ments)YH(. This makes it possi)HY(ble)YH( to use stan)HY(dard)YH(
        C++ algo)HY(rithms)YH( on the object repre)HY(sen)HY(ta)HY(tion)YH( and frees you from
        learn)HY(ing)YH( yet another container inter)HY(face)YH(, as is the case with
        DOM.

    )-1 LI()BD(Effi)HY(ciency)YH(.)ES( If the appli)HY(ca)HY(tion)YH( makes repet)HY(i)HY(tive)YH( use
        of the data extracted from XML, then the C++/Tree object model
        is more effi)HY(cient)YH( because the navi)HY(ga)HY(tion)YH( is performed using
        func)HY(tion)YH( calls rather than string compar)HY(isons)YH( and the XML
        data is extracted only once. Further)HY(more)YH(, the runtime memory
        usage is reduced due to more effi)HY(cient)YH( data storage
        \201for instance, storing numeric data as inte)HY(gers)YH( instead of
        strings\202 as well as the static knowl)HY(edge)YH( of cardi)HY(nal)HY(ity)YH(
        constraints.
  )LU(


  


  )0 1 6 H(2)WB 42 Sn()WB 9 Sn( Hello World Example)EA()EH(

  )0 P(In this chapter we will examine how to parse, access, modify, and
     seri)HY(al)HY(ize)YH( a very simple XML docu)HY(ment)YH( using the XSD-gener)HY(ated)YH(
     C++/Tree object model. The code presented in this chapter is
     based on the )SM(hello)ES( example which can be found in
     the )SM(exam)HY(ples)YH(/cxx/tree/)ES( direc)HY(tory)YH( of the XSD
     distri)HY(bu)HY(tion)YH(.)EP(

  )0 2 7 H(2.1)WB 43 Sn()WB 10 Sn( Writing XML Docu)HY(ment)YH( and Schema)EA()EH(

  )0 P(First, we need to get an idea about the struc)HY(ture)YH(
     of the XML docu)HY(ments)YH( we are going to process. Our
     )SM(hello.xml)ES(, for example, could look like this:)EP(

  ) 10 28 PR(<?xml version="1.0"?>
<hello>

  <greeting>Hello</greeting>

  <name>sun</name>
  <name>moon</name>
  <name>world</name>

</hello>)RP(

  )0 P(Then we can write a descrip)HY(tion)YH( of the above XML in the
     XML Schema language and save it into )SM(hello.xsd)ES(:)EP(

  ) 13 70 PR(<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

  <xs:complexType name="hello_t">
    <xs:sequence>
      <xs:element name="greeting" type="xs:string"/>
      <xs:element name="name" type="xs:string" maxOccurs="unbounded"/>
    </xs:sequence>
  </xs:complexType>

  <xs:element name="hello" type="hello_t"/>

</xs:schema>)RP(

  )0 P(Even if you are not famil)HY(iar)YH( with XML Schema, it
     should be easy to connect decla)HY(ra)HY(tions)YH( in )SM(hello.xsd)ES(
     to elements in )SM(hello.xml)ES(. The )SM(hello_t)ES( type
     is defined as a sequence of the nested )SM(greet)HY(ing)YH()ES( and
     )SM(name)ES( elements. Note that the term sequence in XML
     Schema means that elements should appear in a partic)HY(u)HY(lar)YH( order
     as opposed to appear)HY(ing)YH( multi)HY(ple)YH( times. The )SM(name)ES(
     element has its )SM(maxOc)HY(curs)YH()ES( prop)HY(erty)YH( set to
     )SM(unbounded)ES( which means it can appear multi)HY(ple)YH( times
     in an XML docu)HY(ment)YH(. Finally, the glob)HY(ally)YH(-defined )SM(hello)ES(
     element prescribes the root element for our vocab)HY(u)HY(lary)YH(. For an
     easily-approach)HY(able)YH( intro)HY(duc)HY(tion)YH( to XML Schema refer to
     )R7 2 A(XML Schema Part 0:
     Primer)EA(.)EP(

  )0 P(The above schema is a spec)HY(i)HY(fi)HY(ca)HY(tion)YH( of our XML vocab)HY(u)HY(lary)YH(; it tells
     every)HY(body)YH( what valid docu)HY(ments)YH( of our XML-based language should look
     like. We can also update our )SM(hello.xml)ES( to include the
     infor)HY(ma)HY(tion)YH( about the schema so that XML parsers can vali)HY(date)YH(
     our docu)HY(ment)YH(:)EP(

      ) 11 60 PR(<?xml version="1.0"?>
<hello xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xsi:noNamespaceSchemaLocation="hello.xsd">

  <greeting>Hello</greeting>

  <name>sun</name>
  <name>moon</name>
  <name>world</name>

</hello>)RP(


  )0 P(The next step is to compile the schema to gener)HY(ate)YH( the object
     model and parsing func)HY(tions)YH(.)EP(

  )0 2 8 H(2.2)WB 44 Sn()WB 11 Sn( Trans)HY(lat)HY(ing)YH( Schema to C++)EA()EH(

  )0 P(Now we are ready to trans)HY(late)YH( our )SM(hello.xsd)ES( to C++.
     To do this we invoke the XSD compiler from a termi)HY(nal)YH( \201UNIX\202 or
     a command prompt \201Windows\202:
  )EP(

  ) 1 24 PR($ xsd cxx-tree hello.xsd)RP(

  )0 P(The XSD compiler produces two C++ files: )SM(hello.hxx)ES( and
     )SM(hello.cxx)ES(. The follow)HY(ing)YH( code frag)HY(ment)YH( is taken from
     )SM(hello.hxx)ES(; it should give you an idea about what gets
     gener)HY(ated)YH(:
  )EP(

  ) 45 60 PR(class hello_t
{
public:
  // greeting
  //
  typedef xml_schema::string greeting_type;

  const greeting_type&
  greeting \201\202 const;

  greeting_type&
  greeting \201\202;

  void
  greeting \201const greeting_type& x\202;

  // name
  //
  typedef xml_schema::string name_type;
  typedef xsd::sequence<name_type> name_sequence;
  typedef name_sequence::iterator name_iterator;
  typedef name_sequence::const_iterator name_const_iterator;

  const name_sequence&
  name \201\202 const;

  name_sequence&
  name \201\202;

  void
  name \201const name_sequence& s\202;)WR(

  // Constructor.
  //
  hello_t \201const greeting_type&\202;

  ...

};

std::auto_ptr<hello_t>
hello \201const std::string& uri\202;

std::auto_ptr<hello_t>
hello \201std::istream&\202;)RP(

  )0 P(The )SM(hello_t)ES( C++ class corre)HY(sponds)YH( to the
     )SM(hello_t)ES( XML Schema type. For each element
     in this type a set of C++ type defi)HY(ni)HY(tions)YH( as well as
     acces)HY(sor)YH( and modi)HY(fier)YH( func)HY(tions)YH( are gener)HY(ated)YH( inside the
     )SM(hello_t)ES( class. Note that the type defi)HY(ni)HY(tions)YH(
     and member func)HY(tions)YH( for the )SM(greet)HY(ing)YH()ES( and
     )SM(name)ES( elements are differ)HY(ent)YH( because of the
     cardi)HY(nal)HY(ity)YH( differ)HY(ences)YH( between these two elements
     \201)SM(greet)HY(ing)YH()ES( is a required single element and
     )SM(name)ES( is a sequence of elements\202.)EP(

  )0 P(The )SM(xml_schema::string)ES( type used in the type
     defi)HY(ni)HY(tions)YH( is a C++ class provided by the XSD runtime
     that corre)HY(sponds)YH( to built-in XML Schema type
     )SM(string)ES(. The )SM(xml_schema::string)ES(
     is based on )SM(std::string)ES( and can be used as
     such. Simi)HY(larly)YH(, the )SM(sequence)ES( class template
     that is used in the )SM(name_sequence)ES( type
     defi)HY(ni)HY(tion)YH( is based on and has the same inter)HY(face)YH( as
     )SM(std::vector)ES(. The mapping between the built-in
     XML Schema types and C++ types is described in more detail in
     )0 28 1 A(Section 4.5, "Mapping for the Built-in XML Schema
     Types")28 0 TN TL()Ec /AF f D(. The )SM(hello_t)ES( class also includes a
     construc)HY(tor)YH( with an initial)HY(izer)YH( for the required
     )SM(greet)HY(ing)YH()ES( element as its argu)HY(ment)YH(.)EP(

  )0 P(The )SM(hello)ES( over)HY(loaded)YH( global func)HY(tions)YH( corre)HY(spond)YH(
     to the )SM(hello)ES( global element in XML Schema. A
     global element in XML Schema is a valid docu)HY(ment)YH( root.
     By default XSD gener)HY(ated)YH( a set of parsing func)HY(tions)YH( for each
     global element defined in XML Schema \201this can be over)HY(rid)HY(den)YH(
     with the )SM(--root-element-*)ES( options\202. Parsing
     func)HY(tions)YH( return a dynam)HY(i)HY(cally)YH( allo)HY(cated)YH( object model as an
     auto)HY(matic)YH( pointer. The actual pointer used depends on the
     C++ stan)HY(dard)YH( selected. For C++98 it is )SM(std::auto_ptr)ES(
     as shown above. For C++11 it is )SM(std::unique_ptr)ES(.
     For example, if we modify our XSD compiler invo)HY(ca)HY(tion)YH( to
     select C++11:)EP(

  ) 1 36 PR($ xsd cxx-tree --std c++11 hello.xsd)RP(

  )0 P(Then the parsing func)HY(tion)YH( signa)HY(tures)YH( will become:)EP(

  ) 5 31 PR(std::unique_ptr<hello_t>
hello \201const std::string& uri\202;

std::unique_ptr<hello_t>
hello \201std::istream&\202;)RP(

  )0 P(For more infor)HY(ma)HY(tion)YH( on parsing func)HY(tions)YH( see )0 30 1 A(Chapter 5,
     "Parsing")30 0 TN TL()Ec /AF f D(.)EP(

  )0 2 9 H(2.3)WB 45 Sn()WB 12 Sn( Imple)HY(ment)HY(ing)YH( Appli)HY(ca)HY(tion)YH( Logic)EA()EH(

  )0 P(At this point we have all the parts we need to do some)HY(thing)YH( useful
     with the infor)HY(ma)HY(tion)YH( stored in our XML docu)HY(ment)YH(:
  )EP(

  ) 25 62 PR(#include <iostream>
#include "hello.hxx"

using namespace std;

int
main \201int argc, char* argv[]\202
{
  try
  {
    auto_ptr<hello_t> h \201hello \201argv[1]\202\202;

    for \201hello_t::name_const_iterator i \201h->name \201\202.begin \201\202\202;
         i != h->name \201\202.end \201\202;
         ++i\202
    {
      cerr << h->greeting \201\202 << ", " << *i << "!" << endl;
    }
  }
  catch \201const xml_schema::exception& e\202
  {
    cerr << e << endl;
    return 1;
  }
})RP(

  )0 P(The first part of our appli)HY(ca)HY(tion)YH( calls one of the parsing
     func)HY(tions)YH( to parser an XML file spec)HY(i)HY(fied)YH( in the command line.
     We then use the returned object model to iterate over names
     and print a greet)HY(ing)YH( line for each of them. Finally, we
     catch and print the )SM(xml_schema::excep)HY(tion)YH()ES(
     excep)HY(tion)YH( in case some)HY(thing)YH( goes wrong. This excep)HY(tion)YH(
     is the root of the excep)HY(tion)YH( hier)HY(ar)HY(chy)YH( used by the
     XSD-gener)HY(ated)YH( code.
  )EP(


  )0 2 10 H(2.4)WB 46 Sn()WB 13 Sn( Compil)HY(ing)YH( and Running)EA()EH(

  )0 P(After saving our appli)HY(ca)HY(tion)YH( from the previ)HY(ous)YH( section in
     )SM(driver.cxx)ES(, we are ready to compile our first
     program and run it on the test XML docu)HY(ment)YH(. On a UNIX
     system this can be done with the follow)HY(ing)YH( commands:
  )EP(

  ) 6 43 PR($ c++ -I.../libxsd -c driver.cxx hello.cxx
$ c++ -o driver driver.o hello.o -lxerces-c
$ ./driver hello.xml
Hello, sun!
Hello, moon!
Hello, world!)RP(

  )0 P(Here )SM(.../libxsd)ES( repre)HY(sents)YH( the path to the
     )SM(libxsd)ES( direc)HY(tory)YH( in the XSD distri)HY(bu)HY(tion)YH(.
     Note also that we are required to link our appli)HY(ca)HY(tion)YH(
     with the Xerces-C++ library because the gener)HY(ated)YH( code
     uses it as the under)HY(ly)HY(ing)YH( XML parser.)EP(

  )0 2 11 H(2.5)WB 47 Sn()WB 14 Sn( Adding Seri)HY(al)HY(iza)HY(tion)YH()EA()EH(

  )0 P(While parsing and access)HY(ing)YH( the XML data may be every)HY(thing)YH(
     you need, there are appli)HY(ca)HY(tions)YH( that require creat)HY(ing)YH( new
     or modi)HY(fy)HY(ing)YH( exist)HY(ing)YH( XML docu)HY(ments)YH(. By default XSD does
     not produce seri)HY(al)HY(iza)HY(tion)YH( code. We will need to request
     it with the )SM(--gener)HY(ate)YH(-seri)HY(al)HY(iza)HY(tion)YH()ES( options:)EP(

  ) 1 49 PR($ xsd cxx-tree --generate-serialization hello.xsd)RP(

  )0 P(If we now examine the gener)HY(ated)YH( )SM(hello.hxx)ES( file,
     we will find a set of over)HY(loaded)YH( seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH(,
     includ)HY(ing)YH( the follow)HY(ing)YH( version:)EP(

  ) 5 45 PR(void
hello \201std::ostream&,
       const hello_t&,
       const xml_schema::namespace_infomap& =
         xml_schema::namespace_infomap \201\202\202;
)RP(

  )0 P(Just like with parsing func)HY(tions)YH(, XSD gener)HY(ates)YH( seri)HY(al)HY(iza)HY(tion)YH(
     func)HY(tions)YH( for each global element unless instructed other)HY(wise)YH(
     with one of the )SM(--root-element-*)ES( options. For more
     infor)HY(ma)HY(tion)YH( on seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH( see )0 33 1 A(Chapter 6,
     "Seri)HY(al)HY(iza)HY(tion)YH(")33 0 TN TL()Ec /AF f D(.)EP(

  )0 P(We first examine an appli)HY(ca)HY(tion)YH( that modi)HY(fies)YH( an exist)HY(ing)YH(
     object model and seri)HY(al)HY(izes)YH( it back to XML:)EP(

  ) 34 50 PR(#include <iostream>
#include "hello.hxx"

using namespace std;

int
main \201int argc, char* argv[]\202
{
  try
  {
    auto_ptr<hello_t> h \201hello \201argv[1]\202\202;

    // Change the greeting phrase.
    //
    h->greeting \201"Hi"\202;

    // Add another entry to the name sequence.
    //
    h->name \201\202.push_back \201"mars"\202;

    // Serialize the modified object model to XML.
    //
    xml_schema::namespace_infomap map;
    map[""].name = "";
    map[""].schema = "hello.xsd";

    hello \201cout, *h, map\202;
  }
  catch \201const xml_schema::exception& e\202
  {
    cerr << e << endl;)WR(
    return 1;
  }
})RP(

  )0 P(First, our appli)HY(ca)HY(tion)YH( parses an XML docu)HY(ment)YH( and obtains its
     object model as in the previ)HY(ous)YH( example. Then it changes the
     greet)HY(ing)YH( string and adds another entry to the list of names.
     Finally, it seri)HY(al)HY(izes)YH( the object model back to XML by calling
     the seri)HY(al)HY(iza)HY(tion)YH( func)HY(tion)YH(.)EP(

  )0 P(The first argu)HY(ment)YH( we pass to the seri)HY(al)HY(iza)HY(tion)YH( func)HY(tion)YH( is
     )SM(cout)ES( which results in the XML being written to
     the stan)HY(dard)YH( output for us to inspect. We could have also
     written the result to a file or memory buffer by creat)HY(ing)YH( an
     instance of )SM(std::ofstream)ES( or )SM(std::ostringstream)ES(
     and passing it instead of )SM(cout)ES(. The second argu)HY(ment)YH( is the
     object model we want to seri)HY(al)HY(ize)YH(. The final argu)HY(ment)YH( is an optional
     names)HY(pace)YH( infor)HY(ma)HY(tion)YH( map for our vocab)HY(u)HY(lary)YH(. It captures infor)HY(ma)HY(tion)YH(
     such as names)HY(paces)YH(, names)HY(pace)YH( prefixes to which they should be mapped,
     and schemas asso)HY(ci)HY(ated)YH( with these names)HY(paces)YH(. If we don't provide
     this argu)HY(ment)YH( then generic names)HY(pace)YH( prefixes \201)SM(p1)ES(,
     )SM(p2)ES(, etc.\202 will be auto)HY(mat)HY(i)HY(cally)YH( assigned to XML names)HY(paces)YH(
     and no schema infor)HY(ma)HY(tion)YH( will be added to the result)HY(ing)YH( docu)HY(ment)YH(
     \201see )0 33 1 A(Chapter 6, "Seri)HY(al)HY(iza)HY(tion)YH(")33 0 TN TL()Ec /AF f D( for details\202.
     In our case, the prefix \201map key\202 and names)HY(pace)YH( name are empty
     because our vocab)HY(u)HY(lary)YH( does not use XML names)HY(paces)YH(.)EP(

  )0 P(If we now compile and run this appli)HY(ca)HY(tion)YH( we will see the
     output as shown in the follow)HY(ing)YH( listing:)EP(

  ) 12 60 PR(<?xml version="1.0"?>
<hello xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xsi:noNamespaceSchemaLocation="hello.xsd">

  <greeting>Hi</greeting>

  <name>sun</name>
  <name>moon</name>
  <name>world</name>
  <name>mars</name>

</hello>)RP(

  )0 P(We can also create and seri)HY(al)HY(ize)YH( an object model from scratch
     as shown in the follow)HY(ing)YH( example:)EP(

  ) 33 43 PR(#include <iostream>
#include <fstream>
#include "hello.hxx"

using namespace std;

int
main \201int argc, char* argv[]\202
{
  try
  {
    hello_t h \201"Hi"\202;

    hello_t::name_sequence& ns \201h.name \201\202\202;

    ns.push_back \201"Jane"\202;
    ns.push_back \201"John"\202;

    // Serialize the object model to XML.
    //
    xml_schema::namespace_infomap map;
    map[""].name = "";
    map[""].schema = "hello.xsd";

    std::ofstream ofs \201argv[1]\202;
    hello \201ofs, h, map\202;
  }
  catch \201const xml_schema::exception& e\202
  {
    cerr << e << endl;
    return 1;)WR(
  }
})RP(

  )0 P(In this example we used the gener)HY(ated)YH( construc)HY(tor)YH( to create
     an instance of type )SM(hello_t)ES(. To reduce typing,
     we obtained a refer)HY(ence)YH( to the name sequence which we then
     used to add a few names. The seri)HY(al)HY(iza)HY(tion)YH( part is iden)HY(ti)HY(cal)YH(
     to the previ)HY(ous)YH( example except this time we are writing to
     a file. If we compile and run this program, it produces the
     follow)HY(ing)YH( XML file:)EP(

  ) 10 60 PR(<?xml version="1.0"?>
<hello xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xsi:noNamespaceSchemaLocation="hello.xsd">

  <greeting>Hi</greeting>

  <name>Jane</name>
  <name>John</name>

</hello>)RP(

  )0 2 12 H(2.6)WB 48 Sn()WB 15 Sn( Select)HY(ing)YH( Naming Conven)HY(tion)YH()EA()EH(

  )0 P(By default XSD uses the so-called K&R \201Kernighan and Ritchie\202
     iden)HY(ti)HY(fier)YH( naming conven)HY(tion)YH( in the gener)HY(ated)YH( code. In this
     conven)HY(tion)YH( both type and func)HY(tion)YH( names are in lower case and
     words are sepa)HY(rated)YH( by under)HY(scores)YH(. If your appli)HY(ca)HY(tion)YH( code or
     schemas use a differ)HY(ent)YH( nota)HY(tion)YH(, you may want to change the
     naming conven)HY(tion)YH( used in the gener)HY(ated)YH( code for consis)HY(tency)YH(.
     XSD supports a set of widely-used naming conven)HY(tions)YH(
     that you can select with the )SM(--type-naming)ES( and
     )SM(--func)HY(tion)YH(-naming)ES( options. You can also further
     refine one of the prede)HY(fined)YH( conven)HY(tions)YH( or create a completely
     custom naming scheme by using the  )SM(--*-regex)ES( options.)EP(

  )0 P(As an example, let's assume that our "Hello World" appli)HY(ca)HY(tion)YH(
     uses the so-called upper-camel-case naming conven)HY(tion)YH( for types
     \201that is, each word in a type name is capi)HY(tal)HY(ized)YH(\202 and the K&R
     conven)HY(tion)YH( for func)HY(tion)YH( names. Since K&R is the default
     conven)HY(tion)YH( for both type and func)HY(tion)YH( names, we only need to
     change the type naming scheme:)EP(

  ) 1 42 PR($ xsd cxx-tree --type-naming ucc hello.xsd)RP(

  )0 P(The )SM(ucc)ES( argu)HY(ment)YH( to the )SM(--type-naming)ES(
     options stands for upper-camel-case. If we now examine the
     gener)HY(ated)YH( )SM(hello.hxx)ES(, we will see the follow)HY(ing)YH(
     changes compared to the decla)HY(ra)HY(tions)YH( shown in the previ)HY(ous)YH(
     sections:)EP(

  ) 45 57 PR(class Hello_t
{
public:
  // greeting
  //
  typedef xml_schema::String GreetingType;

  const GreetingType&
  greeting \201\202 const;

  GreetingType&
  greeting \201\202;

  void
  greeting \201const GreetingType& x\202;

  // name
  //
  typedef xml_schema::String NameType;
  typedef xsd::sequence<NameType> NameSequence;
  typedef NameSequence::iterator NameIterator;
  typedef NameSequence::const_iterator NameConstIterator;

  const NameSequence&
  name \201\202 const;

  NameSequence&
  name \201\202;

  void
  name \201const NameSequence& s\202;)WR(

  // Constructor.
  //
  Hello_t \201const GreetingType&\202;

  ...

};

std::auto_ptr<Hello_t>
hello \201const std::string& uri\202;

std::auto_ptr<Hello_t>
hello \201std::istream&\202;)RP(

  )0 P(Notice that the type names in the )SM(xml_schema)ES( names)HY(pace)YH(,
     for example )SM(xml_schema::String)ES(, now also use the
     upper-camel-case naming conven)HY(tion)YH(. The only thing that we may
     be unhappy about in the above code is the )SM(_t)ES(
     suffix in )SM(Hello_t)ES(. If we are not in a posi)HY(tion)YH(
     to change the schema, we can )EM(touch-up)ES( the )SM(ucc)ES(
     conven)HY(tion)YH( with a custom trans)HY(la)HY(tion)YH( rule using the
     )SM(--type-regex)ES( option:)EP(

  ) 1 72 PR($ xsd cxx-tree --type-naming ucc --type-regex '/ \201.+\202_t/\200u$1/' hello.xsd)RP(

  )0 P(This results in the follow)HY(ing)YH( changes to the gener)HY(ated)YH( code:)EP(

  ) 45 57 PR(class Hello
{
public:
  // greeting
  //
  typedef xml_schema::String GreetingType;

  const GreetingType&
  greeting \201\202 const;

  GreetingType&
  greeting \201\202;

  void
  greeting \201const GreetingType& x\202;

  // name
  //
  typedef xml_schema::String NameType;
  typedef xsd::sequence<NameType> NameSequence;
  typedef NameSequence::iterator NameIterator;
  typedef NameSequence::const_iterator NameConstIterator;

  const NameSequence&
  name \201\202 const;

  NameSequence&
  name \201\202;

  void
  name \201const NameSequence& s\202;)WR(

  // Constructor.
  //
  Hello \201const GreetingType&\202;

  ...

};

std::auto_ptr<Hello>
hello \201const std::string& uri\202;

std::auto_ptr<Hello>
hello \201std::istream&\202;)RP(

  )0 P(For more detailed infor)HY(ma)HY(tion)YH( on the )SM(--type-naming)ES(,
     )SM(--func)HY(tion)YH(-naming)ES(, )SM(--type-regex)ES(, and
     other )SM(--*-regex)ES( options refer to the NAMING
     CONVEN)HY(TION)YH( section in the )R4 2 A(XSD
     Compiler Command Line Manual)EA(.)EP(

  )0 2 13 H(2.7)WB 49 Sn()WB 16 Sn( Gener)HY(at)HY(ing)YH( Docu)HY(men)HY(ta)HY(tion)YH()EA()EH(

  )0 P(While our object model is quite simple, real-world vocab)HY(u)HY(lar)HY(ies)YH(
     can be quite complex with hundreds of types, elements, and
     attributes. For such vocab)HY(u)HY(lar)HY(ies)YH( figur)HY(ing)YH( out which types
     provide which member func)HY(tions)YH( by study)HY(ing)YH( the gener)HY(ated)YH(
     source code or schemas can be a daunt)HY(ing)YH( task. To provide
     appli)HY(ca)HY(tion)YH( devel)HY(op)HY(ers)YH( with a more acces)HY(si)HY(ble)YH( way of
     under)HY(stand)HY(ing)YH( the gener)HY(ated)YH( object models, the XSD compiler
     can be instructed to produce source code with docu)HY(men)HY(ta)HY(tion)YH(
     comments in the Doxygen format. Then the source code can be
     processed with the )R8 2 A(Doxygen)EA(
     docu)HY(men)HY(ta)HY(tion)YH( system to extract this infor)HY(ma)HY(tion)YH( and produce
     docu)HY(men)HY(ta)HY(tion)YH( in various formats.
  )EP(

  )0 P(In this section we will see how to gener)HY(ate)YH( docu)HY(men)HY(ta)HY(tion)YH(
     for our "Hello World" vocab)HY(u)HY(lary)YH(. To show)HY(case)YH( the full power
     of the XSD docu)HY(men)HY(ta)HY(tion)YH( facil)HY(i)HY(ties)YH(, we will first docu)HY(ment)YH(
     our schema. The XSD compiler will then trans)HY(fer)YH(
     this infor)HY(ma)HY(tion)YH( from the schema to the gener)HY(ated)YH( code and
     then to the object model docu)HY(men)HY(ta)HY(tion)YH(. Note that the
     docu)HY(men)HY(ta)HY(tion)YH( in the schema is not required for XSD to
     gener)HY(ate)YH( useful docu)HY(men)HY(ta)HY(tion)YH(. Below you will find
     our )SM(hello.xsd)ES( with added docu)HY(men)HY(ta)HY(tion)YH(:)EP(

  ) 43 69 PR(<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

  <xs:complexType name="hello_t">

    <xs:annotation>
      <xs:documentation>
        The hello_t type consists of a greeting phrase and a
        collection of names to which this greeting applies.
      </xs:documentation>
    </xs:annotation>

    <xs:sequence>

      <xs:element name="greeting" type="xs:string">
        <xs:annotation>
          <xs:documentation>
            The greeting element contains the greeting phrase
            for this hello object.
          </xs:documentation>
        </xs:annotation>
      </xs:element>

      <xs:element name="name" type="xs:string" maxOccurs="unbounded">
        <xs:annotation>
          <xs:documentation>
            The name elements contains names to be greeted.
          </xs:documentation>
        </xs:annotation>
      </xs:element>

    </xs:sequence>)WR(
  </xs:complexType>

  <xs:element name="hello" type="hello_t">
    <xs:annotation>
      <xs:documentation>
        The hello element is a root of the Hello XML vocabulary.
        Every conforming document should start with this element.
      </xs:documentation>
    </xs:annotation>
  </xs:element>

</xs:schema>)RP(

  )0 P(The first step in obtain)HY(ing)YH( the docu)HY(men)HY(ta)HY(tion)YH( is to recom)HY(pile)YH(
     our schema with the )SM(--gener)HY(ate)YH(-doxygen)ES( option:)EP(

  ) 1 68 PR($ xsd cxx-tree --generate-serialization --generate-doxygen hello.xsd)RP(

  )0 P(Now the gener)HY(ated)YH( )SM(hello.hxx)ES( file contains comments
     in the Doxygen format. The next step is to process this file
     with the Doxygen docu)HY(men)HY(ta)HY(tion)YH( system. If your project does
     not use Doxygen then you first need to create a config)HY(u)HY(ra)HY(tion)YH(
     file for your project:)EP(

  ) 1 26 PR($ doxygen -g hello.doxygen)RP(

  )0 P(You only need to perform this step once. Now we can gener)HY(ate)YH(
     the docu)HY(men)HY(ta)HY(tion)YH( by execut)HY(ing)YH( the follow)HY(ing)YH( command in the
     direc)HY(tory)YH( with the gener)HY(ated)YH( source code:)EP(

  ) 1 23 PR($ doxygen hello.doxygen)RP(

  )0 P(While the gener)HY(ated)YH( docu)HY(men)HY(ta)HY(tion)YH( can be useful as is, we can
     go one step further and link \201using the Doxygen tags mech)HY(a)HY(nism)YH(\202
     the docu)HY(men)HY(ta)HY(tion)YH( for our object model with the docu)HY(men)HY(ta)HY(tion)YH(
     for the XSD runtime library which defines C++ classes for the
     built-in XML Schema types. This way we can seam)HY(lessly)YH( browse
     between docu)HY(men)HY(ta)HY(tion)YH( for the )SM(hello_t)ES( class which
     is gener)HY(ated)YH( by the XSD compiler and the )SM(xml_schema::string)ES(
     class which is defined in the XSD runtime library. The Doxygen
     config)HY(u)HY(ra)HY(tion)YH( file for the XSD runtime is provided with the XSD
     distri)HY(bu)HY(tion)YH(.)EP(

  )0 P(You can view the result of the steps described in this section
     on the )R9 2 A(Hello
     Example Docu)HY(men)HY(ta)HY(tion)YH()EA( page.)EP(

  


  )0 1 14 H(3)WB 50 Sn()WB 17 Sn( Overall Mapping Config)HY(u)HY(ra)HY(tion)YH()EA()EH(

  )0 P(The C++/Tree mapping has a number of config)HY(u)HY(ra)HY(tion)YH( param)HY(e)HY(ters)YH( that
     deter)HY(mine)YH( the overall prop)HY(er)HY(ties)YH( and behav)HY(ior)YH( of the gener)HY(ated)YH( code.
     Config)HY(u)HY(ra)HY(tion)YH( param)HY(e)HY(ters)YH( are spec)HY(i)HY(fied)YH( with the XSD command line
     options. This chapter describes config)HY(u)HY(ra)HY(tion)YH( aspects that are most
     commonly encoun)HY(tered)YH( by appli)HY(ca)HY(tion)YH( devel)HY(op)HY(ers)YH(. These include: the
     C++ stan)HY(dard)YH(, the char)HY(ac)HY(ter)YH( type that is used by the gener)HY(ated)YH( code,
     handling of vocab)HY(u)HY(lar)HY(ies)YH( that use XML Schema poly)HY(mor)HY(phism)YH(, XML Schema
     to C++ names)HY(pace)YH( mapping, and thread safety. For more ways to config)HY(ure)YH(
     the gener)HY(ated)YH( code refer to the
     )R4 2 A(XSD
     Compiler Command Line Manual)EA(.
  )EP(

  )0 2 15 H(3.1)WB 51 Sn()WB 18 Sn( C++ Stan)HY(dard)YH()EA()EH(

  )0 P(The C++/Tree mapping provides support for ISO/IEC C++ 1998/2003 \201C++98\202
     and ISO/IEC C++ 2011 \201C++11\202. To select the C++ stan)HY(dard)YH( for the
     gener)HY(ated)YH( code we use the )SM(--std)ES( XSD compiler command
     line option. While the major)HY(ity)YH( of the exam)HY(ples)YH( in this guide use
     C++98, support for the new func)HY(tion)HY(al)HY(ity)YH( and library compo)HY(nents)YH(
     intro)HY(duced)YH( in C++11 are discussed through)HY(out)YH( the docu)HY(ment)YH(.)EP(

  )0 2 16 H(3.2)WB 52 Sn()WB 19 Sn( Char)HY(ac)HY(ter)YH( Type and Encod)HY(ing)YH()EA()EH(

  )0 P(The C++/Tree mapping has built-in support for two char)HY(ac)HY(ter)YH( types:
    )SM(char)ES( and )SM(wchar_t)ES(. You can select the
    char)HY(ac)HY(ter)YH( type with the )SM(--char-type)ES( command line
    option. The default char)HY(ac)HY(ter)YH( type is )SM(char)ES(. The
    char)HY(ac)HY(ter)YH( type affects all string and string-based types that
    are used in the mapping. These include the string-based built-in
    XML Schema types, excep)HY(tion)YH( types, stream types, etc.)EP(

  )0 P(Another aspect of the mapping that depends on the char)HY(ac)HY(ter)YH( type
     is char)HY(ac)HY(ter)YH( encod)HY(ing)YH(. For the )SM(char)ES( char)HY(ac)HY(ter)YH( type
     the default encod)HY(ing)YH( is UTF-8. Other supported encod)HY(ings)YH( are
     ISO-8859-1, Xerces-C++ Local Code Page \201LPC\202, as well as
     custom encod)HY(ings)YH(. You can select which encod)HY(ing)YH( should be used
     in the object model with the )SM(--char-encod)HY(ing)YH()ES( command
     line option.)EP(

  )0 P(For the )SM(wchar_t)ES( char)HY(ac)HY(ter)YH( type the encod)HY(ing)YH( is
     auto)HY(mat)HY(i)HY(cally)YH( selected between UTF-16 and UTF-32/UCS-4 depend)HY(ing)YH(
     on the size of the )SM(wchar_t)ES( type. On some plat)HY(forms)YH(
     \201for example, Windows with Visual C++ and AIX with IBM XL C++\202
     )SM(wchar_t)ES( is 2 bytes long. For these plat)HY(forms)YH( the
     encod)HY(ing)YH( is UTF-16. On other plat)HY(forms)YH( )SM(wchar_t)ES( is 4 bytes
     long and UTF-32/UCS-4 is used.)EP(

  )0 P(Note also that the char)HY(ac)HY(ter)YH( encod)HY(ing)YH( that is used in the object model
     is inde)HY(pen)HY(dent)YH( of the encod)HY(ings)YH( used in input and output XML. In fact,
     all three \201object mode, input XML, and output XML\202 can have differ)HY(ent)YH(
     encod)HY(ings)YH(.)EP(

  )0 2 17 H(3.3)WB 53 Sn()WB 20 Sn( Support for Poly)HY(mor)HY(phism)YH()EA()EH(

  )0 P(By default XSD gener)HY(ates)YH( non-poly)HY(mor)HY(phic)YH( code. If your vocab)HY(u)HY(lary)YH(
     uses XML Schema poly)HY(mor)HY(phism)YH( in the form of )SM(xsi:type)ES(
     and/or substi)HY(tu)HY(tion)YH( groups, then you will need to compile
     your schemas with the )SM(--gener)HY(ate)YH(-poly)HY(mor)HY(phic)YH()ES( option
     to produce poly)HY(mor)HY(phism)YH(-aware code. For more infor)HY(ma)HY(tion)YH( on
     working with poly)HY(mor)HY(phic)YH( object models, refer to
     )R10 2 A(Section 2.11,
     "Mapping for )SM(xsi:type)ES( and Substi)HY(tu)HY(tion)YH( Groups")EA( in
     the C++/Tree Mapping User Manual.)EP(

  )0 2 18 H(3.4)WB 54 Sn()WB 21 Sn( Names)HY(pace)YH( Mapping)EA()EH(

  )0 P(XSD maps XML names)HY(paces)YH( spec)HY(i)HY(fied)YH( in the )SM(target)HY(Names)HY(pace)YH()ES(
     attribute in XML Schema to one or more nested C++ names)HY(paces)YH(. By
     default, a names)HY(pace)YH( URI is mapped to a sequence of C++ names)HY(pace)YH(
     names by remov)HY(ing)YH( the proto)HY(col)YH( and host parts and split)HY(ting)YH( the
     rest into a sequence of names with )SM('/')ES( as the name
     sepa)HY(ra)HY(tor)YH(.)EP(

  )0 P(The default mapping of names)HY(pace)YH( URIs to C++ names)HY(paces)YH(
     can be altered using the )SM(--names)HY(pace)YH(-map)ES( and
     )SM(--names)HY(pace)YH(-regex)ES( compiler options. For example,
     to map names)HY(pace)YH( URI )SM(http://www.codesyn)HY(the)HY(sis)YH(.com/my)ES( to
     C++ names)HY(pace)YH( )SM(cs::my)ES(, we can use the follow)HY(ing)YH( option:)EP(

  ) 1 54 PR(--namespace-map http://www.codesynthesis.com/my=cs::my)RP(

  )0 P(A vocab)HY(u)HY(lary)YH( without a names)HY(pace)YH( is mapped to the global scope. This
     also can be altered with the above options by using an empty name
     for the XML names)HY(pace)YH(:)EP(

  ) 1 19 PR(--namespace-map =cs)RP(

  )0 2 19 H(3.5)WB 55 Sn()WB 22 Sn( Thread Safety)EA()EH(

  )0 P(XSD-gener)HY(ated)YH( code is thread-safe in the sense that you can
     use differ)HY(ent)YH( instan)HY(ti)HY(a)HY(tions)YH( of the object model in several
     threads concur)HY(rently)YH(. This is possi)HY(ble)YH( due to the gener)HY(ated)YH(
     code not relying on any writable global vari)HY(ables)YH(. If you need
     to share the same object between several threads then you will
     need to provide some form of synchro)HY(niza)HY(tion)YH(. One approach would
     be to use the gener)HY(ated)YH( code customiza)HY(tion)YH( mech)HY(a)HY(nisms)YH( to embed
     synchro)HY(niza)HY(tion)YH( prim)HY(i)HY(tives)YH( into the gener)HY(ated)YH( C++ classes. For more
     infor)HY(ma)HY(tion)YH( on gener)HY(ated)YH( code customiza)HY(tion)YH( refer to the
     )R2 2 A(C++/Tree
     Mapping Customiza)HY(tion)YH( Guide)EA(.)EP(

  )0 P(If you also would like to call parsing and/or seri)HY(al)HY(iza)HY(tion)YH(
     func)HY(tions)YH( from several threads poten)HY(tially)YH( concur)HY(rently)YH(, then
     you will need to make sure the Xerces-C++ runtime is initial)HY(ized)YH(
     and termi)HY(nated)YH( only once. The easiest way to do this is to
     initial)HY(ize)YH(/termi)HY(nate)YH( Xerces-C++ from )SM(main\201\202)ES( when
     there are no threads yet/anymore:)EP(

  ) 13 56 PR(#include <xercesc/util/PlatformUtils.hpp>

int
main \201\202
{
  xercesc::XMLPlatformUtils::Initialize \201\202;

  {
    // Start/terminate threads and parse/serialize here.
  }

  xercesc::XMLPlatformUtils::Terminate \201\202;
})RP(

  )0 P(Because you initial)HY(ize)YH( the Xerces-C++ runtime your)HY(self)YH( you should
     also pass the )SM(xml_schema::flags::dont_initial)HY(ize)YH()ES( flag
     to parsing and seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH(. See )0 30 1 A(Chapter 5,
     "Parsing")30 0 TN TL()Ec /AF f D( and )0 33 1 A(Chapter 6, "Seri)HY(al)HY(iza)HY(tion)YH(")33 0 TN TL()Ec /AF f D( for
     more infor)HY(ma)HY(tion)YH(.)EP(


  


  )0 1 20 H(4)WB 56 Sn()WB 23 Sn( Working with Object Models)EA()EH(

  )0 P(As we have seen in the previ)HY(ous)YH( chap)HY(ters)YH(, the XSD compiler gener)HY(ates)YH(
     a C++ class for each type defined in XML Schema. Together these classes
     consti)HY(tute)YH( an object model for an XML vocab)HY(u)HY(lary)YH(. In this chapter we
     will take a closer look at differ)HY(ent)YH( elements that comprise an
     object model class as well as how to create, access, and modify
     object models.)EP(

  )0 P(In this and subse)HY(quent)YH( chap)HY(ters)YH( we will use the follow)HY(ing)YH( schema
     that describes a collec)HY(tion)YH( of person records. We save it in
     )SM(people.xsd)ES(:)EP(

  ) 30 71 PR(<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

  <xs:simpleType name="gender_t">
    <xs:restriction base="xs:string">
      <xs:enumeration value="male"/>
      <xs:enumeration value="female"/>
    </xs:restriction>
  </xs:simpleType>

  <xs:complexType name="person_t">
    <xs:sequence>
      <xs:element name="first-name" type="xs:string"/>
      <xs:element name="middle-name" type="xs:string" minOccurs="0"/>
      <xs:element name="last-name" type="xs:string"/>
      <xs:element name="gender" type="gender_t"/>
      <xs:element name="age" type="xs:short"/>
    </xs:sequence>
    <xs:attribute name="id" type="xs:unsignedInt" use="required"/>
  </xs:complexType>

  <xs:complexType name="people_t">
    <xs:sequence>
      <xs:element name="person" type="person_t" maxOccurs="unbounded"/>
    </xs:sequence>
  </xs:complexType>

  <xs:element name="people" type="people_t"/>

</xs:schema>)RP(

  )0 P(A sample XML instance to go along with this schema is saved
     in )SM(people.xml)ES(:)EP(

  ) 20 61 PR(<?xml version="1.0"?>
<people xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:noNamespaceSchemaLocation="people.xsd">

  <person id="1">
    <first-name>John</first-name>
    <last-name>Doe</last-name>
    <gender>male</gender>
    <age>32</age>
  </person>

  <person id="2">
    <first-name>Jane</first-name>
    <middle-name>Mary</middle-name>
    <last-name>Doe</last-name>
    <gender>female</gender>
    <age>28</age>
  </person>

</people>)RP(

  )0 P(Compil)HY(ing)YH( )SM(people.xsd)ES( with the XSD compiler results
     in three gener)HY(ated)YH( C++ classes: )SM(gender_t)ES(,
     )SM(person_t)ES(, and )SM(people_t)ES(.
     The )SM(gender_t)ES( class is modelled after the C++
     )SM(enum)ES( type. Its defi)HY(ni)HY(tion)YH( is presented below:)EP(

  ) 17 41 PR(class gender_t: public xml_schema::string
{
public:
  enum value
  {
    male,
    female
  };

  gender_t \201value\202;
  gender_t \201const xml_schema::string&\202;

  gender_t&
  operator= \201value\202;

  operator value \201\202 const;
};)RP(

  )0 P(The follow)HY(ing)YH( listing shows how we can use this type:)EP(

  ) 19 41 PR(gender_t m \201gender_t::male\202;
gender_t f \201"female"\202;

if \201m == "female" || f == gender_t::male\202
{
  ...
}

switch \201m\202
{
case gender_t::male:
  {
    ...
  }
case gender_t::female:
  {
    ...
  }
})RP(

  )0 P(The other two classes will be exam)HY(ined)YH( in detail in the subse)HY(quent)YH(
     sections.)EP(

  )0 2 21 H(4.1)WB 57 Sn()WB 24 Sn( Attribute and Element Cardi)HY(nal)HY(i)HY(ties)YH()EA()EH(

  )0 P(As we have seen in the previ)HY(ous)YH( chap)HY(ters)YH(, XSD gener)HY(ates)YH( a differ)HY(ent)YH(
     set of type defi)HY(ni)HY(tions)YH( and member func)HY(tions)YH( for elements with
     differ)HY(ent)YH( cardi)HY(nal)HY(i)HY(ties)YH(. The C++/Tree mapping divides all the possi)HY(ble)YH(
     element and attribute cardi)HY(nal)HY(i)HY(ties)YH( into three cardi)HY(nal)HY(ity)YH( classes:
     )EM(one)ES(, )EM(optional)ES(, and )EM(sequence)ES(.)EP(

  )0 P(The )EM(one)ES( cardi)HY(nal)HY(ity)YH( class covers all elements that should
     occur exactly once as well as required attributes. In our
     example, the )SM(first-name)ES(, )SM(last-name)ES(,
     )SM(gender)ES(, and )SM(age)ES( elements as well as
     the )SM(id)ES( attribute belong to this cardi)HY(nal)HY(ity)YH( class.
     The follow)HY(ing)YH( code frag)HY(ment)YH( shows type defi)HY(ni)HY(tions)YH( as well as the
     acces)HY(sor)YH( and modi)HY(fier)YH( func)HY(tions)YH( that are gener)HY(ated)YH( for the
     )SM(gender)ES( element in the )SM(person_t)ES( class:)EP(

  ) 15 31 PR(class person_t
{
  // gender
  //
  typedef gender_t gender_type;

  const gender_type&
  gender \201\202 const;

  gender_type&
  gender \201\202;

  void
  gender \201const gender_type&\202;
};)RP(

  )0 P(The )SM(gender_type)ES( type is an alias for the element's type.
     The first two acces)HY(sor)YH( func)HY(tions)YH( return read-only \201constant\202 and
     read-write refer)HY(ences)YH( to the element's value, respec)HY(tively)YH(. The
     modi)HY(fier)YH( func)HY(tion)YH( sets the new value for the element.)EP(

  )0 P(The )EM(optional)ES( cardi)HY(nal)HY(ity)YH( class covers all elements that
     can occur zero or one time as well as optional attributes. In our
     example, the )SM(middle-name)ES( element belongs to this
     cardi)HY(nal)HY(ity)YH( class. The follow)HY(ing)YH( code frag)HY(ment)YH( shows the type
     defi)HY(ni)HY(tions)YH( as well as the acces)HY(sor)YH( and modi)HY(fier)YH( func)HY(tions)YH( that
     are gener)HY(ated)YH( for this element in the )SM(person_t)ES( class:)EP(

  ) 19 63 PR(class person_t
{
  // middle-name
  //
  typedef xml_schema::string middle_name_type;
  typedef xsd::optional<middle_name_type> middle_name_optional;

  const middle_name_optional&
  middle_name \201\202 const;

  middle_name_optional&
  middle_name \201\202;

  void
  middle_name \201const middle_name_type&\202;

  void
  middle_name \201const middle_name_optional&\202;
};)RP(

  )0 P(As with the )SM(gender)ES( element, )SM(middle_name_type)ES(
     is an alias for the element's type. The )SM(middle_name_optional)ES(
     type is a container for the element's optional value. It can be queried
     for the pres)HY(ence)YH( of the value using the )SM(present\201\202)ES( func)HY(tion)YH(.
     The value itself can be retrieved using the )SM(get\201\202)ES(
     acces)HY(sor)YH( and set using the )SM(set\201\202)ES( modi)HY(fier)YH(. The container
     can be reverted to the value not present state with the call to the
     )SM(reset\201\202)ES( func)HY(tion)YH(. The follow)HY(ing)YH( example shows how we
     can use this container:)EP(

  ) 9 42 PR(person_t::middle_name_optional n \201"John"\202;

if \201n.present \201\202\202
{
  cout << n.get \201\202 << endl;
}

n.set \201"Jane"\202;
n.reset \201\202;)RP(


  )0 P(Unlike the )EM(one)ES( cardi)HY(nal)HY(ity)YH( class, the acces)HY(sor)YH( func)HY(tions)YH(
     for the )EM(optional)ES( class return read-only \201constant\202 and
     read-write refer)HY(ences)YH( to the container instead of the element's
     value directly. The modi)HY(fier)YH( func)HY(tions)YH( set the new value for the
     element.)EP(

  )0 P(Finally, the )EM(sequence)ES( cardi)HY(nal)HY(ity)YH( class covers all elements
     that can occur more than once. In our example, the
     )SM(person)ES( element in the )SM(people_t)ES( type
     belongs to this cardi)HY(nal)HY(ity)YH( class. The follow)HY(ing)YH( code frag)HY(ment)YH( shows
     the type defi)HY(ni)HY(tions)YH( as well as the acces)HY(sor)YH( and modi)HY(fier)YH( func)HY(tions)YH(
     that are gener)HY(ated)YH( for this element in the )SM(people_t)ES(
     class:)EP(

  ) 18 64 PR(class people_t
{
  // person
  //
  typedef person_t person_type;
  typedef xsd::sequence<person_type> person_sequence;
  typedef person_sequence::iterator person_iterator;
  typedef person_sequence::const_iterator person_const_iterator;

  const person_sequence&
  person \201\202 const;

  person_sequence&
  person \201\202;

  void
  person \201const person_sequence&\202;
};)RP(

  )0 P(Iden)HY(ti)HY(cal)YH( to the other cardi)HY(nal)HY(ity)YH( classes, )SM(person_type)ES(
     is an alias for the element's type. The )SM(person_sequence)ES(
     type is a sequence container for the element's values. It is based
     on and has the same inter)HY(face)YH( as )SM(std::vector)ES( and
     there)HY(fore)YH( can be used in similar ways. The )SM(person_iter)HY(a)HY(tor)YH()ES(
     and )SM(person_const_iter)HY(a)HY(tor)YH()ES( types are read-only
     \201constant\202 and read-write iter)HY(a)HY(tors)YH( for the )SM(person_sequence)ES(
     container.)EP(

  )0 P(Similar to the )EM(optional)ES( cardi)HY(nal)HY(ity)YH( class, the
     acces)HY(sor)YH( func)HY(tions)YH( for the )EM(sequence)ES( class return
     read-only \201constant\202 and read-write refer)HY(ences)YH( to the sequence
     container. The modi)HY(fier)YH( func)HY(tions)YH( copies the entries from
     the passed sequence.)EP(

  )0 P(C++/Tree is a "flat)HY(ten)HY(ing)YH(" mapping in a sense that many levels of
     nested compos)HY(i)HY(tors)YH( \201)SM(choice)ES( and )SM(sequence)ES(\202,
     all poten)HY(tially)YH( with their own cardi)HY(nal)HY(i)HY(ties)YH(, are in the end mapped
     to a flat set of elements with one of the three cardi)HY(nal)HY(ity)YH( classes
     discussed above. While this results in a simple and easy to use API
     for most types, in certain cases, the order of elements in the actual
     XML docu)HY(ments)YH( is not preserved once parsed into the object model. To
     over)HY(come)YH( this limi)HY(ta)HY(tion)YH( we can mark certain schema types, for which
     content order is not suffi)HY(ciently)YH( preserved, as ordered. For more
     infor)HY(ma)HY(tion)YH( on this func)HY(tion)HY(al)HY(ity)YH( refer to
     )R11 2 A(Section
     2.8.4, "Element Order")EA( in the C++/Tree Mapping User Manual.)EP(

  )0 P(For complex schemas with many levels of nested compos)HY(i)HY(tors)YH(
     \201)SM(choice)ES( and )SM(sequence)ES(\202 it can also
     be hard to deduce the cardi)HY(nal)HY(ity)YH( class of a partic)HY(u)HY(lar)YH( element.
     The gener)HY(ated)YH( Doxygen docu)HY(men)HY(ta)HY(tion)YH( can greatly help with
     this task. For each element and attribute the docu)HY(men)HY(ta)HY(tion)YH(
     clearly iden)HY(ti)HY(fies)YH( its cardi)HY(nal)HY(ity)YH( class. Alter)HY(na)HY(tively)YH(, you
     can study the gener)HY(ated)YH( header files to find out the cardi)HY(nal)HY(ity)YH(
     class of a partic)HY(u)HY(lar)YH( attribute or element.)EP(

  )0 P(In the next sections we will examine how to access and modify
     infor)HY(ma)HY(tion)YH( stored in an object model using acces)HY(sor)YH( and modi)HY(fier)YH(
     func)HY(tions)YH( described in this section.)EP(

  )0 2 22 H(4.2)WB 58 Sn()WB 25 Sn( Access)HY(ing)YH( the Object Model)EA()EH(

  )0 P(In this section we will learn how to get to the infor)HY(ma)HY(tion)YH(
     stored in the object model for our person records vocab)HY(u)HY(lary)YH(.
     The follow)HY(ing)YH( appli)HY(ca)HY(tion)YH( accesses and prints the contents
     of the )SM(people.xml)ES( file:)EP(

  ) 36 70 PR(#include <iostream>
#include "people.hxx"

using namespace std;

int
main \201\202
{
  auto_ptr<people_t> ppl \201people \201"people.xml"\202\202;

  // Iterate over individual person records.
  //
  people_t::person_sequence& ps \201ppl->person \201\202\202;

  for \201people_t::person_iterator i \201ps.begin \201\202\202; i != ps.end \201\202; ++i\202
  {
    person_t& p \201*i\202;

    // Print names: first-name and last-name are required elements,
    // middle-name is optional.
    //
    cout << "name:   " << p.first_name \201\202 << " ";

    if \201p.middle_name \201\202.present \201\202\202
      cout << p.middle_name \201\202.get \201\202 << " ";

    cout << p.last_name \201\202 << endl;

    // Print gender, age, and id which are all required.
    //
    cout << "gender: " << p.gender \201\202 << endl)WR(
         << "age:    " << p.age \201\202 << endl
         << "id:     " << p.id \201\202 << endl
         << endl;
  }
})RP(

  )0 P(This code shows common patterns of access)HY(ing)YH( elements and attributes
     with differ)HY(ent)YH( cardi)HY(nal)HY(ity)YH( classes. For the sequence element
     \201)SM(person)ES( in )SM(people_t)ES(\202 we first obtain a
     refer)HY(ence)YH( to the container and then iterate over indi)HY(vid)HY(ual)YH(
     records. The values of elements and attributes with the
     )EM(one)ES( cardi)HY(nal)HY(ity)YH( class \201)SM(first-name)ES(,
     )SM(last-name)ES(, )SM(gender)ES(, )SM(age)ES(,
     and )SM(id)ES(\202 can be obtained directly by calling the
     corre)HY(spond)HY(ing)YH( acces)HY(sor)YH( func)HY(tions)YH(. For the optional element
     )SM(middle-name)ES( we first check if the value is present
     and only then call )SM(get\201\202)ES( to retrieve it.)EP(

  )0 P(Note that when we want to reduce typing by creat)HY(ing)YH( a vari)HY(able)YH(
     repre)HY(sent)HY(ing)YH( a frag)HY(ment)YH( of the object model that we are currently
     working with \201)SM(ps)ES( and )SM(p)ES( above\202, we obtain
     a refer)HY(ence)YH( to that frag)HY(ment)YH( instead of making a poten)HY(tially)YH(
     expen)HY(sive)YH( copy. This is gener)HY(ally)YH( a good rule to follow when
     creat)HY(ing)YH( high-perfor)HY(mance)YH( appli)HY(ca)HY(tions)YH(.)EP(

  )0 P(If we run the above appli)HY(ca)HY(tion)YH( on our sample
     )SM(people.xml)ES(, the output looks as follows:)EP(

  ) 9 21 PR(name:   John Doe
gender: male
age:    32
id:     1

name:   Jane Mary Doe
gender: female
age:    28
id:     2)RP(


  )0 2 23 H(4.3)WB 59 Sn()WB 26 Sn( Modi)HY(fy)HY(ing)YH( the Object Model)EA()EH(

  )0 P(In this section we will learn how to modify the infor)HY(ma)HY(tion)YH(
     stored in the object model for our person records vocab)HY(u)HY(lary)YH(.
     The follow)HY(ing)YH( appli)HY(ca)HY(tion)YH( changes the contents of the
     )SM(people.xml)ES( file:)EP(

  ) 43 70 PR(#include <iostream>
#include "people.hxx"

using namespace std;

int
main \201\202
{
  auto_ptr<people_t> ppl \201people \201"people.xml"\202\202;

  // Iterate over individual person records and increment
  // the age.
  //
  people_t::person_sequence& ps \201ppl->person \201\202\202;

  for \201people_t::person_iterator i \201ps.begin \201\202\202; i != ps.end \201\202; ++i\202
  {
    // Alternative way: i->age \201\202++;
    //
    i->age \201i->age \201\202 + 1\202;
  }

  // Add middle-name to the first record and remove it from
  // the second.
  //
  person_t& john \201ps[0]\202;
  person_t& jane \201ps[1]\202;

  john.middle_name \201"Mary"\202;
  jane.middle_name \201\202.reset \201\202;
)WR(
  // Add another John record.
  //
  ps.push_back \201john\202;

  // Serialize the modified object model to XML.
  //
  xml_schema::namespace_infomap map;
  map[""].name = "";
  map[""].schema = "people.xsd";

  people \201cout, *ppl, map\202;
})RP(

  )0 P(The first modi)HY(fi)HY(ca)HY(tion)YH( the above appli)HY(ca)HY(tion)YH( performs is iter)HY(at)HY(ing)YH(
     over person records and incre)HY(ment)HY(ing)YH( the age value. This code
     frag)HY(ment)YH( shows how to modify the value of a required attribute
     or element. The next modi)HY(fi)HY(ca)HY(tion)YH( shows how to set a new value
     for the optional )SM(middle-name)ES( element as well
     as clear its value. Finally the example adds a copy of the
     John Doe record to the )SM(person)ES( element sequence.)EP(

  )0 P(Note that in this case using refer)HY(ences)YH( for the )SM(ps)ES(,
     )SM(john)ES(, and )SM(jane)ES( vari)HY(ables)YH( is no longer
     a perfor)HY(mance)YH( improve)HY(ment)YH( but a require)HY(ment)YH( for the appli)HY(ca)HY(tion)YH(
     to func)HY(tion)YH( correctly. If we hadn't used refer)HY(ences)YH(, all our changes
     would have been made on copies without affect)HY(ing)YH( the object model.)EP(

  )0 P(If we run the above appli)HY(ca)HY(tion)YH( on our sample )SM(people.xml)ES(,
     the output looks as follows:)EP(

  ) 28 61 PR(<?xml version="1.0"?>
<people xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:noNamespaceSchemaLocation="people.xsd">

  <person id="1">
    <first-name>John</first-name>
    <middle-name>Mary</middle-name>
    <last-name>Doe</last-name>
    <gender>male</gender>
    <age>33</age>
  </person>

  <person id="2">
    <first-name>Jane</first-name>
    <last-name>Doe</last-name>
    <gender>female</gender>
    <age>29</age>
  </person>

  <person id="1">
    <first-name>John</first-name>
    <middle-name>Mary</middle-name>
    <last-name>Doe</last-name>
    <gender>male</gender>
    <age>33</age>
  </person>

</people>)RP(


  )0 2 24 H(4.4)WB 60 Sn()WB 27 Sn( Creat)HY(ing)YH( the Object Model from Scratch)EA()EH(

  )0 P(In this section we will learn how to create a new object model
     for our person records vocab)HY(u)HY(lary)YH(. The follow)HY(ing)YH( appli)HY(ca)HY(tion)YH(
     recre)HY(ates)YH( the content of the orig)HY(i)HY(nal)YH( )SM(people.xml)ES(
     file:)EP(

  ) 42 48 PR(#include <iostream>
#include "people.hxx"

using namespace std;

int
main \201\202
{
  people_t ppl;
  people_t::person_sequence& ps \201ppl.person \201\202\202;

  // Add the John Doe record.
  //
  ps.push_back \201
    person_t \201"John",         // first-name
              "Doe",          // last-name
              gender_t::male, // gender
              32,             // age
              1\202\202;

  // Add the Jane Doe record.
  //
  ps.push_back \201
    person_t \201"Jane",           // first-name
              "Doe",            // last-name
              gender_t::female, // gender
              28,               // age
              2\202\202;              // id

  // Add middle name to the Jane Doe record.
  //)WR(
  person_t& jane \201ps.back \201\202\202;
  jane.middle_name \201"Mary"\202;

  // Serialize the object model to XML.
  //
  xml_schema::namespace_infomap map;
  map[""].name = "";
  map[""].schema = "people.xsd";

  people \201cout, ppl, map\202;
})RP(

  )0 P(The only new part in the above appli)HY(ca)HY(tion)YH( is the calls
     to the )SM(people_t)ES( and )SM(person_t)ES(
     construc)HY(tors)YH(. As a general rule, for each C++ class
     XSD gener)HY(ates)YH( a construc)HY(tor)YH( with initial)HY(iz)HY(ers)YH(
     for each element and attribute belong)HY(ing)YH( to the )EM(one)ES(
     cardi)HY(nal)HY(ity)YH( class. For our vocab)HY(u)HY(lary)YH(, the follow)HY(ing)YH(
     construc)HY(tors)YH( are gener)HY(ated)YH(:)EP(

  ) 13 35 PR(class person_t
{
  person_t \201const first_name_type&,
            const last_name_type&,
            const gender_type&,
            const age_type&,
            const id_type&\202;
};

class people_t
{
  people_t \201\202;
};)RP(

  )0 P(Note also that we set the )SM(middle-name)ES( element
     on the Jane Doe record by obtain)HY(ing)YH( a refer)HY(ence)YH( to that record
     in the object model and setting the )SM(middle-name)ES(
     value on it. This is a general rule that should be followed
     in order to obtain the best perfor)HY(mance)YH(: if possi)HY(ble)YH(,
     direct modi)HY(fi)HY(ca)HY(tions)YH( to the object model should be preferred
     to modi)HY(fi)HY(ca)HY(tions)YH( on tempo)HY(raries)YH( with subse)HY(quent)YH( copying. The
     follow)HY(ing)YH( code frag)HY(ment)YH( shows a seman)HY(ti)HY(cally)YH( equiv)HY(a)HY(lent)YH( but
     slightly slower version:)EP(

  ) 11 46 PR(// Add the Jane Doe record.
//
person_t jane \201"Jane",           // first-name
               "Doe",            // last-name
               gender_t::female, // gender
               28,               // age
               2\202;               // id

jane.middle_name \201"Mary"\202;

ps.push_back \201jane\202;)RP(

  )0 P(We can also go one step further to reduce copying and improve
     the perfor)HY(mance)YH( of our appli)HY(ca)HY(tion)YH( by using the non-copying
    )SM(push_back\201\202)ES( func)HY(tion)YH( which assumes owner)HY(ship)YH(
     of the passed objects:)EP(

  ) 19 55 PR(// Add the John Doe record. C++98 version.
//
auto_ptr<person_t> john_p \201
  new person_t \201"John",           // first-name
                "Doe",            // last-name
                gender_t::male,   // gender
                32,               // age
                1\202\202;
ps.push_back \201john_p\202; // assumes ownership

// Add the Jane Doe record. C++11 version
//
unique_ptr<person_t> jane_p \201
  new person_t \201"Jane",           // first-name
                "Doe",            // last-name
                gender_t::female, // gender
                28,               // age
                2\202\202;              // id
ps.push_back \201std::move \201jane_p\202\202; // assumes ownership)RP(

  )0 P(For more infor)HY(ma)HY(tion)YH( on the non-copying modi)HY(fier)YH( func)HY(tions)YH( refer to
     )R12 2 A(Section
     2.8, "Mapping for Local Elements and Attributes")EA( in the C++/Tree Mapping
     User Manual. The above appli)HY(ca)HY(tion)YH( produces the follow)HY(ing)YH( output:)EP(

  ) 20 61 PR(<?xml version="1.0" ?>
<people xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:noNamespaceSchemaLocation="people.xsd">

  <person id="1">
    <first-name>John</first-name>
    <last-name>Doe</last-name>
    <gender>male</gender>
    <age>32</age>
  </person>

  <person id="2">
    <first-name>Jane</first-name>
    <middle-name>Mary</middle-name>
    <last-name>Doe</last-name>
    <gender>female</gender>
    <age>28</age>
  </person>

</people>)RP(

  )0 2 25 H(4.5)WB 61 Sn()WB 28 Sn( Mapping for the Built-in XML Schema Types)EA()EH(

  )0 P(Our person record vocab)HY(u)HY(lary)YH( uses several built-in XML Schema
     types: )SM(string)ES(, )SM(short)ES(, and
     )SM(unsignedInt)ES(. Until now we haven't talked about
     the mapping of built-in XML Schema types to C++ types and how
     to work with them. This section provides an overview
     of the built-in types. For more detailed infor)HY(ma)HY(tion)YH( refer
     to )R13 2 A(Section
     2.5, "Mapping for Built-in Data Types")EA( in the C++/Tree Mapping
     User Manual.)EP(

  )0 P(In XML Schema, built-in types are defined in the XML Schema names)HY(pace)YH(.
     By default, the C++/Tree mapping maps this names)HY(pace)YH( to C++
     names)HY(pace)YH( )SM(xml_schema)ES( \201this mapping can be altered
     with the )SM(--names)HY(pace)YH(-map)ES( option\202. The follow)HY(ing)YH( table
     summa)HY(rizes)YH( the mapping of XML Schema built-in types to C++ types:)EP(

  
  )0 PT(

  )0 P(As you can see from the table above a number of built-in
     XML Schema types are mapped to funda)HY(men)HY(tal)YH( C++ types such
     as )SM(int)ES( or )SM(bool)ES(. All string-based
     XML Schema types are mapped to C++ types that are derived
     from either )SM(std::string)ES( or
     )SM(std::wstring)ES(, depend)HY(ing)YH( on the char)HY(ac)HY(ter)YH(
     type selected. For access and modi)HY(fi)HY(ca)HY(tion)YH( purposes these
     types can be treated as )SM(std::string)ES(. A number
     of built-in types, such as )SM(qname)ES(, the binary
     types, and the date/time types do not have suit)HY(able)YH(
     funda)HY(men)HY(tal)YH( or stan)HY(dard)YH( C++ types to map to. As a result,
     these types are imple)HY(mented)YH( from scratch in the XSD runtime.
     For more infor)HY(ma)HY(tion)YH( on their inter)HY(faces)YH( refer to
     )R13 2 A(Section
     2.5, "Mapping for Built-in Data Types")EA( in the C++/Tree Mapping
     User Manual.)EP(


  


  )0 1 26 H(5)WB 62 Sn()WB 30 Sn( Parsing)EA()EH(

  )0 P(We have already seen how to parse XML to an object model in this guide
     before. In this chapter we will discuss the parsing topic in more
     detail.)EP(

  )0 P(By default, the C++/Tree mapping provides a total of 14 over)HY(loaded)YH(
     parsing func)HY(tions)YH(. They differ in the input methods used to
     read XML as well as the error report)HY(ing)YH( mech)HY(a)HY(nisms)YH(. It is also possi)HY(ble)YH(
     to gener)HY(ate)YH( types for root elements instead of parsing and seri)HY(al)HY(iza)HY(tion)YH(
     func)HY(tions)YH(. This may be useful if your XML vocab)HY(u)HY(lary)YH( has multi)HY(ple)YH(
     root elements. For more infor)HY(ma)HY(tion)YH( on element types refer to
     )R14 2 A(Section
     2.9, "Mapping for Global Elements")EA( in the C++/Tree Mapping User
     Manual.)EP(


  )0 P(In this section we will discuss the most commonly used versions of
     the parsing func)HY(tions)YH(. For a compre)HY(hen)HY(sive)YH( descrip)HY(tion)YH( of parsing
     refer to )R15 2 A(Chapter
     3, "Parsing")EA( in the C++/Tree Mapping User Manual. For the )SM(people)ES(
     global element from our person record vocab)HY(u)HY(lary)YH(, we will concen)HY(trate)YH(
     on the follow)HY(ing)YH( three parsing func)HY(tions)YH(:)EP(

  ) 15 71 PR(std::[auto|unique]_ptr<people_t>
people \201const std::string& uri,
        xml_schema::flags f = 0,
        const xml_schema::properties& p = xml_schema::properties \201\202\202;

std::[auto|unique]_ptr<people_t>
people \201std::istream& is,
        xml_schema::flags f = 0,
        const xml_schema::properties& p = xml_schema::properties \201\202\202;

std::[auto|unique]_ptr<people_t>
people \201std::istream& is,
        const std::string& resource_id,
        xml_schema::flags f = 0,
        const xml_schema::properties& p = ::xml_schema::properties \201\202\202;)RP(

  )0 P(The first func)HY(tion)YH( parses a local file or a URI. We have already
     used this parsing func)HY(tion)YH( in the previ)HY(ous)YH( chap)HY(ters)YH(. The second
     and third func)HY(tions)YH( read XML from a stan)HY(dard)YH( input stream. The
     last func)HY(tion)YH( also requires a resource id. This id is used to
     iden)HY(tify)YH( the XML docu)HY(ment)YH( being parser in diag)HY(nos)HY(tics)YH(  messages
     as well as to resolve rela)HY(tive)YH( paths to other docu)HY(ments)YH( \201for example,
     schemas\202 that might be refer)HY(enced)YH( from the XML docu)HY(ment)YH(.)EP(

  )0 P(The last two argu)HY(ments)YH( to all three parsing func)HY(tions)YH( are parsing
     flags and prop)HY(er)HY(ties)YH(. The flags argu)HY(ment)YH( provides a number of ways
     to fine-tune the parsing process. The prop)HY(er)HY(ties)YH( argu)HY(ment)YH( allows
     to pass addi)HY(tional)YH( infor)HY(ma)HY(tion)YH( to the parsing func)HY(tions)YH(. We will
     use these two argu)HY(ments)YH( in )0 31 1 A(Section 5.1, "XML Schema
     Vali)HY(da)HY(tion)YH( and Search)HY(ing)YH(")31 0 TN TL()Ec /AF f D( below. All three func)HY(tions)YH( return
     the object model as either )SM(std::auto_ptr)ES( \201C++98\202 or
     )SM(std::unique_ptr)ES( \201C++11\202, depend)HY(ing)YH( on the C++ stan)HY(dard)YH(
     selected \201)SM(--std)ES( XSD compiler option\202. The follow)HY(ing)YH(
     example shows how we can use the above parsing func)HY(tions)YH(:)EP(

  ) 17 65 PR(using std::auto_ptr;

// Parse a local file or URI.
//
auto_ptr<people_t> p1 \201people \201"people.xml"\202\202;
auto_ptr<people_t> p2 \201people \201"http://example.com/people.xml"\202\202;

// Parse a local file via ifstream.
//
std::ifstream ifs \201"people.xml"\202;
auto_ptr<people_t> p3 \201people \201ifs, "people.xml"\202\202;

// Parse an XML string.
//
std::string str \201"..."\202; // XML in a string.
std::istringstream iss \201str\202;
auto_ptr<people_t> p4 \201people \201iss\202\202;)RP(


  )0 2 27 H(5.1)WB 63 Sn()WB 31 Sn( XML Schema Vali)HY(da)HY(tion)YH( and Search)HY(ing)YH()EA()EH(

  )0 P(The C++/Tree mapping relies on the under)HY(ly)HY(ing)YH( Xerces-C++ XML
     parser for full XML docu)HY(ment)YH( vali)HY(da)HY(tion)YH(. The XML Schema
     vali)HY(da)HY(tion)YH( is enabled by default and can be disabled by
     passing the )SM(xml_schema::flags::dont_vali)HY(date)YH()ES(
     flag to the parsing func)HY(tions)YH(, for example:)EP(

  ) 2 59 PR(auto_ptr<people_t> p \201
  people \201"people.xml", xml_schema::flags::dont_validate\202\202;)RP(

  )0 P(Even when XML Schema vali)HY(da)HY(tion)YH( is disabled, the gener)HY(ated)YH(
     code still performs a number of checks to prevent
     construc)HY(tion)YH( of an incon)HY(sis)HY(tent)YH( object model \201for example, an
     object model with missing required attributes or elements\202.)EP(

  )0 P(When XML Schema vali)HY(da)HY(tion)YH( is enabled, the XML parser needs
     to locate a schema to vali)HY(date)YH( against. There are several
     methods to provide the schema loca)HY(tion)YH( infor)HY(ma)HY(tion)YH( to the
     parser. The easiest and most commonly used method is to
     specify schema loca)HY(tions)YH( in the XML docu)HY(ment)YH( itself
     with the )SM(schemaLo)HY(ca)HY(tion)YH()ES( or
     )SM(noNames)HY(paceSchemaLo)HY(ca)HY(tion)YH()ES( attributes, for example:)EP(

  ) 4 74 PR(<?xml version="1.0" ?>
<people xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:noNamespaceSchemaLocation="people.xsd"
        xsi:schemaLocation="http://www.w3.org/XML/1998/namespace xml.xsd">)RP(

  )0 P(As you might have noticed, we used this method in all the sample XML
     docu)HY(ments)YH( presented in this guide up until now. Note that the
     schema loca)HY(tions)YH( spec)HY(i)HY(fied)YH( with these two attributes are rela)HY(tive)YH(
     to the docu)HY(ment)YH('s path unless they are abso)HY(lute)YH( URIs \201that is
     start with )SM(http://)ES(, )SM(file://)ES(, etc.\202.
     In partic)HY(u)HY(lar)YH(, if you specify just file names as your schema
     loca)HY(tions)YH(, as we did above, then the schemas should reside in
     the same direc)HY(tory)YH( as the XML docu)HY(ment)YH( itself.)EP(

  )0 P(Another method of provid)HY(ing)YH( the schema loca)HY(tion)YH( infor)HY(ma)HY(tion)YH(
     is via the )SM(xml_schema::prop)HY(er)HY(ties)YH()ES( argu)HY(ment)YH(, as
     shown in the follow)HY(ing)YH( example:)EP(

  ) 5 74 PR(xml_schema::properties props;
props.no_namespace_schema_location \201"people.xsd"\202;
props.schema_location \201"http://www.w3.org/XML/1998/namespace", "xml.xsd"\202;

auto_ptr<people_t> p \201people \201"people.xml", 0, props\202\202;)RP(

  )0 P(The schema loca)HY(tions)YH( provided with this method over)HY(rides)YH(
     those spec)HY(i)HY(fied)YH( in the XML docu)HY(ment)YH(. As with the previ)HY(ous)YH(
     method, the schema loca)HY(tions)YH( spec)HY(i)HY(fied)YH( this way are
     rela)HY(tive)YH( to the docu)HY(ment)YH('s path unless they are abso)HY(lute)YH( URIs.
     In partic)HY(u)HY(lar)YH(, if you want to use local schemas that are
     not related to the docu)HY(ment)YH( being parsed, then you will
     need to use the )SM(file://)ES( URI. The follow)HY(ing)YH(
     example shows how to use schemas that reside in the current
     working direc)HY(tory)YH(:)EP(

  ) 19 55 PR(#include <unistd.h> // getcwd
#include <limits.h> // PATH_MAX

char cwd[PATH_MAX];
if \201getcwd \201cwd, PATH_MAX\202 == 0\202
{
  // Buffer too small?
}

xml_schema::properties props;

props.no_namespace_schema_location \201
  "file:///" + std::string \201cwd\202 + "/people.xsd"\202;

props.schema_location \201
  "http://www.w3.org/XML/1998/namespace",
  "file:///" + std::string \201cwd\202 + "/xml.xsd"\202;

auto_ptr<people_t> p \201people \201"people.xml", 0, props\202\202;)RP(

  )0 P(A third method is the most useful if you are plan)HY(ning)YH( to parse
     several XML docu)HY(ments)YH( of the same vocab)HY(u)HY(lary)YH(. In that case
     it may be bene)HY(fi)HY(cial)YH( to pre-parse and cache the schemas in
     the XML parser which can then be used to parse all docu)HY(ments)YH(
     without re-parsing the schemas. For more infor)HY(ma)HY(tion)YH( on
     this method refer to the )SM(caching)ES( example in the
     )SM(exam)HY(ples)YH(/cxx/tree/)ES( direc)HY(tory)YH( of the XSD
     distri)HY(bu)HY(tion)YH(. It is also possi)HY(ble)YH( to convert the schemas into
     a pre-compiled binary repre)HY(sen)HY(ta)HY(tion)YH( and embed this  repre)HY(sen)HY(ta)HY(tion)YH(
     directly into the appli)HY(ca)HY(tion)YH( executable. With this approach your
     appli)HY(ca)HY(tion)YH( can perform XML Schema vali)HY(da)HY(tion)YH( without depend)HY(ing)YH( on
     any exter)HY(nal)YH( schema files. For more infor)HY(ma)HY(tion)YH( on how to achieve
     this refer to the )SM(embed)HY(ded)YH()ES( example in the
     )SM(exam)HY(ples)YH(/cxx/tree/)ES( direc)HY(tory)YH( of the XSD distri)HY(bu)HY(tion)YH(.)EP(

  )0 P(When the XML parser cannot locate a schema for the
     XML docu)HY(ment)YH(, the vali)HY(da)HY(tion)YH( fails and XML docu)HY(ment)YH(
     elements and attributes for which schema defi)HY(ni)HY(tions)YH( could
     not be located are reported in the diag)HY(nos)HY(tics)YH(. For
     example, if we remove the )SM(noNames)HY(paceSchemaLo)HY(ca)HY(tion)YH()ES(
     attribute in )SM(people.xml)ES( from the previ)HY(ous)YH( chapter,
     then we will get the follow)HY(ing)YH( diag)HY(nos)HY(tics)YH( if we try to parse
     this file with vali)HY(da)HY(tion)YH( enabled:)EP(

  ) 8 74 PR(people.xml:2:63 error: no declaration found for element 'people'
people.xml:4:18 error: no declaration found for element 'person'
people.xml:4:18 error: attribute 'id' is not declared for element 'person'
people.xml:5:17 error: no declaration found for element 'first-name'
people.xml:6:18 error: no declaration found for element 'middle-name'
people.xml:7:16 error: no declaration found for element 'last-name'
people.xml:8:13 error: no declaration found for element 'gender'
people.xml:9:10 error: no declaration found for element 'age')RP(

  )0 2 28 H(5.2)WB 64 Sn()WB 32 Sn( Error Handling)EA()EH(

  )0 P(The parsing func)HY(tions)YH( offer a number of ways to handle error condi)HY(tions)YH(
     with the C++ excep)HY(tions)YH( being the most commonly used mech)HY(a)HY(nism)YH(. All
     C++/Tree excep)HY(tions)YH( derive from common base )SM(xml_schema::excep)HY(tion)YH()ES(
     which in turn derives from )SM(std::excep)HY(tion)YH()ES(. The easiest
     way to uniformly handle all possi)HY(ble)YH( C++/Tree excep)HY(tions)YH( and print
     detailed infor)HY(ma)HY(tion)YH( about the error is to catch and print
     )SM(xml_schema::excep)HY(tion)YH()ES(, as shown in the follow)HY(ing)YH(
     example:)EP(

  ) 8 47 PR(try
{
  auto_ptr<people_t> p \201people \201"people.xml"\202\202;
}
catch \201const xml_schema::exception& e\202
{
  cerr << e << endl;
})RP(

  )0 P(Each indi)HY(vid)HY(ual)YH( C++/Tree excep)HY(tion)YH( also allows you to obtain
     error details program)HY(mat)HY(i)HY(cally)YH(. For example, the
     )SM(xml_schema::parsing)ES( excep)HY(tion)YH( is thrown when
     the XML parsing and vali)HY(da)HY(tion)YH( in the under)HY(ly)HY(ing)YH( XML parser
     fails. It encap)HY(su)HY(lates)YH( various diag)HY(nos)HY(tics)YH( infor)HY(ma)HY(tion)YH(
     such as the file name, line and column numbers, as well as the
     error or warning message for each entry. For more infor)HY(ma)HY(tion)YH(
     about this and other excep)HY(tions)YH( that can be thrown during
     parsing, refer to
     )R16 2 A(Section
     3.3, "Error Handling")EA( in the C++/Tree Mapping
     User Manual.)EP(

  )0 P(Note that if you are parsing )SM(std::istream)ES( on which
     excep)HY(tions)YH( are not enabled, then you will need to check the
     stream state after the call to the parsing func)HY(tion)YH( in order
     to detect any possi)HY(ble)YH( stream fail)HY(ures)YH(, for example:)EP(

  ) 15 50 PR(std::ifstream ifs \201"people.xml"\202;

if \201ifs.fail \201\202\202
{
  cerr << "people.xml: unable to open" << endl;
  return 1;
}

auto_ptr<people_t> p \201people \201ifs, "people.xml"\202\202;

if \201ifs.fail \201\202\202
{
  cerr << "people.xml: read error" << endl;
  return 1;
})RP(

  )0 P(The above example can be rewrit)HY(ten)YH( to use excep)HY(tions)YH( as
     shown below:)EP(

  ) 13 66 PR(try
{
  std::ifstream ifs;
  ifs.exceptions \201std::ifstream::badbit | std::ifstream::failbit\202;
  ifs.open \201"people.xml"\202;

  auto_ptr<people_t> p \201people \201ifs, "people.xml"\202\202;
}
catch \201const std::ifstream::failure&\202
{
  cerr << "people.xml: unable to open or read error" << endl;
  return 1;
})RP(


  


  )0 1 29 H(6)WB 65 Sn()WB 33 Sn( Seri)HY(al)HY(iza)HY(tion)YH()EA()EH(

  )0 P(We have already seen how to seri)HY(al)HY(ize)YH( an object model back to XML
     in this guide before. In this chapter we will discuss the
     seri)HY(al)HY(iza)HY(tion)YH( topic in more detail.)EP(

  )0 P(By default, the C++/Tree mapping provides a total of 8 over)HY(loaded)YH(
     seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH(. They differ in the output methods used to write
     XML as well as the error report)HY(ing)YH( mech)HY(a)HY(nisms)YH(. It is also possi)HY(ble)YH( to
     gener)HY(ate)YH( types for root elements instead of parsing and seri)HY(al)HY(iza)HY(tion)YH(
     func)HY(tions)YH(. This may be useful if your XML vocab)HY(u)HY(lary)YH( has multi)HY(ple)YH(
     root elements. For more infor)HY(ma)HY(tion)YH( on element types refer to
     )R14 2 A(Section
     2.9, "Mapping for Global Elements")EA( in the C++/Tree Mapping User
     Manual.)EP(


  )0 P(In this section we will discuss the most commonly
     used version of seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH(. For a compre)HY(hen)HY(sive)YH( descrip)HY(tion)YH(
     of seri)HY(al)HY(iza)HY(tion)YH( refer to
     )R17 2 A(Chapter
     4, "Seri)HY(al)HY(iza)HY(tion)YH(")EA( in the C++/Tree Mapping User Manual. For the
     )SM(people)ES( global element from our person record vocab)HY(u)HY(lary)YH(,
     we will concen)HY(trate)YH( on the follow)HY(ing)YH( seri)HY(al)HY(iza)HY(tion)YH( func)HY(tion)YH(:)EP(

  ) 7 50 PR(void
people \201std::ostream& os,
        const people_t& x,
        const xml_schema::namespace_infomap& map =
          xml_schema::namespace_infomap \201\202,
        const std::string& encoding = "UTF-8",
        xml_schema::flags f = 0\202;)RP(

  )0 P(This func)HY(tion)YH( seri)HY(al)HY(izes)YH( the object model passed as the second
     argu)HY(ment)YH( to the stan)HY(dard)YH( output stream passed as the first
     argu)HY(ment)YH(. The third argu)HY(ment)YH( is a names)HY(pace)YH( infor)HY(ma)HY(tion)YH( map
     which we will discuss in more detail in the next section.
     The fourth argu)HY(ment)YH( is a char)HY(ac)HY(ter)YH( encod)HY(ing)YH( that the result)HY(ing)YH(
     XML docu)HY(ment)YH( should be in. Possi)HY(ble)YH( valid values for this
     argu)HY(ment)YH( are "US-ASCII", "ISO8859-1", "UTF-8", "UTF-16BE",
     "UTF-16LE", "UCS-4BE", and "UCS-4LE". Finally, the flags
     argu)HY(ment)YH( allows fine-tuning of the seri)HY(al)HY(iza)HY(tion)YH( process.
     The follow)HY(ing)YH( example shows how we can use the above seri)HY(al)HY(iza)HY(tion)YH(
     func)HY(tion)YH(:)EP(

  ) 19 34 PR(people_t& p = ...

xml_schema::namespace_infomap map;
map[""].schema = "people.xsd";

// Serialize to stdout.
//
people \201std::cout, p, map\202;

// Serialize to a file.
//
std::ofstream ofs \201"people.xml"\202;
people \201ofs, p, map\202;

// Serialize to a string.
//
std::ostringstream oss;
people \201oss, p, map\202;
std::string xml \201oss.str \201\202\202;)RP(


  )0 2 30 H(6.1)WB 66 Sn()WB 34 Sn( Names)HY(pace)YH( and Schema Infor)HY(ma)HY(tion)YH()EA()EH(

  )0 P(While XML seri)HY(al)HY(iza)HY(tion)YH( can be done just from the object
     model alone, it is often desir)HY(able)YH( to assign mean)HY(ing)HY(ful)YH(
     prefixes to XML names)HY(paces)YH( used in the vocab)HY(u)HY(lary)YH( as
     well as to provide the schema loca)HY(tion)YH( infor)HY(ma)HY(tion)YH(.
     This is accom)HY(plished)YH( by passing the names)HY(pace)YH( infor)HY(ma)HY(tion)YH(
     map to the seri)HY(al)HY(iza)HY(tion)YH( func)HY(tion)YH(. The key in this map is
     a names)HY(pace)YH( prefix that should be assigned to an XML names)HY(pace)YH(
     spec)HY(i)HY(fied)YH( in the )SM(name)ES( vari)HY(able)YH( of the
     map value. You can also assign an optional schema loca)HY(tion)YH( for
     this names)HY(pace)YH( in the )SM(schema)ES( vari)HY(able)YH(. Based
     on each key-value entry in this map, the seri)HY(al)HY(iza)HY(tion)YH(
     func)HY(tion)YH( adds two attributes to the result)HY(ing)YH( XML docu)HY(ment)YH(:
     the names)HY(pace)YH(-prefix mapping attribute and schema loca)HY(tion)YH(
     attribute. The empty prefix indi)HY(cates)YH( that the names)HY(pace)YH(
     should be mapped without a prefix. For example, the follow)HY(ing)YH(
     map:)EP(

  ) 7 55 PR(xml_schema::namespace_infomap map;

map[""].name = "http://www.example.com/example";
map[""].schema = "example.xsd";

map["x"].name = "http://www.w3.org/XML/1998/namespace";
map["x"].schema = "xml.xsd";)RP(

  )0 P(Results in the follow)HY(ing)YH( XML docu)HY(ment)YH(:)EP(

  ) 7 68 PR(<?xml version="1.0" ?>
<example
  xmlns="http://www.example.com/example"
  xmlns:x="http://www.w3.org/XML/1998/namespace"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://www.example.com/example example.xsd
                      http://www.w3.org/XML/1998/namespace xml.xsd">)RP(

  )0 P(The empty names)HY(pace)YH( indi)HY(cates)YH( that the vocab)HY(u)HY(lary)YH( has no target
     names)HY(pace)YH(. For example, the follow)HY(ing)YH( map results in only the
     )SM(noNames)HY(paceSchemaLo)HY(ca)HY(tion)YH()ES( attribute being added:)EP(

  ) 4 34 PR(xml_schema::namespace_infomap map;

map[""].name = "";
map[""].schema = "example.xsd";)RP(

  )0 2 31 H(6.2)WB 67 Sn()WB 35 Sn( Error Handling)EA()EH(

  )0 P(Similar to the parsing func)HY(tions)YH(, the seri)HY(al)HY(iza)HY(tion)YH( func)HY(tions)YH( offer a
     number of ways to handle error condi)HY(tions)YH( with the C++ excep)HY(tions)YH( being
     the most commonly used mech)HY(a)HY(nisms)YH(. As with parsing, the easiest way to
     uniformly handle all possi)HY(ble)YH( seri)HY(al)HY(iza)HY(tion)YH( excep)HY(tions)YH( and print
     detailed infor)HY(ma)HY(tion)YH( about the error is to catch and print
     )SM(xml_schema::excep)HY(tion)YH()ES(:)EP(

 ) 13 38 PR(try
{
  people_t& p = ...

  xml_schema::namespace_infomap map;
  map[""].schema = "people.xsd";

  people \201std::cout, p, map\202\202;
}
catch \201const xml_schema::exception& e\202
{
  cerr << e << endl;
})RP(

  )0 P(The most commonly encoun)HY(tered)YH( seri)HY(al)HY(iza)HY(tion)YH( excep)HY(tion)YH( is
     )SM(xml_schema::seri)HY(al)HY(iza)HY(tion)YH()ES(. It is thrown
     when the XML seri)HY(al)HY(iza)HY(tion)YH( in the under)HY(ly)HY(ing)YH( XML writer
     fails. It encap)HY(su)HY(lates)YH( various diag)HY(nos)HY(tics)YH( infor)HY(ma)HY(tion)YH(
     such as the file name, line and column numbers, as well as the
     error or warning message for each entry. For more infor)HY(ma)HY(tion)YH(
     about this and other excep)HY(tions)YH( that can be thrown during
     seri)HY(al)HY(iza)HY(tion)YH(, refer to
     )R18 2 A(Section
     4.4, "Error Handling")EA( in the C++/Tree Mapping
     User Manual.)EP(

  )0 P(Note that if you are seri)HY(al)HY(iz)HY(ing)YH( to )SM(std::ostream)ES( on
     which excep)HY(tions)YH( are not enabled, then you will need to check the
     stream state after the call to the seri)HY(al)HY(iza)HY(tion)YH( func)HY(tion)YH( in order
     to detect any possi)HY(ble)YH( stream fail)HY(ures)YH(, for example:)EP(

  ) 15 47 PR(std::ofstream ofs \201"people.xml"\202;

if \201ofs.fail \201\202\202
{
  cerr << "people.xml: unable to open" << endl;
  return 1;
}

people \201ofs, p, map\202\202;

if \201ofs.fail \201\202\202
{
  cerr << "people.xml: write error" << endl;
  return 1;
})RP(

  )0 P(The above example can be rewrit)HY(ten)YH( to use excep)HY(tions)YH( as
     shown below:)EP(

  ) 13 66 PR(try
{
  std::ofstream ofs;
  ofs.exceptions \201std::ofstream::badbit | std::ofstream::failbit\202;
  ofs.open \201"people.xml"\202;

  people \201ofs, p, map\202\202;
}
catch \201const std::ofstream::failure&\202
{
  cerr << "people.xml: unable to open or write error" << endl;
  return 1;
})RP(

  )BR(
)BR(

)WB NL
/TE t D NP /OU t D TU PM 1 eq and{/Pn () D showpage}if end restore